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Summary 

Background 

Reports on the detected positive patients with COVID-19 are as per today the 
best estimation of a country spread of the pandemic. In order to evaluate the 
early indicators for true lethality and recovery time, the data where the model 
is built must be quality checked. Each country sets different procedures and 
criteria for fatality count due to COVID-19 and the health system is stressed 
by having insufficient testing, untracked patients and premature discharge. In 
this paper the dynamics behind such data quality issues are discussed 
throughout the disease course to support better modeling and decision-making 
processes in a stressed healthcare system. 

Methods 
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Based on data compiled and relayed by the Johns Hopkins University, 
tracking COVID-19 over 590.000 patients (march 27th, 2020), the data is 
clustered and compared with discrete regression. Regression parameters are 
restricted by a time interval of 1 day and must be meaningful for the 
diagnostic (i.e. a fatality cannot occur before the patient displays symptoms).  
Cumulative infection curves are taken and built. Infection baseline is based on 
the country official declaration. Infection synthetic curves are built from the 
Fatality count and the Recovered patient count. The adjusted parameters are 
τ=time to fatality (days), δ=time to discharge of recovered patients (days) and 
φ=case fatality rate (CFR in per unit, P.U.). Therefore, the discharge rate 
(recovery rate) is forced to be (1- φ). 

Using forward or backward formulas have no other influence than the time 
reference. In both circumstances, time from Onset and Symptoms are 
neglected and shall be added if such dates are to be plot. There is a gap of two 
weeks since exposure to Hospital Admission to detection and the earlier the 
diagnose is done, the better the outcome.  

Cumulative figures are used to smoothen the deviation and to provide the best 
estimator possible at the present time. The delay factor allows to compare 
figures belonging to the same date of detection. 

Fast, daily models which can be used and integrated to a filtering stage on the 
parameter estimator in a complex approach are left out of scope. Continuous 
models can also be used and interpolation among the data points is another 
source of noise to be considered, especially when counting methods are 
suddenly changing as it is the case with COVID-19. 

Countries were grouped as found representative for methodology illustration 
purposes. Results are discussed and compared across the different groups and 
potential indicators of this behavior are drawn for further study. 

Findings 

From 593.291 cases in the sample, and its 7 representative groups, the 
recovery time and the local CFR are negatively correlated, having the highest 
fatality rates (21%, Spain) the countries with shorter recovery time (11 days, 
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Spain). Also, CFR can be an indicator of Infection inconsistencies (i.e. South 
Korea, CFR 1%, Time to recovery 25 days). 

At the review part, focus is made on the inconsistencies detected in Germany 
and South Korea datasets as well as the potential misfits on China and Spain. 

Overall, the Time to Fatality ranges between 4 and 8 days, and the mean is of 
6 days (South Korea, 7 days; Japan, 6days). Only Germany and France are 
detecting earlier than other countries and admit 10 days before fatality occurs. 

To date, shortening hospital discharge times seem to lead to patient re-
infections (COVID-19 positive), and studies are working on this line. 

Interpretation 

One simple explanation for the local CFR and Recovery time correlation is to 
define such rate as a measure of the healthcare system overload. Anomalous 
CFR indexes point to a stressed healthcare system. The higher the overload, 
the more focus on critical cases and hence the higher local CFR. 

The COVID-19 intrinsic CFR is unlikely to change by a factor of 10x from 
countries with similar lifestyle, GDP per capita and health services (i.e. the 
Mediterranean Basin, Northern Europe, etc.). Because of this fact, early CFR 
measured before Healthcare system overwhelming (COVID-19 free flow) are 
considered to be more accurate than the measured CFR while the outbreak is 
still ongoing, 

Finally, the synthetic Infection indexes may be a helpful indirect measure of 
the real population infection rate and also used for data quality audit. Any 
model built upon inconsistent data will be complex to explain and justify. 

Funding 

No specific funding is raised.  

*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* 

Introduction 
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Beginning in December 2019, a cluster of cases of pneumonia with unknown 
cause was reported in Wuhan, in the Hubei province of China and by 
December 31st, the Chinese government raised its concerns to the WHO and 
closed the potential source, a trade market from Wuhan. On January 23rd, 
China declares a local lockdown and by January 25th an extended lockdown 
with more restrictive measures in place. By January 30th, WHO does not 
consider to be a Public Health Emergency of International Concern(1). A 
novel virus form denominated SARS-CoV-2 is sequenced and found to be fast 
adapting to new species infection, being humans among its hosts which 
develop the denominated COVID-19 disease. WHO declares the pandemic 
status by March 11th 2020(2). Since the Chinese alert, the number of cases has 
exhibited a pandemic profile worldwide with an estimated CFR above 2%, 
and a strong human-to-human transmission, weaker to human-mammal pets. 
 
Research in context 

Evidence before this study 
Before this study, we searched Google Scholar, Elsevier and Springer 
repositories until March 25th, 2020 for articles describing the COVID-19 
clinical course, symptomatic features, prognosis and epidemic modeling. 
SARS and MERS keywords were also used to extend the search on useful 
articles and lessons learnt from the past outbreaks. Diverse data sources were 
found and the Johns Hopkins University repository on Github which was 
selected for its continuous efforts to refine and curate the data released. 

Added value of this study 
We developed a tool to validate raw data quality. As collateral outputs, we 
have estimates of COVID-19 features as Time to Fatality, Time to Recovery 
and Case Fatality Rate as well as a minimum Infections estimator. Such 
indicators can be used to assess infected detection procedures, having a large 
population of over 590.000 detected infections worldwide. 

Our findings emphasize the relevance of proper data collection in early stages 
of an outbreak and provide insights on the procedures during the expansion, to 
validate the healthcare measures in place and its effects, suggesting potential 
improvement paths and proposing further lines of study to support fast data-
driven, effective and efficient decision-making under pressure. 
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Implications of all the available evidence 
COVID-19 has a fast cycle on elder and sensitive subjects, leading to sudden 
ARDS (Acute Respiratory Distress Syndrome) and fast death since. By 
including data validation in early stage, the healthcare system capacity can be 
quickly prepared for the disease, triggering the responses earlier.  

We focused our expert research on data and modelling, in order to define a 
clinical course(3)(4)(5) to feed an explainable and actionable numerical model 
and contrast different data sources and to assess both the data quality and the 
clinical course estimators.  

Estimating the real number of infections is found to be of paramount 
relevance in order to stop COVID expansion and other estimators(6) under 
study can complement the minimum found with the explained method. 

Our main goal is to support decision-making and to deliver open tools for 
procedure setup and early actuation. 

Methods 

Study design 

Based on data compiled and relayed by the Johns Hopkins University, 
tracking COVID-19 over 590.000 cases (march 27th, 2020), the data is 
clustered and compared with discrete regression. For reference, the same 
method is also applied to selected cases on 4.54 M cases (may 14th, 2020). 
Regression parameters are restricted by a time interval of 1 day and must be 
meaningful for the diagnostic (i.e. a fatality cannot occur before the patient 
displays symptoms).  Cumulative infection curves are taken and built. 
Infection baseline is based on the country official declaration. Infection 
synthetic curves are built from the Fatality count and the Recovered patient 
count. The adjusted parameters are τ=time to fatality (days), δ=time to 
discharge of recovered patients (days) and φ=case fatality rate (CFR in per 
unit, P.U.). Therefore, the discharge rate is forced to be (1- φ). 

Estimating the case fatality rate (CFR) during an outbreak is a complex work 
as data is incomplete, inconsistent, delayed and biased. Once the outbreak is 
complete, the CFR best estimator is: 
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𝐶𝐶𝐶𝐶𝐶𝐶 =
Total Counted Fatalities

Total Detected Cases
 

As the epidemic is still ongoing, estimators can be inconsistent and misleading 
as the data is strongly deformed by detection bias and delays: 

1. Incomplete: Sample size is small to be not representative of a larger 
population. Studies of a few individuals deliver wide Confidence 
Intervals (CI) which make them insufficiently representative. To 
complete the sample, testing must be extended. 

2. Inconsistent: Each hospital, province and state set different standards 
for prognosis and considers admissions and discharges upon a wide 
spectrum of diagnose. 

3. Delayed: Admissions are accepted once symptoms become evident. 
Therefore, the incubation period is completed and beyond. Recovered 
patients are discharged upon symptomatic relief after hospitalization 
time, albeit the viral load may still be present in the recovered patient. 
Most fatalities occur in a different timeline from recovered.  

4. Biased: Patients attending the hospital are mobility constrained. Elder 
and younger patients use to be accompanied, exposing young adults to 
infection.  This is a potential source of biased sample demographics 
attended at the hospital with an over-representation of mid-aged 
patients over a true population pyramid. Another bias is that there is no 
control group in the general population and there is no way to precisely 
quantify the real spread of COVID-19 at the moment of writing. 

To provide a meaningful CFR and Hospitalization Rate (HR), time and bias 
must be included in the time-count model. The reconstruction formulas for 
infections become (Eq.1) and (Eq.2): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝜏𝜏(t) =
Cumulative Counted Fatalities (t + τ)

CFR
  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝛿𝛿(t) =
Cumulative Discharged Patients (t + δ)

(1 − CFR)(HR)
 

Using forward or retrospective formulas has no other influence than the time 
reference. In both circumstances, time from Onset and Symptoms are 
neglected and shall be added if the Onset date aims to be plot. 
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Cumulative figures are used to reduce the deviation and to provide the 
best estimator possible at the present time. Delays allow to compare figures 
belonging to the same date of detection, regardless of their origin. 

Fast, daily models which can be used and integrated to a filtering stage on the 
parameter estimator in a complex approach are left out of scope. Continuous 
models can also be used and interpolation among the data points is another 
source of noise to be considered, especially when counting methods are 
suddenly changing as it is the case. 

Countries were grouped as found representative for methodology illustration 
purposes. Results are discussed and compared across the different groups and 
potential indicators of this behavior are drawn for further study. 

As the country with more tests conducted per capita is statistically closer to 
have a CFR in the order of magnitude of the IFR, an estimated minimum 
number of infections for the country i is computed by the use of the equation. 

𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸 𝐼𝐼𝑖𝑖 =
Cumulative Counted Infections𝑖𝑖 ∗ CFR𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚
 

Data Acquisition and processing 

Consolidated data is taken from the JHU repository with the Countries’ 
cumulated Infected, Recovered and Fatality cases. From such and using the 
correction formulas and adjusted to an integer number of days, the values of 
τ=time to fatality (days), δ=time to discharge of recovered patients (recovery, 
days) and φ=case fatality rate are computed.  

Statistical Analysis 

Preliminary filtering was done with Ms Excel 2016. Heuristic adjustments 
were done to reach R squared fit above 0,99 threshold. Use of discrete number 
of days (integer) to minimize noise was chosen over moving average windows 
or spline generation for interpolation.  

Kaplan-Meier estimators are not used as the unknown infections is likely 
much higher and the method does nor appropriately work with censored 
values above 40%(7). To note, in Hong-Kong SARS, the estimated censored 
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rate was of 86%. This implies a minimum factor of 6 to the minimum real 
infections figure. 

Role of the funding source 

There was no funding source for this study. The author had access to the 
Johns Hopkins University repository(8) on Github and had the final 
responsibility for submission of the article. 

Results 

593.291 patients positively diagnosed with COVID-19 are taken as a baseline 
population. The Infected curve is reconstructed from the Fatalities curve and 
from the Recovered (discharged) curve. 

Country figures display a wide range of parameter magnitudes while the fit 
has a good adjustment. US has a Time to Fatality of 5 days and a Time to 
recover of 20 days with a CFR of 4%. Contagion is still growing and more 
datapoints are needed to properly reconstruct the curve from recovered 
patients. 

 

Figure 1 USA status as per may 24th. Note the missing recovered figures 
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Figure 2. Status of the USA on may 14th. Note the 28% hospitalization rate on April 26th 

China has a Time to fatality of 8 days and a Time to recover of 21 days with a 
CFR of 4%. Having a track record limited since the lockdown, the 
reconstructed curves for infected from recovered and fatalities match, and the 
synthetic ones have the best fit compared to the declared infections with a 
smoother evolution.  

 

Figure 3: China cases followed a perfect 100% hospitalization rate flawless curve. Presented march 24th.. 

Europe’s Italy, Germany and France have a Time to fatality of 4 days and a 
Time to recover of 15 days with a CFR of 9%. Despite having a different 
policy, the aggregated Infection curve is matching the reconstructed one from 
both the fatality (yellow) and recovered (red). 
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Figure 4. Europe by march 24th. Note the beginning of country bias.100% hospitalization rate. 

The EU case requires a further analysis as countries started to modify its 
accounting pattern since march 24th. Therefore, Belgium is presented as a case 
with a 32% Hospitalization Rate, 7 days to fatality and 6 days to recovery. 

 

Figure 5. The Belgium case exhibits a fast path to diagnose which patients are more severely affected. May 14th 

Italy has a perfect match on diagnose and fatalities and its Healthcare system 
became overwhelmed by mid-April reaching its absolute minimum HR. The 
model shows 5 days to fatality and 10 days of hospitalization to recovery. 
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Figure 6. Italy on may 24th. To note the variation of HR along the infection, still below 70% 

France has early detected gaps and pitfalls on its methodology and proceeded 
to correct and fix testing and accounting. The 7-day cycle is noticeable but 
still credible with an hospitalization rate of 41%, 10 days to fatality and 11 
days to recovery as per may 14th. 

 

Spain has a Time to fatality of 7 days and a Time to recover of 11 days with a 
CFR of 21% by march 24th. Being all three curves consistent, it replicates the 
European fit, with the only differences of parametrization. 
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Figure 7. Spain by march 24th. Unbiased information delivers overlapping curves with a 100% hospitalization rate. 

Spain has modified the testing, diagnose and accounting methods in several 
stages, which instead of matching the fatality curve as France, is forcing to 
match the infections curve since late April. The below exposed parameters 
include 67% HR, 3 days to fatality and 11 days to recovery.  

 

Figure 8. The updated accounting method triggers a gap between fatalities and unrealistically lowering infections. 

The German case is also worth an analysis as it displays a consistent 
inconsistency since early April when the gap between detected infections and 
corresponding reconstructed fatalities mismatch. The country correlates an 
astounding HR of 97% with 10 days to fatality and 17 days to recovery curve. 
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Figure 9. Germany should have around 250k infections and is reporting 70% of it as per may 14th. A more detailed 
analysis on the methodology changes since April 5th should be required to understand the mismatch. 

South Korea has a Time to fatality of 7 days and a Time to recover of 25 days 
with a CFR of 1%. It displays data consistency until March 11th. After the 
date, official infections remain under the reconstructed curve from fatalities 
and above the recovered reconstructed curve. To remark that data form may 
14th is keeping the same inconsistency level. A note on the accounting and 
diagnostics could be of interest as the curves’ shape differs heavily and are 
potentially belonging to different causes.  

 

Figure 10. South Korea status by march 24th 
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Figure 11. South Korea by May 14th. 91% HR, 4 days to fatality, 24 days to recovery. 

Rest of the world has a Time to fatality of 6 days and a Time to recover of 16 
days with a CFR of 7% on march 24th. The reconstructed infectious curves 
match the declared infections overall. By May 14th the worldwide curves 
display a HR of 60% (matching infections), with 7 days to fatality, 20 days to 
recovery and a CFR of 8,9% however with an increasing gap between 
infections and fatalities, potentially due to better diagnosis and a limited 
control over COVID-19 spread. 

 

Figure 12: Rest of the world by march 24th. 100% HR 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 27, 2020. ; https://doi.org/10.1101/2020.05.26.20113316doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.26.20113316
http://creativecommons.org/licenses/by/4.0/


 

Figure 13. Worldwide status by May 14th. 

The coefficients used to build up the reconstructed curves are respectively: 

 

Figure 14. Coefficients used on March 24th -initial- and May 14th -updated- coefficients 

The figures represent Time to Recovery as the time lapse from hospital 
admission of positive cases to hospital discharge and the Time to Fatality is 
the time lapse between hospital admission of positive cases to fatality record, 
and plotting the fatality rate against the variable Time to Recovery, the figure 
is generated:  
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Figure 15.  CFR Vs Recovery time by March 24th 

 

Figure 16. CFR Vs Recovery time bt May 14th. 

Figures display that the fatality rate is lower as the hospitalization period is 
longer.  

Applying the correction factor for the minimum estimation of infections on 
2020-03-27 is presented on table.  

Countries Minimum infections (estimation) 
USA 365.965 
CHI 335.778 
DE+FR+ITA 1.536.939 
ESP 1.380.099 
SKR 9.332 
Rest of the World 1.065.448 
JPN 6.606 
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Discussion 

Data provided from official sources is consistent both in Europe and the US as 
well as the rest of the world which reports on COVID-19 during its early 
stage. This indicates the suitability of data for the pandemic parametrization 
on initial data analysis. 

In Asia, the Japanese procedures are accurate but induce delay in the signals 
and raw data must be corrected before modelling. 

China has different curves from declared infection and the reconstructed from 
recovered and fatalities. The steeper curve belongs to the declared infection 
and hence, computing R0 on free flow from the declared infections curve may 
overestimate the real value of transmissibility if fatalities are well reported. 
Reconstructed curves are smoother and offer a consistent match which may 
get closer to real infection curves. The gap between declared and real 
infections can be represented as initial diagnostics were lagging the disease 
and once procedures were in place, the time to detection was increased, giving 
additional control over the situation. 

The South Korean case displays a severe dissonance. While the fatalities 
curve shows a controlled-infection pattern (constant fatality rate) the declared 
infection points to a controlled stagnation pattern. Also, the underestimated 
recovery rate means that some COVID-19 positive patients are never 
discharged from the hospital, which is unlikely to happen. 

The overall average time-to-fatality is of 7 days (time from anomalous 
infection symptoms leading to hospital acceptance, until fatality occurs in 
hospital premises), which remains in line with the published clinical course 
for COVID-19 and makes it consistent with ICU data. 

Plotting hospital days (stay) Vs CFR shows that the mortality rate is much 
bigger in Spain, which is over an order of magnitude beyond countries as 
Japan, as China and the US which are in they turn well over South Korea’s 
CFR. In fact, what can be appreciated in the figure is that countries with 
completely saturated or unprepared healthcare system do experience a much 
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higher mortality, potentially explained because overwhelmed Healthcare 
services are prone to decrease its patient stay and filter its admissions, 
focusing on the most critical ones. Patients are discharged faster and CFR is 
increased. Therefore, correlation between CFR and the time to recovery is not 
causal but explicative. Such an indicator can work for COVID-19 to measure 
efficiency on detections and national healthcare system overload. Roughly, 
the overall trend is to increase CFR by 1 point as the stay is shortened by 1 
day. This estimator can be used to compute the effective number of hospital 
beds required to face a given pandemic infection or to determine the HC 
system capacity provided a fixed number of stations. 

Therefore, the fatality rate against the hospital days curve is displaying the 
overwhelming of a healthcare system and it is not true to the real CFR of the 
COVID-19 unless we are near the X axis. 

The following lines of the study will focus on the data and the parameter 
adjustment. The presented methodology for a first quality assessment 
demonstrates when data can be fed straightforward to a model in order to 
compute the epidemiological parameters and when the data requires 
preprocessing before feeding any realistic model or if the data is not even 
suitable for it, as the South Korea and German cases. Hence, anomalies as 
detected in South Korea, Germany and China potentially indicate that an 
evolved method to correct the baseline data must be applied to match 
consistently and understandably the curves with the reconstructions of such.  

So far, CFR has to be considered a bad estimator for IFR (infection fatality 
rate) as the data is incomplete in many cases and the preclinical cases are 
unknown. However, the ratio from highest to lowest CFR can be a potential 
estimator on the real Infectivity where testing was not being conducted 
extensively Vs a full-population testing, providing a figure for total infected 
people at a given date, which can be contrasted with other methodologies. 
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