Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Differentiating COVID-19 from other types of pneumonia with convolutional neural networks

View ORCID ProfileIlker Ozsahin, Confidence Onyebuchi, Boran Sekeroglu
doi: https://doi.org/10.1101/2020.05.26.20113761
Ilker Ozsahin
1Near East University, Nicosia, Mersin-10 TRNC, 99138 Turkey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ilker Ozsahin
  • For correspondence: ilkerozsahin@windowslive.com
Confidence Onyebuchi
2Cyprus International University, Nicosia, Mersin-10 TRNC, 99258
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Boran Sekeroglu
1Near East University, Nicosia, Mersin-10 TRNC, 99138 Turkey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

INTRODUCTION A widely-used method for diagnosing COVID-19 is the nucleic acid test based on real-time reverse transcriptase-polymerase chain reaction (RT-PCR). However, the sensitivity of real time RT-PCR tests is low and it can take up to 8 hours to receive the test results. Radiologic methods can provide higher sensitivity. The aim of this study is to investigate the use of X-ray and convolutional neural networks for the diagnosis of COVID-19 and to differentiate it from viral and/or bacterial pneumonia, as 2-class (bacterial pneumonia vs COVID-19 and viral pneumonia vs COVID-19) and 3- class (bacterial pneumonia, COVID-19, and healthy group (BCH), and among viral pneumonia, COVID- 19, and healthy group (VCH)) experiments.

METHODS 225 COVID-19, 1,583 healthy control, 2,780 bacterial pneumonia, and 1,493 viral pneumonia chest X-ray images were used. 2-class- and 3-class-experiments were performed with different convolutional neural network (ConvNet) architectures, with different variations of convolutional layers and fully-connected layers.

RESULTS The results showed that bacterial pneumonia vs COVID-19 and viral pneumonia vs COVID- 19 reached a mean ROC AUC of 97.32% and 96.80%, respectively. In the 3-class-experiments, macro-average F1 scores of 95.79% and 94.59% were obtained in terms of detecting COVID-19 among BCH and VCH, respectively.

CONCLUSIONS The ConvNet was able to distinguish the COVID-19 images among non-COVID-19 images, namely bacterial and viral pneumonia as well as normal X-ray images.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

The authors received no specific funding for this work.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The project built for creating this dataset was approved by the University of Montreal's Ethics Committee #CERSES-20-058-D. Informed consent was obtained for all subjects, and the study was approved by the relevant institutional review board at each data acquisition site. All methods were performed in accordance with the relevant guidelines and regulations. All chest X-ray imaging was performed as part of patients' routine clinical care. Institutional Review Board (IRB)/Ethics Committee approvals were obtained. The work was conducted in a manner compliant with the United States Health Insurance Portability and Accountability Act (HIPAA) and was adherent to the tenets of the Declaration of Helsinki.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

Data used in this study is available in the main text.

https://github.com/ieee8023/covid-chestxray-dataset

https://doi.org/10.17632/rscbjbr9sj.3

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted May 27, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Differentiating COVID-19 from other types of pneumonia with convolutional neural networks
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Differentiating COVID-19 from other types of pneumonia with convolutional neural networks
Ilker Ozsahin, Confidence Onyebuchi, Boran Sekeroglu
medRxiv 2020.05.26.20113761; doi: https://doi.org/10.1101/2020.05.26.20113761
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Differentiating COVID-19 from other types of pneumonia with convolutional neural networks
Ilker Ozsahin, Confidence Onyebuchi, Boran Sekeroglu
medRxiv 2020.05.26.20113761; doi: https://doi.org/10.1101/2020.05.26.20113761

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (227)
  • Allergy and Immunology (502)
  • Anesthesia (110)
  • Cardiovascular Medicine (1234)
  • Dentistry and Oral Medicine (206)
  • Dermatology (147)
  • Emergency Medicine (282)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (530)
  • Epidemiology (10015)
  • Forensic Medicine (5)
  • Gastroenterology (499)
  • Genetic and Genomic Medicine (2448)
  • Geriatric Medicine (236)
  • Health Economics (479)
  • Health Informatics (1638)
  • Health Policy (751)
  • Health Systems and Quality Improvement (636)
  • Hematology (248)
  • HIV/AIDS (532)
  • Infectious Diseases (except HIV/AIDS) (11860)
  • Intensive Care and Critical Care Medicine (625)
  • Medical Education (252)
  • Medical Ethics (74)
  • Nephrology (268)
  • Neurology (2277)
  • Nursing (139)
  • Nutrition (350)
  • Obstetrics and Gynecology (453)
  • Occupational and Environmental Health (534)
  • Oncology (1245)
  • Ophthalmology (375)
  • Orthopedics (133)
  • Otolaryngology (226)
  • Pain Medicine (155)
  • Palliative Medicine (50)
  • Pathology (324)
  • Pediatrics (729)
  • Pharmacology and Therapeutics (311)
  • Primary Care Research (282)
  • Psychiatry and Clinical Psychology (2280)
  • Public and Global Health (4829)
  • Radiology and Imaging (834)
  • Rehabilitation Medicine and Physical Therapy (490)
  • Respiratory Medicine (650)
  • Rheumatology (283)
  • Sexual and Reproductive Health (237)
  • Sports Medicine (226)
  • Surgery (266)
  • Toxicology (44)
  • Transplantation (125)
  • Urology (99)