Serological surveys in Reunion Island of the first hospitalized patients revealed that long-lived immunoglobulin G antibodies specific against SARS-CoV2 virus are rapidly vanishing in severe cases.

DOBI, Anthony 1,2Ω ; FRUMENCE, Etienne 1Ω ; LALARIZO RAKOTO, Mahary 1 ; LEBEAU Grégorie 1,2 ; VAGNER Damien 1,3 ; SANDENON SETEYEN Anne-Laure 1,2 ; GIRY Claude 1,4 ; SEPTEMBRE-MALATERRE Axelle 1,2 ; JAFFAR-BANDJEE Marie-Christine 4 ; RAFFRAY Loïc 1,3,5 and GASQUE Philippe 1,2τ

1. Laboratoire d’immunologie Clinique et expérimentale de la ZOI (LIC-E-OI), Fôle de Biologie, CHU de la Réunion, St Denis
2. Unité de recherche en Pharmaco-immunologie (UR-EPI), Université et CHU de la Réunion, St Denis
3. UMR PIMIT ‘Processus infectieux en milieu Insulaire tropical’ CNRS 9192, INSERM1187, IRD 249, Université de la Réunion, St Denis
4. CNR asso ciated arbovir us, Laboratoire de Microbiologie, Fôle de Biologie, CHU de la Réunion, St Denis
5. Service de Médecine Interne, CHU de la Réunion, St Denis

Ω : These authors contributed equally to the work;
τ : Correspondence should be addressed to Philippe.gasque@chu-reunion.fr

Reunion (RUN) island is one of the outermost region in Europe, part of the Mascareigna archipel and best known for its major epidemic of chikungunya in 2005-2006 affecting over 1/3 of the population (ie. 258,000 cases) 1. Yet again, the island has been impacted more recently from beginning of March 2020 with the first set of imported cases of the novel coronavirus SARS-CoV2. Both cellular and humoral immunities are critically important to control the infection but little is known about the kinetics of those responses and, in particular, in patients who will go on to develop a severe form of the disease over several weeks. Previous but limited studies have demonstrated that IgG serum levels were higher in severe patients than in non-severe patients two weeks after symptom onset but to what extent this response could last (or not) is unknown.

We herein present the first set of data of our prospective cohort study of hospitalized cases. Serological surveys were thoroughly performed over 2 month period by assessing IgG and IgM responses by immunofluorescence, immunoblot, Western blot and conventional ELISA using clinical RUN isolates of SARS-CoV2 immobilized on 96 well plates.

Among the ninety hospitalized RTPCR+ cases tested at CHU de la Réunion (11 March-20 May 2020), we further fully explored the kinetic of the antibody responses in twenty cases over ten to sixty-four days. While the IgM and, unexpectedly, the IgG responses were readily detected early during the course of the disease (5-7 days post-first symptoms), our results (n=3-5 and over the full dilution set of the plasma 1/200 to 1/12800) demonstrated a significant decrease (over 2.5-fold) of IgG levels in severe (ICU) hospitalized patients (exemplified in patient 1). It has already been demonstrated that seroconversion for IgG and IgM occurred simultaneously and that antibody titers plateaued within 6 days after seroconversion. In contrast, mild non-ICU patients had a steady and yet robust rise in their specific IgG levels against the virus. Interestingly, both responses (IgM and IgG) were initially against the nuclecapsid (50kDa band on the WB) and spreading to other major viral protein S and domains (S1 and S2).
Our original data have several major implications. The techniques used herein clearly argue for the use of conventional methods to perform reliable serological surveys and particularly given the major shortage of commercial kits. Serological testing may be helpful for the diagnosis of suspected patients with negative RT-PCR results and for the identification of asymptomatic infections. Moreover, medical care and protections should be maintained particularly for recovered patients (severe cases) who may remain at risk. Our data suggest that immune protection against SARS-CoV-2 might rapidly vanish over time (in a matter of days) as reported for patients with SARS-CoV-1 (but yet in a matter of months)\(^2\). RTPCR surveys should be reinforced even in the event of past positive serology. Of further critical note, patient 4 remained SARS-CoV2 + by RTPCR (E and N genes) at day 46. Finally, we believe that the emphasis should be although on studies not only addressing the T cell responses but although their kinetics overtime. All in all, these studies will help to delineate the best routes for vaccination.

Authors thanks all members of staff of clinical boards at the main teaching hospital dealing with COVID patients in Réunion Island. Work is supported by CPER-FEDER COVI-RUN Program to P Gasque.

References

A) Antibodies against SARS-CoV2 virus are readily detected in the case report N°1 (severe, ICU):

Immunofluorescence: Detection of IgG

Vero cells non infected

Vero cells infected

Alexa 594 Goat Anti-Human IgG

Dot blot: Detection using mouse monoclonal anti-Human IgG

- + - + - + - + - +

1/200 1/6400 1/3200 1/1600 1/800 1/400

DAY 7

DAY 12

- + - + - + - + - +

Clinical isolate of SARS-CoV2 from RUN infected Vero cells

- MOCK- infected Vero cells

Western blot: Detection of IgG and IgM specific for SARS-CoV2 in the plasma of patient 1 diluted either 100 (a) and 1000 fold (b)

B) Specific anti SARS-CoV2 antibodies are rapidly vanishing in weeks (ie. in severe cases)

<table>
<thead>
<tr>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
<th>Patient 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M, 80Y)</td>
<td>(M, 56Y)</td>
<td>(M, 72Y)</td>
<td>(M, 82Y)</td>
</tr>
<tr>
<td>(severe)</td>
<td>(severe)</td>
<td>(mild)</td>
<td>(mild)</td>
</tr>
</tbody>
</table>

Patient 1 (severe):

![Graph showing IgG and IgM levels over time](image)

Patient 2 (severe):

![Graph showing IgG and IgM levels over time](image)

Patient 3 (mild):

![Graph showing IgG and IgM levels over time](image)

Patient 4 (mild):

![Graph showing IgG and IgM levels over time](image)