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Abstract

Understanding the outbreak dynamics of the COVID-19 pandemic has important implications for successful contain-
ment and mitigation strategies. Recent studies suggest that the population prevalence of SARS-CoV-2 antibodies, a
proxy for the number of asymptomatic cases, could be an order of magnitude larger than expected from the number
of reported symptomatic cases. Knowing the precise prevalence and contagiousness of asymptomatic transmission
is critical to estimate the overall dimension and pandemic potential of COVID-19. However, at this stage, the effect
of the asymptomatic population, its size, and its outbreak dynamics remain largely unknown. Here we use reported
symptomatic case data in conjunction with antibody seroprevalence studies, a mathematical epidemiology model, and
a Bayesian framework to infer the epidemiological characteristics of COVID-19. Our model computes, in real time,
the time-varying contact rate of the outbreak, and projects the temporal evolution and credible intervals of the effec-
tive reproduction number and the symptomatic, asymptomatic, and recovered populations. Our study quantifies the
sensitivity of the outbreak dynamics of COVID-19 to three parameters: the effective reproduction number, the ratio
between the symptomatic and asymptomatic populations, and the infectious periods of both groups. For nine distinct
locations, our model estimates the fraction of the population that has been infected and recovered by Jun 15, 2020 to
24.15% (95% CI: 20.48%-28.14%) for Heinsberg (NRW, Germany), 2.40% (95% CI: 2.09%-2.76%) for Ada County
(ID, USA), 46.19% (95% CI: 45.81%-46.60%) for New York City (NY, USA), 11.26% (95% CI: 7.21%-16.03%) for
Santa Clara County (CA, USA), 3.09% (95% CI: 2.27%-4.03%) for Denmark, 12.35% (95% CI: 10.03%-15.18%) for
Geneva Canton (Switzerland), 5.24% (95% CI: 4.84%-5.70%) for the Netherlands, 1.53% (95% CI: 0.76%-2.62%)
for Rio Grande do Sul (Brazil), and 5.32% (95% CI: 4.77%-5.93%) for Belgium. Our method traces the initial out-
break date in Santa Clara County back to January 20, 2020 (95% CI: December 29, 2019 - February 13, 2020). Our
results could significantly change our understanding and management of the COVID-19 pandemic: A large asymp-
tomatic population will make isolation, containment, and tracing of individual cases challenging. Instead, managing
community transmission through increasing population awareness, promoting physical distancing, and encouraging
behavioral changes could become more relevant.

Keywords: COVID-19; epidemiology; asymptomatic transmission; machine learning; uncertainty quantification;
Bayesian inference

1. Motivation

Since its outbreak in December 2019, the COVID-19 pandemic has rapidly swept across the globe and is now
affecting 188 countries with more than 24 million cases reported worldwide [10]. In the early stages of a pandemic,
doctors, researchers, and political decision makers mainly focus on symptomatic individuals that come for testing
and address those who require the most urgent medical attention [15]. In the more advanced stages, the interest shifts
towards mildly symptomatic and asymptomatic individuals who–by definition–are difficult to trace and likely to retain
normal social and travel patterns [40]. In this manuscript, we collectively use the term “asymptomatic” for undetected
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individuals who either have mild symptoms that are not directly associated with COVID-19 or display no symptoms at
all. Recent antibody seroprevalence studies suggests that the number of asymptomatic COVID-19 cases outnumbers
the symptomatic cases by an order of magnitude or more [3, 4, 9, 12, 14, 18, 24, 32, 34, 46, 58, 59, 64, 65, 68, 66,
67, 71, 72, 74, 76, 78, 81]. Estimating the prevalence and contagiousness of these asymptomatic cases is critical since
it will change our understanding of the overall dimension and the pandemic potential of COVID-19 [16]. Yet, at this
stage, the effect of the asymptomatic population, its size, and its outbreak dynamics remain largely unknown [? ].

The first evidence of asymptomatic individuals in a family cluster of three was reported in late January, where
one individual was mildly symptomatic and two remained asymptomatic, with normal lymphocyte counts and chest
computer tomography images, but positive quantitative reverse transcription polymerase chain reaction tests [53]. As
of mid June, more than 50 studies have reported an asymptomatic population, twenty-three of them with a sample size
of at least 500 [30], with a median undercount of 20 across all studies, suggesting that only one in twenty COVID-19
cases is noticed and reported. These studies are based on polymerase chain reaction or antibody seroprevalence tests
in different subgroups of the population, at different locations, at different points in time [3, 7, 71]. To no surprise,
the reported undercount varies hugely, ranging from 3.5 and 5.0 in Luxembourg [68] and Germany [71] to 543 and
627 in Iran [65] and Japan [9] respectively. Most of these studies are currently only available on preprint servers,
but an increasing number is now passing peer review, including a study of 1402 individuals in Wuhan City with an
undercount of 22.1 [81], a study of 400 health care workers in London with an undercount of 35.0 [77], a community
spreading study of 131 patients with influenza-like symptoms in Los Angeles with an undercount of 100.0 [70], and a
seroprevalence study in Los Angeles county with an undercount of 43.5 [69]. The reported trend across all studies is
strikingly consistent: A much larger number of individuals displays antibody prevalence than we would expect from
the reported symptomatic case numbers. Knowing the exact dimension of the asymptomatic population is critical
for two reasons: first, to truly estimate the severity of the outbreak, e.g., hospitalization or mortality rates [16], and
second, to reliably predict the success of surveillance and control strategies, e.g., contact tracing or vaccination [19].

While there is a pressing need to better understand the prevalence of asymptomatic transmission, it is also be-
coming increasingly clear that it will likely take a long time until we can, with full confidence, deliver reliable mea-
surements of this asymptomatic group [6]. In the meantime, mathematical modeling can provide valuable insight into
the tentative outbreak dynamics and outbreak control of COVID-19 for varying asymptomatic scenarios [40]. Many
classical epidemiology models base their predictions on compartment models in which individuals pass through dif-
ferent stages as they experience the disease [33]. A popular model to simulate the outbreak dynamics of COVID-19 is
the SEIR model [15], which is made up of four compartments for the susceptible, exposed, infectious, and recovered
populations [2]. Here, to explicitly account for the asymptomatic population, we introduce an SEIIR model, which
further divides the infectious population into symptomatic and asymptomatic groups [35]. Similar models have re-
cently been used to study the general role of asymptomatic carriers in disease transmission [54] and to illustrate how
asymptomatic individuals have facilitated the rapid spread of COVID-19 throughout China [40], South Korea [75],
and Italy [20]. While it is tempting–and easily possible–to introduce many more sub-populations into the model, for
example a pre-symptomatic, hospitalized, or mortality group [57], here, we focus on the simplest possible model that
allows us to explore the role of the asymptomatic population throughout the COVID-19 pandemic. To systematically
probe different scenarios, we combine this deterministic SEIIR model with a dynamic effective reproduction num-
ber, machine learning, and uncertainty quantification to learn the reproduction number–in real time–and quantify and
propagate uncertainties in the symptomatic-to-asymptomatic ratio and in the initial exposed and infectious popula-
tions. We show that this not only allows us to visualize the dynamics and uncertainties of the dynamic contact rate, the
effective reproduction number, and the symptomatic, asymptomatic, and recovered populations, but also to estimate
the initial date of the outbreak.

2. Methods

2.1. Epidemiology modeling.

SEIIR epidemiology model. We model the epidemiology of COVID-19 using an SEIIR model with five compartments,
the susceptible, exposed, symptomatic infectious, asymptomatic infectious, and recovered populations. Figure 1
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Figure 1: SEIIR epidemiology model. The SEIIR model contains five compartments for the susceptible, exposed, symptomatic infectious,
asymptomatic infectious, and recovered populations. The transition rates between the compartments, β, α, and γ are inverses of the contact period
B = 1/β, the latent period A = 1/α, and the infectious period C = 1/γ. The symptomatic and asymptomatic groups have the same latent period A,
but they can have individual contact periods Bs = 1/βs and Ba = 1/βa and individual infectious periods Cs = 1/γs and Ca = 1/γa. The fractions
of the symptomatic and asymptomatic subgroups of the infectious population are νs and νa. We assume that the infection either goes through the
symptomatic or the asymptomatic path, but not both for one individual.

illustrates our SEIIR model, which is governed by a set of five ordinary differential equations,

Ṡ = − S [ βs Is + βa Ia ]
Ė = + S [ βs Is + βa Ia ] − α E
İs = + νs α E − γs Is
İa = + νa α E − γa Ia
Ṙ = + γs Is + γa Ia ,

(1)

where the fractions of all five populations add up to one, S + E + Is + Ia + R = 1. We assume that both the symptomatic
group Is and the asymptomatic group Ia can generate new infections. We introduce these two groups by fractions νs
and νa of the subjects transferring from the exposed group E. We postulate that the two infectious groups Is and Ia
have the same latent period A = 1/α, but can have individual contact periods Bs = 1/βs and Ba = 1/βa to mimic their
different community spreading, and individual infectious periods Cs = 1/γs and Ca = 1/γa to mimic their different
likelihood of isolation. From the infectious fractions, we can derive the overall contact and infectious rates β and γ
from their individual symptomatic and asymptomatic counterparts, βs, βa, γs, and γa,

β = νs βs + νa βa and γ = νs γs + νa γa . (2)

Similarly, we can express the overall contact and infectious periods B and C in terms of their symptomatic and
asymptomatic counterparts, Bs, Ba, Cs, and Ca,

B =
Ba Bs

νs Ba + νa Bs
and C =

Ca Cs

νs Ca + νa Cs
. (3)

Naturally, the different dynamics for the symptomatic and asymptomatic groups also affect the basic reproduction
number R0, the number of new infections caused by a single one individual in an otherwise uninfected, susceptible
population,

R0 =
C
B

=
Ca Cs

Ba Bs

νs Ba + νa Bs

νs Ca + νa Cs
=
νs βs + νa βa

νs γs + νa γa
=
β

γ
. (4)

For a large asymptomatic group νa → 1, the basic reproduction number approaches the ratio between the infectious
and contact periods of the asymptomatic population, R0 → Ca/Ba, which could be significantly larger than the basic
reproduction number for the symptomatic group, R0 = Cs/Bs, that we generally see reported in the literature. To
characterize the effect of changes in social behavior and other interventions that may affect contact, we assume that
the contact rate β(t) can vary as a function of time [43], but is the same for the symptomatic and asymptomatic groups,

β = βs = βa = β(t) such that R(t) =
C

B(t)
=

Ca Cs

[νs Ca + νa Cs] B(t)
=

β(t)
νs γs + νa γa

=
β(t)
γ

. (5)

This introduces a time-varying effective reproduction number R(t), which is an important real time characteristic of
the current outbreak dynamics.

SEIR epidemiology model. For the special case when the dynamics of the symptomatic and asymptomatic groups are
similar, i.e., βs = βa = β and γs = γa = γ, we can translate the SEIIR model (1) into the classical SEIR model (6) with
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Figure 2: SEIR epidemiology model. The SEIR model contains four compartments for the susceptible, exposed, infectious, and recovered
populations. The transition rates between the compartments, β, α, and γ are inverses of the contact period B = 1/β, the latent period A = 1/α, and
the infectious period C = 1/γ. If the transition rates are similar for the symptomatic and asymptomatic groups, the SEIIR model simplifies to the
SEIR model with Is = νsI and Ia = νaI.

four compartments, the susceptible, exposed, infectious, and recovered populations [42, 44, 82, 83]. For this special
case, we can back-calculate the symptomatic and asymptomatic groups from equation (6.3) as Is = νs I and Ia = νa I.
Figure 2 illustrates the SEIR model, which is governed by a set of four ordinary differential equations [28],

Ṡ = − β S I
Ė = + β S I − α E
İ = + α E − γ I
Ṙ = + γ I .

(6)

Discrete SEIIR epidemiology model. We focus on the SEIIR model with five ordinary differential equations (1),
which we discretize in time using a finite difference approximation (◦̇) = [ (◦)n+1 − (◦)n ]/∆t of the evolution of all five
populations (◦) = S , E, Is, Ia,R. Here ∆t = tn+1 − tn denotes the discrete time increment, usually ∆t = 1 day, and (◦)n+1
and (◦)n denote the populations of the new and previous time steps. We apply an explicit time integration scheme to
obtain the following discrete system of equations,

S n+1 = [ 1 − [ βs Is + βa Ia ] ∆t ] S n
En+1 = +[ βs Is + βa Ia ] ∆t ] S n + [ 1 − α∆t ] En
Is,n+1 = + νs α∆t En + [ 1 − γs ∆t ] Is,n
Ia,n+1 = + νa α∆t En + [ 1 − γa ∆t ] Ia,n
Rn+1 = + [ γs Is,n + γa Ia,n ] ∆t + Rn .

(7)

At each location, we begin our simulation on day t0, the day of the beginning of the local lockdown, with initial
conditions, S 0, E0, Is0, Ia0, R0. We further assume that S 0 = 1 − E0 − Is0 − Ia0, E0 = [ A/Cs ] [ Is0 + Ia0 ] [13], and
νs Ia0 = [ 1 − νs ] Is0 to express all five initial conditions in terms of the initial symptomatic infectious population Is0,
such that S 0 = 1 − [ 1 + A/Cs ]/νs Is0, E0 = [ A/Cs ]/νs Is0, Ia0 = [ 1 − νs ]/νs Is0, and R0 = 0. From the solution of the
time discrete SEIIR system (7), for each point in time, we calculate the of detected population,

Dn+1 = Is,n+1 + Rs,n+1 = Dn + νs α En ∆t , (8)

as the discrete sum of the symptomatic infectious and recovered populations Is,n+1 and Rs,n+1 with Ṙs = γsIs, or,
equivalently, as the explicit update of the previous detected population Dn with the new symptomatic infectious
population, νs α En, that transitions from the exposed to the symptomatic infectious group. We compare the daily
simulated detected population D(t) against the daily reported detected population D̂(t), which we obtain by scaling
the daily number of detected cases by the total population N for each location [5, 11, 27, 48, 49, 73].

2.2. Seroprevalence studies.

We consider seroprevalence studies up to mid June 2020 where the representation ratio, the ratio between the amount
of seroprevalence samples and the representative population, is larger than 0.02%. Subsequently, we draw the daily
number of confirmed reported cases for Heinsberg, Ada County, New York City, Santa Clara County, Denmark,
Geneva Canton, Netherlands, Rio Grande do Sul, and Belgium from online data repositories [5, 11, 27, 48, 49, 73].
The symptomatic fraction νs follows from the ratio between the reported confirmed cases for the studied region and
the amount of seroprevalence-estimated cases on the last day of the seroprevalence study. Table 1 summarizes the
study date, number of samples, representation ratio, population, and symptomatic fraction of each location.
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Table 1: Seroprevalence studies with a representative population larger than 0.02%, location, study date, number of samples, representation
ratio, population, and symptomatic fraction νs.

Location Study date Samples Population Repr.ratio Symptomatic fraction νs Ref.
Heinsberg, NRW, Germany March 30 - April 6 919 41946 2.191% 20.00% (95%CI: 16.32% - 25.20%) [71]
Ada County, ID, USA Late April 4856 481587 1.008% 7.90% (95%CI: 6.40%-9.82%) [4]
New York City, NY, USA May 5 - Jun 5 28523 8398748 0.340% 5.76% (95%CI: 5.68%-5.84%) [58]
Santa Clara County, CA, USA April 2 - 3 3330 1781642 0.187% 1.77% (95%CI: 1.05% - 3.82%) [3]
Denmark April 6 - 17 9496 5824857 0.163% 6.95% (95%CI: 5.13%-13.12%) [14]
Geneva Canton, Switzerland April 20-27 576 504031 0.114% 10.34% (95%CI: 7.66%-16.44%) [72]
Netherlands April 1-15 7361 17282163 0.043% 17.31% (95%CI: 15.14%-19.95%) [67]
Rio Grande do Sul, Brasil April 25 - 27 4188 11377239 0.037% 8.10% (95%CI: 3.72%-22.07%) [66]
Belgium April 14 - May 13 2700 11492641 0.023% 10.21% (95%CI: 8.61%-12.18%) [64]

2.3. Bayesian learning
To calibrate our SEIIR model (1), we compare the model output, the simulated detected population D(t) for a given
parameter set ϑ, against the data, the reported detected population D̂(t) for each location [5, 11, 27, 48, 49, 73]. Our
time-discrete SEIIR model (7) uses the following set of parameters,

ϑ∗ = { A,Cs,Ca, νs, β(t), E0, Is0, Ia0, σ } , (9)

the latency period A, the symptomatic and asymptomatic infectious periods Cs and Ca, the symptomatic fraction
νs, the dynamic contact rate β(t), the initial exposed and infectious populations E0, Is0, and Ia0, and the likelihood
width σ. To reduce the set of unknowns, we fix the latency period to A = 2.5 days and the symptomatic infectious
period to Cs = 6.5 days [26, 37, 39, 62]. Since the asymptomatic infectious period Ca is unreported, we study three
cases with Ca = 0.5, 1.0, 2.0 Cs resulting in infectious periods of Ca = 3.25, 6.5, and 13.0 days. We further express
the initial exposed and asymptomatic infectious populations in terms of the symptomatic infectious population as
E0 = [ A/Cs ]/νs Is0 [13] and Ia0 = [ 1 − νs ]/νs Is0. This results in the following reduced set of parameters,

ϑ = { νs, β(t), Is0, σ } , (10)

including the symptomatic fraction νs, the dynamic contact rate β(t), the initial symptomatic infectious population Is0,
and the likelihood witdth σ.

Bayesian inference. We use Bayesian inference to estimate the set of parameters ϑ so that the statistics of the output
of the model D(t) agree with that of the data D̂(t) [41, 51]. We relate the prior, likelihood, and posterior using Bayes’
theorem [52],

π(ϑ | D̂(t)) =
π(D̂(t) |ϑ)) π(ϑ)

π(D̂(t))
, (11)

where π(ϑ) is the prior, i.e., the probability distribution of the model parameters, π(D̂(t)|ϑ) is the likelihood, i.e., the
conditional probability of the data when the parameter set is fixed, π(ϑ|D̂(t)) is the posterior, i.e., the conditional
probability of the parameters for given data D̂(t), and π(D̂(t)) is the evidence.

Priors. For the prior probability distributions π(ϑ), we assume weakly informative priors for our model parameters,
the symptomatic fraction νs, the dynamic contact rate β(t), the initial symptomatic infectious population Is0, and the
likelihood witdth σ. For the symptomatic fraction νs, we adopt the normal distributions from the individual local anti-
body seroprevalence studies of all nine locations [3, 4, 14, 58, 64, 66, 67, 71, 72]. Specifically, we set νs ∼ N(µs, σνs ),
where µs and σs are the mean and standard deviation of the symptomatic fraction based on the ratio of the reported
and seroprevalence-estimated numbers of confirmed cases for each location in Table 1. For the dynamic contact rate
β(t), we postulate that its logarithm follows a Gaussian random walk, log(β(t)) ∼ GRW(t, µβ, σβ). Specifically, this
Gaussian random walk assumes a sequence of inter-dependent Gaussian distributions where the contact rate β(tn+1)
on day tn+1 depends the contact rate β(tn) of the previous day tn with the initial condition, log( β0 ) ∼ N( µβ0, σβ ), and
the daily update, log( β( tn+1 )) | β( tn ) ∼ N( log(β( tn )), σβ ), where µβ0 is the mean initial contact rate, σβ is the daily
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step width, and µβ is the overall drift between the initial value log( β( t0 ) ) and the final value log( β(tn+1) ). For the
initial symptomatic infectious population Is0, we postulate a log-normal distribution, log(Is0) ∼ N( µIs0, σIs0 ), where
we select a weakly informative prior for the mean µs = D̂(t0), as the reported detected population on day t0 and a
standard deviation of σs = 1. Table 2 summarizes our prior distributions and the SEIIR model parameters.

Table 2: Prior distributions and SEIIR model parameters.

Parameter Interpretation Distribution
νs symptomatic fraction see Table 1 [3, 4, 14, 58, 64, 66, 67, 71, 72]
A latent period fixed (A = 2.5 days) [37, 39, 57]
Cs symptomatic infectious period fixed (Cs = 6.5 days) [26, 39, 62]
Ca asymptomatic infectious period fixed (Ca = 3.25, 6.5, 13.0 days) [26, 39, 62]
log(β(t)) dynamic contact rate Gaussian random walk ( µ = µβ, σ = σβ )
µβ0 initial contact rate normal (µ = 0.0, σ = 1.0)
µβ overal drift normal (µ = 0.0, σ = 1.0)
σβ daily step width half-normal (σ = 0.02)
E0 initial exposed deterministic ( [ A/Cs ] [ Is0 + Ia0 ] ) [13]
log(Is0) initial symptomatic normal (µ = D̂(t0), σ = 1.0)
Ia0 initial asymptomatic deterministic ( [1 − νs ]/νs Is0 )
σ likelihood width halfCauchy (β = 1.0)

Likelihood. For the likelihood π(D̂(t)|ϑ), we introduce a likelihood function L that evaluates the proximity between
the model output D(t), the simulated detected population for a given parameter set ϑ, and the data D̂(t), the relative
reported detected population in probabilistic terms,

L(ϑ, t) = student Tν=4( D̂(t) − D(ϑ, t), σ ) . (12)

We choose a Student’s t-distribution because it resembles a Gaussian distribution around the mean with heavy tails,
which make the method more robust with respect to outliers and reporting noise [8, 36]. Here σ represents the
likelihood width for which we postulate a halfCauchy distribution, see Table 2. The likelihood,

π(D̂(t) |ϑ) =

n∏
i=0

L(ϑ, ti) =

n∏
i=0

student Tν=4( D̂(ti) − D(ϑ, ti), σ ), (13)

is simply the product of all likelihood functions L evaluated at each time ti for i = 0, 1, ..., n.

Posteriors. With the prior π(ϑ) and the likelihood π(D̂(t) |ϑ), we estimate the posterior π(ϑ | D̂(t)) using Bayes’ the-
orem (11) [31]. Since we cannot describe the posterior distribution over the model parameters ϑ analytically, we
adopt approximate-inference techniques to calibrate our model on the available data. We use the NO-U-Turn sampler
(NUTS) [29], which is a type of Hamiltonian Monte Carlo algorithm as implemented in PyMC3 [61]. We use four
chains. The first 4 times 500 samples serve to tune the sampler and are later discarded. The subsequent 4 times 1000
samples define the posterior distribution of the parameters ϑ. From the converged posterior distribution π(ϑ | D̂(t)),
we sample multiple combinations of parameters ϑ that describe the time evolution of detected population D̂(t). Using
these posterior samples, we quantify the uncertainty of each parameter. As such, each parameter set ϑ provides a set
of values for the symptomatic fraction νs, the initial symptomatic populations Is0, and the dynamic contact rate β(t).
From these values, we quantify the effective reproductive number R(t) using equation (5) and the time evolution of the
susceptible, exposed, symptomatic infectious, asymptomatic infectious and recovered populations, S (t), E(t), Is(t),
Ia(t), and R(t) using equations (7) and report their values with the associated 95% credible interval [50].

Hierarchical modeling. To estimate the asymptomatic infectious period Ca, we create a hierarchical model and an-
alyze the confirmed case data from all nine locations in Table 1. To prevent overfitting, we postulate that the initial

6

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 29, 2020. ; https://doi.org/10.1101/2020.05.23.20111419doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.23.20111419
http://creativecommons.org/licenses/by/4.0/


reproduction number R0 is the same for all nine locations and remains constant during a two-week time window
prior to lockdown. This implies that the contact rate β is static and constant. We assume a normal distribution for
the basic reproduction number R0 ∼ N(µR0, σR0) with mean µR0 = 3.87 and standard deviation σR0 = 0.44 [17].
This defines the initial contact rate β0i at each location, i = 1, ..., 9, as β0i = R0 (νsi/Cs + (1 − νsi)/Cai). We create
a hyper-distribution for the overall asymptomatic infectious period, Ca ∼ N(µCa, σCa), with mean µCa = 6.5 and
standard deviation σCa ∼ halfN(2.0), and assume that each local asymptomatic infectious period Cai ∼ N(Ca, σCa)
is drawn from this hyperdistribution. All other parameters are similar to the previous section. Table 3 summarizes
the prior distributions and the SEIIR model parameters of our hierarchical model to infer the asymptomatic infectious
period Ca.

Table 3: Prior distributions and SEIIR model parameters to hierarchically infer the asymptomatic infectious period Ca.

Parameter Interpretation Distribution
νs symptomatic fraction see Table 1 [3, 4, 14, 58, 64, 66, 67, 71, 72]
A latent period fixed (A = 2.5 days) [37, 39, 57]
Cs symptomatic infectious period fixed (Cs = 6.5 days) [26, 39, 62]
Ca asymptomatic infectious period normal (µ = 6.5, σ = σCa )
σCa standard deviation half-normal (σ = 2.0)
Cai local asymptomatic infectious period normal (µ = Ca, σ = σCa )
R0 initial reproduction number normal (µ = 3.87, σ = 0.44) [17]
E0 initial exposed deterministic ( [ A/Cs ] [ Is0 + Ia0 ] ) [13]
log(Is0) initial symptomatic normal (µ = D̂(t0), σ = 1.0)
Ia0 initial asymptomatic deterministic ( [1 − νs ]/νs Is0 )
σ likelihood width halfCauchy (β = 1.0)

To estimate the hierarchical asymptomatic infectious period Ca, we use Bayesian inference. Following equation (11),
we relate the prior, likelihood, and posterior, with the only difference that the simulated and reported detected popula-
tions Di(t) and D̂i(t) are now vectors that contain the detected populations of all i = 1, ..., 9 locations. The likelihood
π(D̂(t) |ϑ)) becomes the product of the all likelihood functions L evaluated for a period of n = 14 days prior to
lockdown,

π(D̂(t) |ϑ)) =

n∏
i=0

L(ϑ, ti) =

n∏
i=0

9∏
j=1

student Tν=4( D̂j(ti) − Dj(ϑ, ti), σ ). (14)

For each location, we estimate the posterior π(ϑ|D̂i(t)) using the NO-U-Turn sampler (NUTS) [29] in PyMC3 [61].
From the converged posterior distribution, we sample multiple ϑ combinations to quantify the evolution of the re-
production number R0 and contact rate β at each location, and the associated susceptible, exposed, symptomatic and
asymptomatic infectious, and recovered populations with their associated 95% credible intervals.

Outbreak date. For each sample from the posterior distribution, we use the infered initial exposed and asymptomatic
infectious populations E0 and Ia0 to estimate the date of the very first COVID-19 case in Santa Clara County [63].
Specifically, for each parameter set, we create an SEIIR model and assume that the outbreak begins with one single
asymptomatic infectious individual. We fix the latency and symptomatic infectious periods to A = 2.5 days and Cs =

6.5 days and impose the hierarchically estimated infectious period Ca from the previous section. For each posterior
sample for the exposed, symptomatic infectious, and asymptomatic infectious population size on the lockdown date,
March 16, 2020, we use the Nelder-Mead optimization method [21] to find the most probable outbreak origin date.
Specifically, we solve the SEIIR model forward in time using an explicit time integration, starting from various start
dates before March 16, 2020, and iteratively minimize the difference between the computed exposed, symptomatic,
and asymptomatic infectious populations and the sample’s actual exposed, symptomatic, and asymptomatic infectious
populations. We concomitantly fit a static contact rate β, which is bounded between zero and the posterior sample’s

7

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 29, 2020. ; https://doi.org/10.1101/2020.05.23.20111419doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.23.20111419
http://creativecommons.org/licenses/by/4.0/


estimated contact rate β0 at the beginning of the simulation t0. Repeating this process for each sample of the Bayesian
inference generates a distribution of possible origin dates. From this distribution, we compute the most probable
origin date and its uncertainty.

3. Results

3.1. Outbreak dynamics of COVID-19 in Santa Clara County.
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Figure 3: Outbreak dynamics of COVID-19 in Santa Clara County. The simulation learns the time-varying contact rate β(t) for fixed latent
and symptomatic infectious periods A = 2.5 days and Cs = 6.5 days, and for three asymptomatic infectious periods Ca = 3.25 days, 6.5 days, and
13.0 days (from left to right). Computed and reported confirmed cases in Santa Clara County, D(t) = Is(t) + Rs(t) and D̂(t) (top), initial exposed
and infectious populations, E0, Is0, and Ia0 (middle), and dynamic contact rate, β(t) (bottom). The gray and green-blue regions highlight the 95%
credible intervals on the confirmed cases D(t) (top) and the contact rate β(t) (bottom) based on the reported cases D̂(t), while taking into account
uncertainties on the fraction of the symptomatic infectious population νs = Is/I, and the initial exposed and infectious populations E0, Is0, and Ia0.

Figure 3 illustrates the outbreak dynamics of COVID-19 in Santa Clara County. To explore the effects of the
asymptomatic infectious period Ca on the initial effective reproduction number, we start the simulations on March 6,
2020, 10 days before the local lockdown date. The black dots highlight the reported detected population D̂(t) from
this day forward. Based on these data points, we learn the posterior distributions of our SEIIR model parameters
for fixed latent and symptomatic infectious periods A = 2.5 days and Cs = 6.5 days, and for three asymptomatic
infectious periods, Ca = 3.25, 6.5, and 13.0 days, from left to right. The gray and green-purple regions highlights
the 95% credible intervals on the confirmed cases D(t), top row, and the contact rate β(t), bottom row, based on the
reported cases D̂(t), while taking into account uncertainties on the symptomatic infectious fraction νs, and the initial
exposed and infectious populations E0, Is0, and Ia0. The red, orange, and green histograms on the middle row display
the inferred initial exposed and infectious populations, E0, Is0, and Ia0, for the three different asymptomatic infectious
periods. The graphs confirm that our dynamic SEIIR epidemiology model is capable of correctly capturing the gradual
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flattening and deflattening of the curve of confirmed cases in agreement with the decrease in new cases reported in
Santa Clara County, top row. The consistent downward trend of the contact rate β(t) after the lockdown date (March
16, 2020) quantifies the efficiency of public health interventions. The different magnitudes in the contact rate highlight
the effect of the three different asymptomatic infectious periods Ca: For larger asymptomatic infectious periods Ca,
from left to right, to explain the same number of confirmed cases D(t) = Is(t) + Rs(t), the contact rate β(t) has to
decrease. On March 6, 2020, the mean contact rate β(t) was 0.688 (95% CI: 0.612 - 0.764) for an infectious period of
Ca=3.25 days, 0.529 (95% CI: 0.464 - 0.593) for Ca= 6.5 days, and 0.463 (95% CI: 0.403 - 0.523) for Ca=13.0 days.
By March 16, 2020, the day Santa Clara County announced the first county-wide shelter-in-place order in the entire
United States, these contact rates β(t) were 0.491 (95% CI: 0.462 - 0.523) for an infectious period of Ca=3.25 days,
0.328 (95% CI: 0.305 - 0.352) for Ca= 6.5 days, and 0.252 (95% CI: 0.234 - 0.271) for Ca=13.0 days.

3.2. Effect of asymptomatic transmission of COVID-19 in Santa Clara County.

Figure 4: Effect of asymptomatic transmission of COVID-19 in Santa Clara County. The simulation learns the time-varying contact rate
β(t), and with it the time-varying effective reproduction number R(t), for fixed latent and symptomatic infectious periods A = 2.5 days and Cs =

6.5 days, and for three asymptomatic infectious periods Ca = 3.25 days, 6.5 days, and 13.0 days (from left to right). The downward trend of
the effective reproduction number R(t) reflects the efficiency of public health interventions (top row). The dashed vertical lines mark the critical
time period during which the effective reproductive reproduction number fluctuates around R(t) = 1. The simulation predicts the symptomatic
infectious, asymptomatic infectious, and recovered populations Is, Ia, and R (bottom row). The colored regions highlight the 95% credible interval
for uncertainties in the number of confirmed cases D, the fraction of the symptomatic infectious population νs = Is/I, the initial exposed population
E0 and the initial infectious populations Is0 and Ia0.

Figure 4 visualizes the effect of asymptomatic transmission in Santa Clara County. The simulation learns the
dynamic contact rate β(t), and with it the time-varying effective reproduction number R(t), top row, for three asymp-
tomatic infectious periods Ca = 3.25 days, 6.5 days, and 13.0 days, from left to right. The effective reproduction
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number R(t) follows a similar downward trend as the contact rate β(t). For larger asymptomatic infectious periods Ca,
from left to right, since R(t) = Cs β(t)/[ νs +νa Cs/Ca ], as Ca increases, Cs/Ca decreases, and R(t) increases. Since R(t)
represents the number of new infections from a single case, a decrease below R(t) < 1 implies that a single infectious
individual infects less than one new individual, which indicates that the outbreak decays. The dashed vertical lines
indicate the date R(t) = 1 during which one infectious individual, either symptomatic or asymptomatic, infects on
average one other individual. For an asymptomatic infectious period of Ca=3.25 days, it took until March 28 before
Santa Clara County managed to get R(t) below 1 for the first time after the outbreak. For Ca=6.5 days, this only
occurred by April 1 and for Ca=13.0 days, this occurred on April 8, 2020. This confirms our intuition that, the larger
the asymptomatic infectious period Ca, for example because asymptomatic individuals will not isolate as strictly as
symptomatic individuals, the higher the effective reproduction number R(t), and the more difficult it will be to control
R(t) by public health interventions. For each of the three cases, the symptomatic infectious, asymptomatic infectious,
and recovered population, are shown in the bottom row. For larger asymptomatic infectious periods Ca, from left to
right, the total infectious population I increases and its maximum occurs later in time. Specifically, the maximum
infectious population since March 6, 2020 amounts to 0.70% (95% CI: 0.43%-0.97%) on March 28, 2020 for Ca =

3.25 days, 1.23% (95% CI: 0.72%-1.75%) on April 2, 2020 for Ca = 6.5 days, and 2.10% (95% CI: 1.25%-2.94%)
on April 7, 2020 for Ca = 13.0 days. For larger asymptomatic infectious periods Ca, from left to right, the recovered
population R decreases. Specifically, on June 15, 2020, the recovered population R amounts to 10.85% (95% CI:
7.06%-16.09%) for an infectious period of Ca =3.25 days, 10.20% (95% CI: 6.07%-14.90%) for Ca =6.5 days, and
9.90% (95% CI: 6.07%-13.93%) for Ca =13.0 days. Similarly, and important when considering different exit strate-
gies, the total infectious population, I = Is + Ia, on June 15, 2020 is estimated to 0.39% (95% CI: 0.24%-0.58%) for
Ca =3.25 days, 0.68% (95% CI: 0.40%-1.01%) for Ca =6.5 days, and 1.25% (95% CI: 0.73%-1.77%) for Ca =13.0
days.

3.3. Outbreak dynamics of COVID-19 worldwide.
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Figure 5: Hierarchical asymptomatic infectious period Ca estimation. Assuming an initial fixed reproduction number R0 = 3.87 (95%CI:
3.01-4.66) [17], the simulation generates histograms of the asymptomatic infectious period Ca for each location based on the location-specific
symptomatic fraction νs. The black dots and grey regions represent the reported and simulated detected cases D̂(t) and D(t) respectively. The
hierarchical hyperdistribution for the asymptomatic infectious period results in Ca = 5.76 (95%CI: 3.59-8.09) days, right histogram.

Figure 5 illustrates the hierarchical asymptomatic infectious period Ca estimation for nine locations that reported
COVID-19 antibody prevalence in a representative sample of the population: Heinsberg (NRW, Germany), Ada
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County (ID, USA), New York City (NY, USA), Santa Clara County (CA, USA), Denmark, Geneva Canton (Switzer-
land), Netherlands, Rio Grande do Sul (Brazil) and Belgium. This estimate assumes an initial fixed reproduction
number R0 = 3.87 (95%CI: 3.01-4.66) during a two-week window before lockdown which results in an asymptomatic
infectious period of Ca = 5.76 (95%CI: 3.59-8.09) days. With this value, we simulate the outbreak dynamics of
COVID-19 in all nine locations. Figure 6 illustrates the learnt effective reproduction number R(t), and the symp-
tomatic and asymptomatic infectious populations Is and Ia, and the recovered population R for all nine locations.
Here, we assume fixed latent and infectious periods of A = 2.5 days, Cs = 6.5 days, and the hierarchical asymptomatic
infectious period Ca = 5.76 (95%CI: 3.59-8.09) days from Figure 5.

For all nine locations, the calculated metrics display the fine balance between the dynamics of the effective repro-
duction number and the control of the epidemic outbreak. The downward trend of the effective reproductive number
R(t) quantifies how fast each location managed to control the spreading of COVID-19. The dashed vertical line in-
dicates the first time each location managed to lower the effective reproduction below R(t) = 1 after lockdown. This
critical transition occurred on March 20 for Heinsberg, April 4 for Ada County, April 28 for New York City, March 30
for Santa Clara County, April 8 for Denmark, April 2 for Geneva, April 14 for the Netherlands, June 8 for Rio Grande
do Sul and April 11 for Belgium. Based on our simulations, the maximum infectious population size amounted to
3.54% (95% CI: 2.96%-4.11%) on March 19 in Heinsberg, 0.47% (95% CI: 0.41%-0.55%) on May 5 in Ada County,
6.11% (95% CI: 5.99%-6.21%) on April 13 in New York City, 1.11% (95% CI: 0.69%-1.65%) on March 29 in Santa
Clara County, 0.38% (95% CI: 0.27%-0.50%) on April 9 in Denmark, 2.10% (95% CI: 1.65%-2.69%) on April 2
in Geneva, 0.62% (95% CI: 0.56%-0.68%) on April 15 in the Netherlands, 0.28% (95% CI: 0.14%-0.48%) on June
8 in Rio Grande do Sul, and 0.70% (95% CI: 0.62%-0.78%) on April 11 in Belgium. On Jun 15, 2020, the esti-
mated recovered population reached 24.15% (95% CI: 20.48%-28.14%) in Heinsberg, NRW, Germany 2.40% (95%
CI: 2.09%-2.76%) in Ada County, ID, USA 46.19% (95% CI: 45.81%-46.60%) in New York City, NY, USA 11.26%
(95% CI: 7.21%-16.03%) in Santa Clara County, CA, USA 3.09% (95% CI: 2.27%-4.03%) in Denmark 12.35% (95%
CI: 10.03%-15.18%) in Geneva Canton, Switzerland 5.24% (95% CI: 4.84%-5.70%) in Netherlands 1.53% (95% CI:
0.76%-2.62%) in Rio Grande do Sul, Brazil 5.32% (95% CI: 4.77%-5.93%) in Belgium.

3.4. Estimating the outbreak date.

Figure 7 shows the estimated outbreak date of COVID-19 in Santa Clara County. For fixed latent and symptomatic
infectious periods A = 2.5 days and Cs = 6.5 days, and for the hierarchically estimated asymptomatic infectious
periods Ca = 5.76 (95%CI: 3.59-8.09) days, the graph highlights the estimated date of the first COVID-19 case in
the county. Based on the reported case data from March 16, 2020 onward, and taking into account uncertainty on
the fraction of the symptomatic infectious population νs, on the initial exposed population E0, and on the initial
symptomatic and asymptomatic infectious populations Is0 and Ia0, we systematically backtracked the date of the first
undetected infectious individual. Our results suggest that the first case of COVID-19 in Santa Clara County dates back
to January 20, 2020 (95% CI: December 29, 2019 - February 13, 2020).

4. Discussion

A key question in understanding the outbreak dynamics of COVID-19 is the dimension of the asymptomatic
population and its role in disease transmission. Throughout the past months, dozens of studies have been initiated
to quantify the fraction of the general population that displays antibody prevalence but did not report symptoms of
COVID-19. Here we assume that this subgroup of the population has been infected with the novel coronavirus,
but has remained asymptomatic, or only displayed mild symptoms that were not directly reported in the context of
COVID-19. We collectively map this subgroup into an asymptomatic population and additively decompose the total
infectious population, I = Is + Ia, into a symptomatic group Is and an asymptomatic group Ia. We parameterize this
decomposition in terms of a single scalar valued parameter, the symptomatic fraction νs. Within this paradigm, we
can conceptually distinguish two scenarios: the special case for which both subgroups display identical contact rates
β, latent periods A, and infectious periods C, and the general case for which these transition dynamics are different.

For comparable dynamics, the size of the asymptomatic population does not affect overall outbreak dy-
namics. For the special case in which both subgroups display identical contact rates β, latent rates α, and infectious
rates γ [79], our study shows that the overall outbreak dynamics can be represented by the classical SEIR model [28]
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Figure 6: Outbreak dynamics of COVID-19 worldwide. Dynamic effective reproduction number R(t) and symptomatic, asymptomatic, and
recovered populations at all nine locations. The simulation learns the time-varying contact rate β(t), and with it the time-varying effective repro-
duction number R(t), to predict the symptomatic infectious, asymptomatic infectious, and recovered populations Is, Ia, and R, for fixed latent and
infectious periods A = 2.5 days, Cs = 6.5 days, the hierarchical asymptomatic infectious period Ca = 5.76 (95%CI: 3.59-8.09) days from Figure
5. The dashed vertical lines mark the the first time each location managed to lower the effective reproduction below R(t) = 1 after lockdown. The
colored regions highlight the 95% credible interval for the effective reproductive number R(t) (top), the symptomatic and asymptomatic populations
Is and Ia, and the recovered population R (bottom plots), for uncertainties in the number of confirmed cases D, the fraction of the symptomatic
infectious population νs, the initial exposed population E0, and the initial infectious populations Is0 and Ia0.12
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Figure 7: Estimating the outbreak date of COVID-19 in Santa Clara County varying asymptomatic infectious periods Ca. Estimated date
of the first COVID-19 case in Santa Clara County for fixed latent and symptomatic infectious periods A = 2.5 days and Cs = 6.5 days, and for the
hierarchical asymptomatic infectious period Ca = 5.76 (95%CI: 3.59-8.09) days from Figure 5. The colored regions in the main plot highlight the
95% credible interval for the time evolution of the exposed and asymptomatic infectious populations E and Ia estimated based on the reported cases
D̂(t) from March 16, 2020 onward and taking into account uncertainties on the fraction of the symptomatic infectious population νs = Is/I, and the
exposed and asymptomatic infectious populations E0 and Ia0 on March 16, 2020 (right plot). The bottom plot histogram shows the distribution of
the most probable origin dates to January 20, 2020 (95% CI: December 29, 2019 - February 13, 2020).

using equations (6). Importantly, however, since the reported case data only reflect the symptomatic infectious and
recovered groups Is and Rs, the true infectious and recovered populations I = Is/νs and R = Rs/νs could be about an
order of magnitude larger than the SEIR model predictions. From an individual’s perspective, a smaller symptomatic
group νs, or equivalently, a larger asymptomatic group νa = [1 − νs], could have a personal effect on the likelihood
of being unknowingly exposed to the virus, especially for high-risk populations: A larger asymptomatic fraction νa
would translate into an increased risk of community transmisson and would complicate outbreak control [16]. From a
health care perspective, however, the special case with comparable transition dynamics would not pose a threat to the
health care system since the overall outbreak dynamics would remain unchanged, independent of the fraction νa of the
asymptomatic population: A larger asymptomatic fraction would simply imply that a larger fraction of the population
has already been exposed to the virus–without experiencing significant symptoms–and that the true hospitalization
and mortality rates would be much lower than the reported rates [30].

For different dynamics, the overall outbreak dynamics depend on both size and infectiousness of the
asymptomatic group. For the general case in which the transition rates for the symptomatic and asymptomatic
groups are different, the overall outbreak dynamics of COVID-19 become more unpredictable, since little is known
about the dynamics of the asymptomatic population [54]. To study the effects of different dynamics between the
symptomatic and asymptomatic groups, we decided to collectively represent a lower infectivity of the asymptomatic
population through a smaller infectious period Ca < Cs and a lack of early isolation of the asymptomatic population
through a larger infectious period Ca > Cs, while, for simplicity, keeping the latent period A and contact rate β similar
across both groups [39]. Our study shows that the overall reproduction number, R(t) = [Ca Cs]/[νs Ca +νa Cs] β(t), and
with it the outbreak dynamics, depend critically on the fractions of the symptomatic and asymptomatic populations
νs and νa and on the ratio of the two infectious periods Cs and Ca. To illustrate these effects, we report the results for
three different scenarios where the asymptomatic group is half as infectious, Ca = 0.5 Cs, equally infectious, Ca = Cs,
and twice as infectious Ca = 2.0 Cs as the symptomatic group for Santa Clara County. The second case, the middle
column in Figures 3 and 4, corresponds to the special case with comparable dynamics and similar parameters. Our
learnt asymptomatic infectious periods of Ca = 5.76 days in Figure 5 suggest that Ca is smaller than the symptomatic
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infectious period of Cs = 6.5 days and that the asymptomatic population is slightly less infectious as the symptomatic
population. This can be a combined effect of being less contagious but, at the same time, having more contacts, since
asymptomatic individuals, by definition, do not realize that they are spreading the disease [38].

Dynamic contact rates are a metric for the efficiency of public health interventions. Classical SEIR epi-
demiology models with static parameters are well suited to model outbreak dynamics under unconstrained conditions
and predict how the susceptible, exposed, infectious, and recovered populations converge freely toward the endemic
equilibrium [28]. However, they cannot capture changes in disease dynamics and fail to converge towards a temporary
equilibrium before the entire population has become sufficiently immune to prevent further spreading [57]. To address
this limitation, we introduce a time-dependent contact rate β(t), which we learn dynamically from the reported case
data. Figures 3 and 6 demonstrate that our approach can successfully identify a dynamic rate that not only decreases
monotonically, but is also capable of reproducing local contact fluctuations [43]. With this dynamic contact rate,
our model can capture the characteristic S-shaped COVID-19 case curve that plateaus before a large fraction of the
population has been affected by the disease, resembling a Gompertz function. It also naturally captures a potential
regrowth of the contact rate β(t), and with it the effects of a second wave [45]. Previous studies have inferred discrete
date points at which the contact rates vary [8] or used sliding windows over the amount of novel reported infections
[55] to motivate dynamic contact rates. As such, our framework provides a model-based method for statistical infer-
ence of virus transmissibility: It naturally learns the most probable contact rate from the changing time evolution of
new confirmed cases and concomitantly quantifies the uncertainty on that estimation.

The dynamics of the asymptomatic population affect the effective reproduction number. Our anal-
ysis in equations (4) and (5) and our simulations in Figure 4 illustrate how asymptomatic transmission affects
the effective reproduction number, and with it the outbreak dynamics of COVID-19. Our results show that, the
larger the infectious period Ca of the asymptomatic group, the larger the initial effective reproduction number,
R(t) = Cs β(t)/[ νs + νa Cs/Ca ], and the later the drop of R(t) below the critical value of one. A recent study an-
alyzed the dynamics of the asymptomatic population in three consecutive windows of two weeks during the early
outbreak in China [40]. The study found relatively constant latency and infectious periods A and C, similar to our
assumption, and a decrease in the contact rate β = 1.12, 0.52, 0.35 days−1 and in the effective reproduction number
R(t) = 2.38, 1.34, 0.98, which is consistent with our results. However, rather than assuming constant outbreak param-
eters within pre-defined time windows, our study learns the effective reproduction number dynamically, in real time,
from the available data. Figures 4 and 6 demonstrate that we can successfully learn the critical time window until R(t)
drops below 1, which, in Santa Clara County, took till March 28 for Ca =3.25 days, till April 1 for Ca = 6.5 days and
till April 8 for Ca = 13.0 days. Our findings are consistent with the observation that the basic reproduction number will
be over-estimated if the asymptomatic group has a shorter generation interval, and underestimated if it has a longer
generation interval than the symptomatic group [54]. Naturally, these differences are less pronounced under current
conditions where the effective reproduction number is low and the entire population has been sheltering in place. It
will be interesting to see if the effects of asymptomatic transmission become more visible as we gradually relax the
current constraints and allow all individuals to move around and interact with others more freely. Seasonality, effects
of different temperature and humidity, and other unknown factors may also influence the extent of transmission.

Estimates of the infectious asymptomatic population may vary, but general trends are similar. Through-
out the past months, an increasing number of researchers around the globe have started to characterize the size of
the asymptomatic population to better understand the outbreak dynamics of COVID-19 [30]. The reported under-
count varies largely with values on the order of one estimated by the World Health Organization [80] and values
on the order of ten reported by the Center for Disease Control and Prevention [6]. Two major challenges drive the
interest in these studies: estimating the severity of the outbreak, e.g., hospitalization and mortality rates [16], and
predicting the success of surveillance and control efforts, e.g., contact tracing or vaccination [19]. This is espe-
cially challenging now–in almost complete lockdown–when the differences in transmission dynamics between the
symptomatic and asymptomatic populations are small and difficult to quantify. However, as Figure 4 suggests, these
transmission dynamics can have a significant effect on the size of the asymptomatic population: For infectious pe-
riods of Ca = 0.5, 1.0, and 2.0 Cs, the maximum infectious population in Santa Clara County varies from 0.70%
and 1.23% to 2.10%. Interestingly, not only the sum of the infectious and recovered populations, but also the un-
certainty of their prediction, remain relatively insensitive to variations in the infectious period. To explore whether
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this is a universal trend, we perform the same analysis for nine different locations at which COVID-19 antibody
prevalence was measured in a representative sample of the population, Heinsberg (NRW, Germany) [71], Ada County
(ID, USA) [4], New York City (NY, USA) [58], Santa Clara County (CA, USA) [3], Denmark [14], Geneva Canton
(Switzerland) [72], Netherlands [67], Rio Grande do Sul (Brasil) [66], and Belgium [64]. The fraction of the symp-
tomatic population in these nine locations is νs = 20.00%, 7.90%, 5.76%, 1.77%, 6.95%, 10.34%, 17.31%, 8.10%,
and 10.21% respectively, broadly representing the range of reported symptomatic versus estimated total cases world-
wide [3, 4, 9, 12, 14, 18, 24, 32, 34, 46, 58, 59, 64, 65, 68, 66, 67, 71, 72, 74, 76, 78, 81]. Of the nine locations we
analyzed here, Heinsberg tested IgG and IgA, Ada County tested IgG, New York City tested IgG, Santa Clara County
tested IgG and IgM, Denmark tested IgG and IgM, Geneva tested IgG, the Netherlands tested IgG, IgM and IgA,
Rio Grande do Sul tested IgG and IgM, and Belgium tested IgG. While we did include reported uncertainty on the
seroprevalence data, seroprevalence would likely have been higher if all locations had tested for all three antibodies.
Despite these differences, the effective reproduction numbers R(t) and the infectious and recovered populations Is, Ia,
and R in Figure 6 display remarkably similar trends: In most locations, the effective reproduction number R(t) drops
rapidly to values below one within a window of about three weeks after the lockdown date. However, the maximum
infectious population, a value that is closely monitored by hospitals and health care systems, varies significantly rang-
ing from 0.28% and 0.38% in Rio Grande do Sul and Denmark respectively to 3.54% and 6.11% in Heinsberg and
New York City respectively. This is consistent with the reported ’superspreader’ events in these last two locations.
An effect that we do not explicitly address is that immune response not only results COVID-19 antibodies (humoral
response), but also from innate and cellular immunity [23]. While it is difficult to measure the effects of the unreported
asymptomatic group directly, and discriminate it precisely from innate and cellular immunity, mathematical models
can provide valuable insight into how this population modulates the outbreak dynamics and the potential of successful
outbreak control [40].

Simulations provide a window into the outbreak date. Santa Clara County was home to the first individual
who died with COVID-19 in the United States. Although this happened as early as February 6, the case remained
unnoticed until April 22 [1]. The unexpected new finding suggests that the new coronavirus was circulating in the
Bay Area as early as January. The estimated uncertainty on the exposed, symptomatic infectious, and asymptomatic
infectious populations of our model allows us to estimate the initial outbreak date dates back to January 20 (Figure 7).
This back-calculated early outbreak date is in line with our intuition that COVID-19 is often present in a population
long before the first official case is reported. Interestingly, our analysis comes to this conclusion purely based on a
local serology antibody study [3] and the number of reported cases after lockdown [63].

Limitations. Our approach naturally builds in and learns several levels of uncertainties. By design, this allows us
to estimate sensitivities and credible intervals for a number of important model parameters and discover important
features and trends. Nevertheless, it has a few limitations, some of them by design, some simply limited by the
current availability of data: First, our current SEIIR model assumes a similar contact rate β(t) for symptomatic and
asymptomatic individuals. While we can easily adjust this in the model by defining individual symptomatic and
asymptomatic rates βs(t) and βa(t), we currently do not have data on the temporal evolution of the hidden asymp-
tomatic infectious population Ia(t) and longitudinal large population antibody follow-up studies would be needed to
appropriately calibrate βa(t). Second, the ratio between the symptomatic and asymptomatic populations νs : νa can
vary over time, especially, as we have shown, if both groups display notably different dynamics, in our model rep-
resented through Cs and Ca. Since this can have serious effects on the overall reproduction number R(t), and with it
on required outbreak control strategies, it seems critical to perform more tests and learn the dynamics of the fractions
νs(t) and νa(t) of both groups. Third, and this is not only true for our specific model, but for COVID-19 forecasts in
general, all predictions can be sensitive to the amount of testing in time. As such, they crucially rely on testing policies
and testing capacities. We expect to see a significant increase in the symptomatic-to-asymptomatic, or rather detected-
to-undetected, ratio as we move towards systematically testing larger fractions of the population and more and more
people who have no symptoms at all. The intensity of testing increases in most locations during our simulation pe-
riod. For example, in Santa Clara County, testing was extremely limited until early April, increased substantially in
the first three weeks of April, and even more after. Including limited testing and more undocumented cases during
the early outbreak would shift the case distribution towards earlier days, and predict an even earlier outbreak date.
When longitudinal antibody studies become available, additional methodologies can be developed to correct for this
limitation which include a dynamic evolution for the symptomatic/asymptomatic fractions. Fourth, while we have
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included uncertainty in the seroprevalence data, the nine locations we analyzed here tested different types of anti-
bodies and had different sampling procedures. Seroprevalence could have been higher if all locations had tested for
the same three antibodies and data may differ depending on biases introduced by the sampling procedure. Finally,
our current model does not explicitly account for innate and cellular immunity. If the fraction of the population with
innate and cellular immunity is substantially high, we would anticipate a smaller susceptible population and a larger
and earlier protective immunity overall. These, and other limitations related to the availability of information, can be
easily addressed and embedded in our model and will naturally receive more clarification as studies and data become
available in the coming months.

5. Conclusions

The rapid and devastating development of the COVID-19 pandemic has raised many open questions about its
outbreak dynamics and unsuccessful outbreak control. From an outbreak management standpoint–in the absence
of effective vaccination and treatment–the two most successful strategies in controlling an infectious disease are
isolating infectious individuals and tracing and quarantining their contacts. Both critically rely on a rapid identification
of infections, typically through clinical symptoms. Recent antibody prevalence studies could explain why these
strategies have largely failed in containing the COVID-19 pandemic: Increasing evidence suggests that the number of
unreported asymptomatic cases could outnumber the reported symptomatic cases by an order of magnitude or more.
Mathematical modeling, in conjunction with reported symptomatic case data, antibody seroprevalence studies, and
machine learning allows us to infer, in real time, the epidemiology characteristics of COVID-19. We can now visualize
the invisible asymptomatic population, estimate its role in disease transmission, and quantify the confidence in these
predictions. A better understanding of asymptomatic transmission will help us evaluate strategies to manage the
impact of COVID-19 on both our economy and our health care system. A large asymptomatic population is associated
with a high risk of community spread and could require a conscious shift from containment to mitigation induced by
behavior changes. Our study suggests that, until vaccination and treatment become available, increasing population
awareness, encouraging increased hygiene, mandating the use of face masks, restricting travel, and promoting physical
distancing could be the most successful strategies to manage the impact of COVID-19 on both our economy and our
health care system.

Appendix

To visualize the effect of asymptomatic transmission on the outbreak dynamics of COVID-19, we perform a
sensitivity analysis with respect to the two most relevant parameters associated with asymptomatic transmission, the
symptomatic fraction νs and the asymptomatic infectious period Ca. To highlight the effect of both parameters, we
visualize the exposed, symptomatic and asymptomatic infectious, and recovered populations of our SEIIR model,

Ṡ = − S β [ Is + Ia ]
Ė = + S β [ Is + Ia ] − α E
İs = + νs α E − γs Is
İa = + νa α E − γa Ia
Ṙ = + γs Is + γa Ia .

(15)

We assume that the symptomatic and asymptomatic contact rates are equal, β = βs = βa, and that the differences
between symptomatic and asymptomatic transmission manifest themselves exclusively in the infectious periods Cs =

1/γs and Ca = 1/γa. For illustrative purposes, rather than using a dynamic contact rate of Gaussian random walk type
as we have proposed in the main body of this manuscript, we adopt a smooth, monotonically decreasing dynamic
contact rate of hyperbolic tangent type [43],

β(t) = β0 −
1
2 [1 + tanh([t − t∗]/T)][β0 − βt] , (16)

where β0 is the basic contact rate, βt is the reduced contact rate, t∗ is the adaptation time, and T is the adaptation
speed. To mimic realistic outbreak dynamics, we adopt the basic contact rate β0 = 0.65 /days, the reduced contact
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Figure 8: SEIIR epidemiology model. Sensitivity with respect to the symptomatic fraction νs. Darkest curves correspond to the special case
of no asymptomatic transmission, νs = 1.0, lightest curves to only asymptomatic transmission, νs = 0.0. For a smaller asymptomatic infectious
period of Ca = 0.5 Cs, the outbreak dynamics are governed by the symptomatic population Is and the recovered population R decreases with
increasing asymptomatic transmission νa (left). For a larger asymptomatic infectious period of Ca = 2 Cs, the outbreak dynamics are governed by
the asymptomatic population Ia and the recovered population increases with increasing asymptomatic transmission (right). Latent period A = 2.5
days, symptomatic infectious period Cs = 6.5 days, asymptomatic infectious period Ca = 3.25 days (left) and Ca = 13 days (right), and contact
rate β(t) = β0 −

1
2 [1 + tanh([t − t∗]/T)][β0 − βt] with β0 = 0.65 /days, βt = 0.10 /days, t∗ = 18.61 days, and T = 10.82 days.

rate βt = 0.10 /days, the adaptation time t∗ = 18.61 days, and the adaptation speed T = 10.82 /days from the mean
values across the 27 countries of the European union [43]. Similar to the main body of this manuscript, we select a
latent period of A = 1/α = 2.5 days and a symptomatic infectious period of Ca = 1/γa = 6.5 days. For the sensitivity
analysis, we vary the symptomatic fraction νs = [0.0, ..., 1.0] at fixed Ca = 3.25 days and Ca = 13 days and the
asymptomatic infectious period Ca = [3.25, ..., 13.00] days at fixed νs = 0.2 and νs = 0.8. For a symptomatic fraction
of νs = 0.2, the undercount is four, i.e., for every reported case, there are four unreported cases. For a symptomatic
fraction of νs = 0.8, the undercount is one fourth, i.e., for every four reported cases, there is one unreported case.

Figure 8 highlights the effect of the symptomatic fraction νs. The dark red, orange, green, and blue curves cor-
respond to the special case of the regular SEIR model (6) without asymptomatic transmission and thus νs = 1.0 and
νa = 0.0. The lighter curves show the effect of decreasing the symptomatic fraction towards νs = 0.0 and νa = 1.0.
Interestingly, the effect of asymptomatic transmission on the overall outbreak dynamics varies not only with the symp-
tomatic fraction, but is also highly sensitive to the ratio of the symptomatic and asymptomatic infectious periods. For
the smaller asymptomatic infectious period of Ca = 0.5 Cs, the outbreak dynamics are governed by the orange symp-
tomatic population Is and the blue recovered population R decreases with increasing asymptomatic transmission νa.
For the larger asymptomatic infectious period of Ca = 2 Cs, the outbreak dynamics are governed by the green asymp-
tomatic population Ia and the blue recovered population R increases with increasing asymptomatic transmission.

Figure 9 shows the effect of the asymptomatic infectious period Ca. The darkest red, orange, green, and blue curves
correspond to a larger asymptomatic infectious period of Ca = 2 Cs, the lightest curves to a smaller period Ca = 0.5 Cs.
The middle curves correspond to the special case for which the asymptomatic and symptomatic populations display
the same dynamics, Ca = Cs, such that the overall recovered population becomes independent of the symptomatic
fraction. This implies that middle blue recovered populations of both graphs are identical and also identical to the dark
blue curves of Figure 8. For the larger symptomatic fraction of νs = 0.8, the outbreak dynamics are governed by the
orange symptomatic population Is and the blue recovered population R is relatively insensitive to the asymptomatic
infectious period Ca. For the smaller symptomatic fraction of νs = 0.2, the outbreak dynamics are governed by
the green asymptomatic population Ia and the blue recovered population R increases markedly with an increasing
asymptomatic infectious period Ca.

Taken together, this sensitivity analysis shows that the outbreak dynamics of COVID-19 are highly sensitive to
asymptomatic transmission. This sensitivity becomes more pronounced the more the asymptomatic infectious period
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Figure 9: SEIIR epidemiology model. Sensitivity with respect to the asymptomatic infectious period Ca. Darkest curves correspond to a larger
asymptomatic infectious period of Ca = 2 Cs, lightest curves to a smaller period Ca = 0.5 Cs. For a larger symptomatic fraction of νs = 0.8, the
outbreak dynamics are governed by the symptomatic population Is and the recovered population R is relatively insensitive to the asymptomatic
infectious period Ca (left). For a smaller symptomatic fraction of νs = 0.2, the outbreak dynamics are governed by the asymptomatic population
Ia and the recovered population R increases markedly with an increasing asymptomatic infectious period Ca (right). Latent period A = 2.5 days,
symptomatic infectious period Cs = 6.5 days, asymptomatic infectious period Ca = 3.25 days (left) and Ca = 13 days (right), and contact rate
β(t) = β0 −

1
2 [1 + tanh([t − t∗]/T)][β0 − βt] with β0 = 0.65 /days, βt = 0.10 /days, t∗ = 18.61 days, and T = 10.82 days.

differs from its symptomatic counterpart. This difference could be a natural result of asymptomatic individuals isolat-
ing themselves less since they are unaware that they can infect others. Knowing the precise dynamics of asymptomatic
transmission is therefore critical for a successful management of COVID-19.
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