Prioritizing COVID-19 tests based in Participatory Surveillance and Spatial Scanning.

Leal-Neto, OB^{1,2*}; Santos, FAS³; Lee, JY⁴; Albuquerque, JO^{2,5}; Souza, WV⁶

¹Department of Economics, University of Zurich, Zurich, Switzerland

²Epitrack, Recife, Brazil

³Agreste Academic Center, Federal University of Pernambuco, Caruaru, Brazi

⁴Colab, São Paulo, Brazil

⁵Immunopathology Laboratory Keizo Asami, Federal University of Pernambuco,

Recife, Brazil

 6 Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Brazil

*Corresponding author at: Department of Economics, University of Zurich,

Schöenberggasse 1. 8001, Zurich, Switzerland.

E-mail address: onicio.leal@econ.uzh.ch

Abstract:

Objectives

The aim of this study was to describe and analyze the priority risk areas for Covid-

19 testing combining participatory surveillance and traditional surveillance data.

Design

It was carried out a descriptive transversal study in the city of Caruaru,

Pernambuco state, Brazil, within the period of 20/02/2020 to 05/05/2020. It was

considered all official reports for influenza-like illness notified by municipality

health department and the data collected through the participatory surveillance

platform Brasil Sem Corona.

Methods

To verify a correlation between Participatory Surveillance (PS) and Traditional

Surveillance (TS), it was performed linear and loess regression as well as a spatial

scanning using Bernoulli method.

Results

The PS has showed in Caruaru 861 active users, presenting an average of 1.2

report per user per week. PS strategy was started in March 20th and is officially

used by the local health authority in order to improve the quality of information

from traditional surveillance system. Regarding to the respiratory syndrome cases

from TS, it was found out 1,588 individuals that were positive for this clinical

outcome. The spatial scanning analysis has detected 18 clusters and 6 of them have

presented statistical significance (p-value < 0.1). Clusters 3 and 4 presented an

overlapping and this area was chosen by local authority to deploy the Covid-19

serology, where 50 individuals were tested. From there, 32% (n=16) presented

reagent results for antibodies related to Covid-19.

Conclusion

The use of alternative methods as participatory surveillance showed a relevant

role taking advantage on the insertion at community levels to complement

traditional surveillance system.

Keywords: Participatory Surveillance, Epidemiology, Spatial scanning, Covid-19

Introduction

Participatory surveillance has shown promising results from its conception

to its application in several public health events [1-6]. The use of a collaborative

information pathway provides a rapid way for data collection on symptomatic

individuals in the territory, in order to complement traditional disease surveillance

systems [7, 8]. In Brazil, this methodology has been used at national level since 2014 during mass gatherings due to its great importance for related to potential public health emergencies [9, 10]. With the occurrence of the Covid-19 pandemic, and the challenges of the main non-pharmaceutical interventions for epidemic control - in this case, social distancing - added to the fact of high levels of underreporting cases and delay of notifications, there is a real demand about alternative sources of reliable information to complement the current system for disease surveillance. Several studies [11-14] have demonstrated the benefits of participatory surveillance in managing with Covid-19, reinforcing the opportunity to modernize the way health surveillance has been carried out. Additionally, spatial scanning techniques have been used to understand syndromic settings, investigating diseases outbreaks and analyze epidemiological risk, being eligible as a relevant tool for health management [15-18]. While there are limitations in the quality of traditional health systems, the data generated by participatory surveillance shows an interesting application combining traditional techniques to clarify epidemiological risks that require urgency in decision-making. Moreover, with the limitations of testing availability, the identification of priority areas for intervention is an important activity in the early response to public health emergencies. The aim of this study was to describe and analyze the priority risk areas for Covid-19 testing combining participatory surveillance and traditional surveillance data.

Methods

It was carried out a descriptive transversal study in the city of Caruaru, Pernambuco state, Brazil, within the period of 20/02/2020 to 05/05/2020. It was considered all official reports for flu syndromes notified by municipality health department plus the data collected through the participatory surveillance platform Brasil Sem Corona [19].

To participate in the PS platform, individuals had to download an app called Colab. Through that, the individual needs to agree with the terms of use that describe the purpose of this platform and ethical aspects. These terms included the reasons of data use for scientific studies that help public health authorities to

improve the understanding of epidemiological setting. After accepting the terms and conditions, individuals are eligible to become a participant, filling out a daily self-report questionnaire on symptoms and exposure in order to inform actively their health status. Daily reports are limited in a frequency of twice a day. Every time a participant complete and submit a report, it provides the respective latitude and longitude, which are anonymized in the server within a radius of 2 kilometers. The personal identification is also anonymized and participants can withdraw their enrollment in the platform at any time, where the data is completely deleted from the servers, in accordance to Brazilian privacy laws.

For the data from TS, that was accessed by the epidemiological bulletins, public available at local government communication channels. It was considered all confirmed cases for influenza like illness registered and defined by the local health department.

To verify the correlation between PS and TS data, it was carried out a linear regression [20] extracting summary of fit and parameter estimates:

$$\gamma = \alpha + \beta \chi + \varepsilon_{\rm i}$$

In addition, it was performed a local polynomial regression (LOESS) [21] to generalize a moving average in order to generate a scatterplot smoothing among the data points, where its function can be showed as:

$$\omega(\chi) = (1 - |d|^3)^3$$
,

where d is the distance of data point from the point on the curve being fitted, scaled to lie in the range from 0 to 1.

On the spatial scanning method, it was performed a purely spatial analysis scanning for clusters with high rates using Bernoulli model. In this particular case were assumed that in the region there were cases and non-cases represented similarly as a spatial case/control approach, where influenza-like illness were cases and users that reported no symptoms in PS were control.

The likelihood function for the Bernoulli [22] model is expressed as

$$L(Z,p,q) = p^{nZ} (1-p)^{\mu(Z)-nZ} q^{nG-nZ} (1-q)^{(\mu(G)-\mu(Z))-(nG-nZ)}$$

In order to detect the zone that is most likely to be a cluster, it was found the zone \check{Z} that maximized the likelihood function, where \check{Z} is the maximum likelihood estimator of the parameter Z. To achieve this, it was needed to have two stage actions. First maximize the likelihood function conditioned on Z.

$$L(Z) \stackrel{def}{=} \frac{sup}{p > q} (Z, p, q) = \left(\frac{n_Z}{\mu(Z)}\right)^{n_Z} \left(1 - \frac{n_Z}{\mu(Z)}\right)^{\mu(Z) - n_Z}$$

X

$$\left(\frac{\left(n_{G}-n_{Z}\right)}{\mu(G)-\mu\left(Z\right)}\right)^{n_{G}-n_{Z}}\left(1-\frac{n_{G}-n_{GZ}}{\mu(G)-\mu\left(Z\right)}\right)^{\left(\mu(G)-\mu(Z)\right)-\left(n_{G}-n_{Z}\right)}$$

when
$$\frac{n_Z}{\mu(Z)} > \frac{(n_G - n_Z)}{(\mu(G) - \mu(Z))}$$
,

and otherwise

$$L(Z) = \left(\frac{n_G}{\mu(G)}\right)^{n_G} \left(\frac{\mu(G) - n_G}{\mu(G)}\right)^{\mu(G) - n_G}$$

Second, to find the solution $\hat{Z} = \{Z: L(Z) \ge L(Z') \forall Z' \in \mathcal{Z}\}.$

The most likely cluster is of interest in itself, but it is important also to have a statistical inference. Let $L_0 \stackrel{\text{def}}{=} \sup_{p=q}^{sup} L(Z,p,q) = \left(\frac{n_G}{\mu(G)}\right)^{n_G} \left(\frac{\mu(G)-\mu_G}{\mu(G)}\right)^{\mu(G)-n_G}$

The likelihood ratio, λ , can be written as

$$\lambda = \frac{\sup_{Z \in Z, p > q} L(Z, p, q)}{\sup_{p=q} L(Z, p, q)} = \frac{L(\hat{Z})}{L_0}$$

In addition to that, spatial scanning approach runs a Monte Carlo simulation based on pseudo-random number generators. This allows to obtain the p-value for hypothesis testing, comparing the rank of the maximum likelihood from the real data set with the maximum likelihood from the random data sets.

In this case of spatial scanning clusters, statistical significance was defined as p-value < 0.1, bringing not only the clusters with confidence interval of 95% and maximum error of 5% but also considering credible interval of 90% and maximum error of 10%.

For the clusters that presented statistical significance [23], an overlaying in a Geographic Information System was done using QGIS 3.12 [24]. This map was used by local authority to choose the area to deploy 50 serology tests for Covid-19. Other 50 tests were deployed in areas outside that clusters. For data wrangling, data tidying and data visualization a R language framework was used (Exploratory.io) [25]. For spatial scanning analysis, SatScan v9.6[26] was adopted.

The study had exemption from oversight body (Caruaru Health Department and Brasil Sem Corona scientific committee) since it was used only public domain data available from secondary sources and all of the participants were anonymized.

Results

The PS has showed in Caruaru 861 active users, presenting an average of 1.2 report per user per week. It was started in March 20th and is officially used by the local health authority in order to improve the quality of information from traditional surveillance system. Regarding to the influenza-like illness cases from TS, it was found out 1,588 individuals that were positive for this clinical outcome.

When performed the signal (PS or TS) over the time, it was found a linear correlation among these outputs and predictors where PS showed a correlation of 0.7242 (R squared 0.5245) and coefficient of 1.1700 (p-value < 0.000). When verified the results for TS, correlation showed an output of 0.6198 (R squared 0.3841) and coefficient of 1.12916 (p-value < 0.000). Regarding to the LOESS, PS has shown an equivalent number of parameters of 4.374, with residual standard error of 17.003 and trace of smoother matrix of 4.7794. Finally, TS has shown as equivalent number of parameters 4.628, residual standard error of 18.013 and trace of smoother matrix of 5.072.

The spatial scanning analysis has detected 18 clusters and 6 of them have presented statistical significance (p-value < 0.1). Clusters 3 and 4 presented an overlapping and this area was chosen by local authority to deploy the Covid-19 serology, where 50 individuals were tested. From there, 32% (n=16) presented reagent results for antibodies related to Covid-19, where the spatial scanning showed a hit rate between 84% and 94%. The tests deployed outside the clusters has shown 3% (n=6) of positivity.

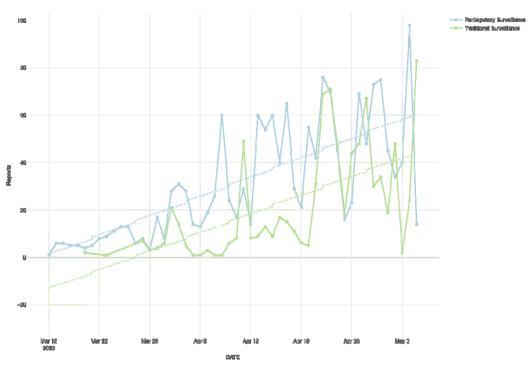


Figure 1. Time series distribution with linear regression for each source.

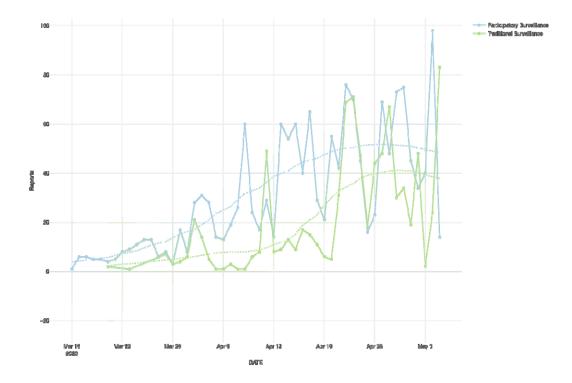


Figure 2. Time series distribution with LOESS regression for each source.

Cluster	Relative risk	Log likelihood ratio	P-value
1	1.54	44.504679	0.000
2	1.53	26.568310	0.000
3	1.34	13.654698	0.003
4	1.38	12.143518	0.013
5	1.45	11.350351	0.021
6	1.46	9.770844	0.094
7	1.51	8.619205	0.274
8	1.37	8.025044	0.404
9	1.31	7.421699	0.544
10	1.51	7.382095	0.616
11	1.51	6.970157	0.728
12	1.51	6.970157	0.728
13	1.51	6.558434	0.848
14	1.35	6.492181	0.854
15	1.51	5.735634	0.975
16	1.29	5.413135	0.982
17	1.51	5.324557	0.994
18	1.51	5.324557	0.994

Table 1. Summary of clusters including relative risk, log likelihood ratio and p-value.

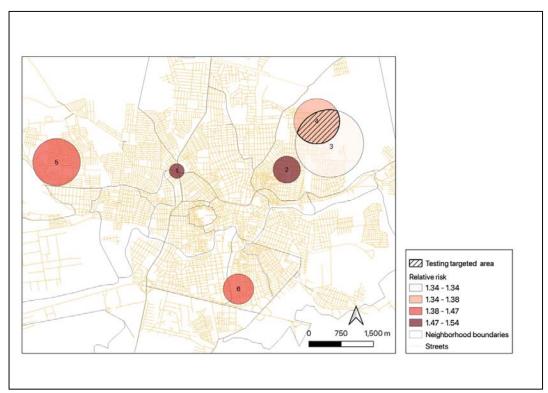


Figure 3. Map showing the significant clusters, including an overlapping area between clusters 3 and 4 and testing targeted area.

Discussion

There was a strong correlation between the participation of individuals in the PS strategy over time, whereas there was a moderate association in the same period with the increase in notifications related to influenza-like illness from TS.

Regarding spatial scanning, the use of clusters to target priority regions for testing was relevant in the suitability and reasoning of the use of diagnostic tests, which are sometimes scarce in different contexts. The finding of 32% of individuals where were positive for Covid-19 antibody in areas that presented a variation between 34% and 38% of relative risk demonstrates an excellent result for the method to be replicated not only in this city, but also in other places that need tools to prioritization of tests. The remaining clusters that did not overlap but were statistically significant will have tests deployed in the coming weeks.

The challenge of coping with COVID-19 is even greater in settings where there is a lack of access for testing, low schooling of the population and minor investment in health policies. In addition, there are a large number of cases that are not registered due to the small number of symptoms [27] or by complete absence [28] of any symptoms creating further challenges to have healthcare at the right time and in the right place.

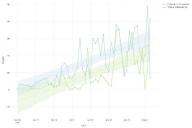
Brazil is one of the countries that have the lowest number of tests among those that have the highest number of confirmed cases for COVID-19, and one of the epicenters is the state of Pernambuco, where the number of cases can be up to 10 times greater than those officially presented in epidemiological reports [29]. The study region became known as one of the main areas affected by the Zika Virus syndrome in 2015 and 2016 [30], where there is a population that is affected by several problems such as measles, leprosy and other diseases overcome elsewhere of the world. This increases the need for rapid action during the SARS-CoV-2 pandemic, since the health system is already overloaded with basal demands.

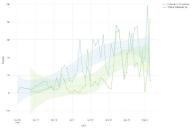
Most part of the documented cases of COVID-19, in studies carried out in China, are in the age group between 30 to 79 years old, a fact that can be observed as convergent [31]. In the current study another relevant finding is that detected clusters were present in low-income areas which corroborate with other finds in Brazil[32].

In a study carried out by the Imperial College of London comparing the evolution of COVID-19 in 54 countries on several continents, it showed that Brazil is the country most threatened to be one of the main epicenters of the disease in the world, mainly due to the great possibility of spreading the disease. Disease, with an R_0 greater than 2 and an increasing number of deaths [33].

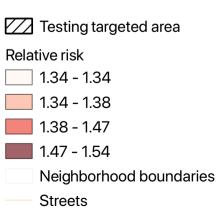
Information of risk areas is essential for an appropriate non-pharmacological intervention [34], as well as for the definition of priorities regarding medical care, for example. The best time to start treatment is another big challenge, because as the disease has a rapid and almost silent evolution, knowing where the probable cases are can save lives, expand the possibility of differential diagnosis and favor an effective treatment. The use of alternative methods as participatory surveillance showed a relevant role taking advantage on the insertion at community levels, generating information not only for self-reported symptoms individuals but also for participants that informed to have no symptoms. Although the presented approach demands other sorts of validation and diagnostic methods (PCR) and it also needs to be carry out in different cities to address potential biases, our application shows an alternative to rapid mass screening in areas to prioritize tests and supporting local public health authorities to implement public policies based in evidences.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.


References


- 1. Guerrisi, C., Turbelin, C., Blanchon, T., Hanslik, T., Bonmarin, I., Levy-Bruhl, D., ... & Franco, A. O. Participatory syndromic surveillance of influenza in Europe. The Journal of infectious diseases, 214(suppl_4), (2016) \$386-\$392.
- 2. Meyers, D. J., Ozonoff, A., Baruwal, A., Pande, S., Harsha, A., Sharma, R., ... & Maru, D. S. Combining healthcare-based and participatory approaches to surveillance: trends in diarrheal and respiratory conditions collected by a mobile phone system by community health workers in rural Nepal. PloS one, 11(4), (2016).
- 3. Geneviève, L. D., Martani, A., Wangmo, T., Paolotti, D., Koppeschaar, C., Kjelsø, C., ... & Flahault, A. Participatory disease surveillance systems: ethical framework. Journal of medical Internet research, 21(5), (2019) e12273.

- 4. Wójcik, O. P., Brownstein, J. S., Chunara, R., & Johansson, M. A. Public health for the people: participatory infectious disease surveillance in the digital age. Emerging themes in epidemiology, 11(1),(2014) p. 7.
- 5. Smolinski, M. S., Crawley, A. W., Baltrusaitis, K., Chunara, R., Olsen, J. M., Wójcik, O., ... & Brownstein, J. S. Flu near you: crowdsourced symptom reporting spanning 2 influenza seasons. American journal of public health, 105(10)(2015) 2124-2130.
- 6. Santillana, M., Nguyen, A. T., Dredze, M., Paul, M. J., Nsoesie, E. O., & Brownstein, J. S. Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS computational biology, 11(10) (2015).
- 7. Pini, A., Merk, H., Carnahan, A., Galanis, I., Van Straten, E., Danis, K., ... & Wallensten, A. High added value of a population-based participatory surveillance system for community acute gastrointestinal, respiratory and influenza-like illnesses in Sweden, 2013–2014 using the web. Epidemiology & Infection, 145(6) (2017) 1193-1202.
- 8. Leal-Neto, O. B., Dimech, G. S., Libel, M., Oliveira, W., & Ferreira, J. P. Digital disease detection and participatory surveillance: overview and perspectives for Brazil. Revista de saude publica, 50, 17 (2016).
- 9. Neto, O. L., Dimech, G. S., Libel, M., de Souza, W. V., Cesse, E., Smolinski, M., ... & Albuquerque, J. Saúde na Copa: the world's first application of participatory surveillance for a mass gathering at FIFA World Cup 2014, Brazil. JMIR public health and surveillance, 3(2) (2017) e26.
- 10. Neto, O. L., Cruz, O., Albuquerque, J., de Sousa, M. N., Smolinski, M., Cesse, E. Â. P., ... & de Souza, W. V. Participatory surveillance based on crowdsourcing during the rio 2016 olympic games using the guardians of health platform: Descriptive study. JMIR Public Health and Surveillance, 6(2) (2020) e16119.
- 11. Drew, D. A., Nguyen, L. H., Steves, C. J., Menni, C., Freydin, M., Varsavsky, T., ... & Spector, T. D. . Rapid implementation of mobile technology for real-time epidemiology of COVID-19. Science. (2020)
- 12. Menni, C., Valdes, A. M., Freidin, M. B., Sudre, C. H., Nguyen, L. H., Drew, D. A., ... & Visconti, A. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nature Medicine, (2020) 1-4.
- 13. Garg, S., Bhatnagar, N., & Gangadharan, N. A Case for Participatory Disease Surveillance of the COVID-19 Pandemic in India. JMIR Public Health and Surveillance, 6(2) (2020) e18795.
- 14. Luo, H., Lie, Y., & Prinzen, F. W. Surveillance of COVID-19 in the General Population Using an Online Questionnaire: Report From 18,161 Respondents in China. JMIR Public Health and Surveillance, 6(2) (2020) e18576.


- 15. Greene, S. K., Peterson, E. R., Kapell, D., Fine, A. D., & Kulldorff, M. Daily reportable disease spatiotemporal cluster detection, New York City, New York, USA, 2014–2015. Emerging infectious diseases, 22(10) (2016) p.1808.
- 16. Van Den Wijngaard, C. C., Van Asten, L., Van Pelt, W., Doornbos, G., Nagelkerke, N. J., Donker, G. A., ... & Koopmans, M. P Syndromic surveillance for local outbreaks of lower-respiratory infections: would it work? PLoS One, 5(4) (2010).
- 17. Chen, J., Roth, R. E., Naito, A. T., Lengerich, E. J., & MacEachren, A. M. Geovisual analytics to enhance spatial scan statistic interpretation: an analysis of US cervical cancer mortality. International journal of health geographics, 7(1) (2008) p.57.
- 18. de Souza Gomes, E. C., Leal-Neto, O. B., de Oliveira, F. J. M., Campos, J. V., Souza-Santos, R., & Barbosa, C. S. Risk analysis for occurrences of schistosomiasis in the coastal area of Porto de Galinhas, Pernambuco, Brazil. BMC infectious diseases, 14(1), (2014) p.101.
- 19. Brasil Sem Corona. Available at www.brasilsemcorona.com.br. (Accessed in 05/01/2020)
- 20. Freedman, D. A. Statistical models: theory and practice. Cambridge university press. (2009).
- 21. Garimella, R. V. A Simple Introduction to Moving Least Squares and Local Regression Estimation (No. LA-UR-17-24975). Los Alamos National Lab.(LANL), Los Alamos, NM (United States) (2017).
- 22. Kulldorff, M. A spatial scan statistic. Communications in Statistics-Theory and methods, 26(6) (1997) 1481-1496.
- 23. Kulldorff, M., & Nagarwalla, N. Spatial disease clusters: detection and inference. Statistics in medicine, 14(8) (1995) 799-810.
- 24. Team, Q. D. QGIS geographic information system. Open source geospatial foundation project. (2016)
- 25. Exploratory.io v5, computer program. (2020)
- 26. Coleman, M., Coleman, M., Mabuza, A. M., Kok, G., Coetzee, M., & Durrheim, D. N. Using the SaTScan method to detect local malaria clusters for guiding malaria control programmes. Malaria Journal, 8(1) (2009) p.68.
- 27. Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D. Y., Chen, L., & Wang, M. Presumed asymptomatic carrier transmission of COVID-19. Jama, 323(14), (2020) 1406-1407.

- 28. Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W., & Shaman, J. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science, 368(6490), (2020) 489-493.
- 29. As Brazil's COVID-19 testing lags, available labs go unused. https://www.reuters.com/article/us-health-coronavirus-brazil-testing/as-brazils-covid-19-testing-lags-available-labs-go-unused-idUSKCN21X36V (accessed in 20th May 2020).
- 30. de Oliveira, W. K., de França, G. V. A., Carmo, E. H., Duncan, B. B., de Souza Kuchenbecker, R., & Schmidt, M. I. Infection-related microcephaly after the 2015 and 2016 Zika virus outbreaks in Brazil: a surveillance-based analysis. The Lancet, 390(10097), (2017) 861-870.
- 31. Surveillances, V. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China, 2020. China CDC Weekly, 2(8) (2020) 113-122.
- 32. Lichand, G. Prokisch, G. Leal-Neto, O. A incidência econômica do coronavírus. Pre-print 2020. DOI: 10.17605/OSF.IO/HF27W
- 33. Cintra, P. H. P., & Nunes, F. F. Estimative of real number of infections by COVID-19 on Brazil and possible scenarios. medRxiv. (2020)
- 34. Garcia, L. P., & Duarte, E. Nonpharmaceutical interventions for tackling the COVID-19 epidemic in Brazil. Epidemiol. Serv. Saúde 29 (2) (2020).

