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Understanding the outbreak dynamics of the COVID-19 pandemic has important

implications for successful containment and mitigation strategies. Recent studies

suggest that the population prevalence of SARS-CoV-2 antibodies, a proxy for

the number of asymptomatic cases, could be an order of magnitude larger than

expected from the number of reported symptomatic cases. Knowing the precise

prevalence and contagiousness of asymptomatic transmission is critical to es-

timate the overall dimension and pandemic potential of COVID-19. However, at

this stage, the effect of the asymptomatic population, its size, and its outbreak

dynamics remain largely unknown. Here we use reported symptomatic case data

in conjunction with antibody seroprevalence studies, a mathematical epidemiology

model, and a Bayesian framework to infer the epidemiological characteristics of

COVID-19. Our model learns, in real time, the time-varying contact rate of the

outbreak, and projects the temporal evolution and credible intervals of the effective

reproduction number and the symptomatic, asymptomatic, and recovered popu-
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lations. Our study reveals that the outbreak dynamics of COVID-19 are sensitive

to three parameters: the effective reproduction number, the ratio between the

symptomatic and asymptomatic populations, and the infectious periods of both

groups. For three distinct locations, Santa Clara County (CA, USA), New York City

(NY, USA), and Heinsberg (NRW, Germany), our model estimates the fraction of the

population that has been infected and recovered by May 13, 2020 to 6.2% (95% CI:

3.3%-9.0%), 22.7% (95% CI: 15.7%-29.8%), and 20.5% (95% CI: 17.0%-24.3%). Our

method traces the initial outbreak date in Santa Clara County back to January 20,

2020 (95% CI: January 16, 2020 - January 24, 2020). Our results could significantly

change our understanding and management of the COVID-19 pandemic: A large

asymptomatic population will make isolation, containment, and tracing of indi-

vidual cases challenging. Instead, if needed, managing community transmission

through increasing population awareness, promoting physical distancing, and

encouraging behavioral changes could become more relevant.

Introduction

Since its outbreak in December 2019, the COVID-19 pandemic has rapidly swept across

the globe and is now affecting 188 countries with more than 5 million cases reported

worldwide 8. In the early stages of a pandemic, doctors, researchers, and political de-

cision makers mainly focus on symptomatic individuals that come for testing and ad-
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dress those who require the most urgent medical attention 11. In the more advanced

stages, the interest shifts towards mildly symptomatic and asymptomatic individuals who–

by definition–are difficult to trace and likely to retain normal social and travel patterns 27.

In this manuscript, we collectively use the term “asymptomatic” for individuals who have

mild symptoms that are not directly associated with COVID-19 or display no symptoms at

all. Recent antibody seroprevalence studies suggests that the number of asymptomatic

COVID-19 cases outnumbers the symptomatic cases by an order of magnitude or more

3,4,7,10,13,41–43,46,47,49,52. Estimating the prevalence and contagiousness of these asymp-

tomatic cases is critical since it will change our understanding of the overall dimension and

the pandemic potential of COVID-19 12. Yet, at this stage, the effect of the asymptomatic

population, its size, and its outbreak dynamics remain largely unknown.

The first evidence of asymptomatic individuals in a family cluster of three was re-

ported in late January, where one individual was mildly symptomatic and two remained

asymptomatic, with normal lymphocyte counts and chest computer tomography images,

but positive quantitative reverse transcription polymerase chain reaction tests 32. As of

today, more than 50 studies have reported an asymptomatic population, twelve of them

with a sample size of at least 500 22, with a median undercount of 20 across all studies,

suggesting that only one in twenty COVID-19 cases is noticed and reported. These stud-

ies are based on polymerase chain reaction or antibody seroprevalence tests in different

subgroups of the population, at different locations, at different points in time 3,5,46. To no

surprise, the reported undercount varies hugely, ranging from 5 to 627 with maximum
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values in Oise, France 13 and in Kobe, Japan 7. Most of these studies are currently only

available on preprint servers, but an increasing number is now passing peer review, in-

cluding a study of 1402 individuals in Wuhan City with an undercount of 22.1 52, a study of

400 health care workers in London with an undercount of 35.0 50, a community spreading

study of 131 patients with influenza-like symptoms in Los Angeles with an undercount of

100.0 in 45, and a seroprevalence study in Los Angeles county with an undercount of 43.5

44. The reported trend across all studies is strikingly consistent: A much larger number of

individuals displays antibody prevalence than we would expect from the reported symp-

tomatic case numbers. Knowing the exact dimension of the asymptomatic population is

critical for two reasons: first, to truly estimate the severity of the outbreak, e.g., hospi-

talization or mortality rates 12, and second, to reliably predict the success of surveillance

and control strategies, e.g., contact tracing or vaccination 14.

While there is a pressing need to better understand the prevalence of asymptomatic

transmission, it is also becoming increasingly clear that it will likely take a long time until

we can, with full confidence, deliver reliable measurements of this asymptomatic group. In

the meantime, mathematical modeling can provide valuable insight into the tentative out-

break dynamics and outbreak control of COVID-19 for varying asymptomatic scenarios

27. Many classical epidemiology models base their predictions on compartment models in

which individuals pass through different stages as they experience the disease 23. A pop-

ular model to simulate the outbreak dynamics of COVID-19 is the SEIR model 11, which

is made up of four compartments for the susceptible, exposed, infectious, and recovered
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populations 2. Here, to explicitly account for the asymptomatic population, we introduce

an SEIIR model, which further divides the infectious population into symptomatic and

asymptomatic groups. Similar models have recently been used to study the general role

of asymptomatic carriers in disease transmission 33 and to illustrate how asymptomatic

individuals have facilitated the rapid spread of COVID-19 throughout China 27, South Ko-

rea 48, and Italy 15. While it is tempting–and easily possible–to introduce many more

sub-populations into the model, for example a pre-symptomatic, hospitalized, or mortality

group 36, here, we focus on the simplest possible model that allows us to explore the role

of the asymptomatic population throughout the COVID-19 pandemic. To systematically

probe different scenarios, we combine this deterministic SEIIR model with a dynamic ef-

fective reproduction number and adopt machine learning and uncertainty quantification

techniques to learn the reproduction number, in real time, and quantify uncertainties in

the symptomatic-to-asymptomatic ratio, and the initial exposed and infectious populations

29. We show that this not only allows us to visualize the dynamics and uncertainties of the

dynamic contact rate, the effective reproduction number, and the symptomatic, asymp-

tomatic, and recovered populations, but also to estimate the initial date of the outbreak.

Results

Outbreak dynamics of COVID-19 in Santa Clara County. Figure 1 illustrates the out-

break dynamics of COVID-19 in Santa Clara County. The first day, March 2, 2020, is the

day on which the number of confirmed cases exceeded 19 cases, 0.001% of the popu-
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Figure 1: Outbreak dynamics of COVID-19 in Santa Clara County. The simulation

learns the time-varying contact rate β(t) for fixed latent and symptomatic infectious peri-

ods A = 2.5 days and Cs = 6.5 days, and for three asymptomatic infectious periods Ca =

3.25 days, 6.5 days, and 13.0 days (from left to right). Computed and reported confirmed

cases in Santa Clara County, D(t) = Is(t)+Rs(t) and D̂(t) (top), initial exposed and infec-

tious populations, E0, Is0, and Ia0 (middle), and dynamic contact rate, β(t) (bottom). The

gray and green-blue regions highlight the 95% credible intervals on the confirmed cases

D(t) (top) and the contact rate β(t) (bottom) based on the reported cases D̂(t), while

taking into account uncertainties on the fraction of the symptomatic infectious population

νs = Is/I, and the initial exposed and infectious populations E0, Is0, and Ia0.
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lation. The black dots highlight the reported cases D̂(t) from this day forward. Based on

these data points, we learn the posterior distributions of our SEIIR model parameters for

fixed latent and symptomatic infectious periods A = 2.5 days and Cs = 6.5 days, and for

three asymptomatic infectious periods, Ca = 3.25, 6.5, and 13.0 days, from left to right.

The gray and green-blue regions highlights the 95% credible intervals on the confirmed

cases D(t), top row, and the contact rate β(t), bottom row, based on the reported cases

D̂(t), while taking into account uncertainties on the fraction of the symptomatic infectious

population νs = Is/I, and the initial exposed and infectious populations E0, Is0, and Ia0.

The red, orange, and gray histograms display the learnt initial exposed and infectious

populations, E0, Is0, and Ia0, for the three different asymptomatic infectious periods, mid-

dle row. The graphs confirm that our dynamic SEIIR epidemiology model is capable of

correctly capturing the gradual flattening of the curve of confirmed cases in agreement

with the decrease in new cases reported in Santa Clara County, top row. The consistent

downward trend of the contact rate β(t) quantifies the efficiency of public health inter-

ventions. The different magnitudes in the contact rate highlight the effect of the three

different asymptomatic infectious periods Ca: For larger asymptomatic infectious periods

Ca, from left to right, to explain the same number of confirmed cases D(t) = Is(t) +Rs(t),

the contact rate β(t) has to decrease. On March 2, 2020, when the detected population

amounted to 0.001% in Santa Clara County, the mean contact rate β(t) was 0.713 (95%

CI: 0.590 - 0.836) for an infectious period of Ca=3.25 days, 0.556 (95% CI: 0.454 - 0.659)

for Ca= 6.5 days, and 0.486 (95% CI: 0.395 - 0.578) for Ca=13.0 days. By March 17, 2020,
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the day Santa Clara County announced the first county-wide shelter-in-place order in the

entire United States, these mean contact rates β(t) were 0.466 (95% CI: 0.427 - 0.506)

for an infectious period of Ca=3.25 days, 0.308 (95% CI: 0.280 - 0.336) for Ca= 6.5 days,

and 0.235 (95% CI: 0.214 - 0.256) for Ca=13.0 days.

Effect of asymptomatic transmission of COVID-19 in Santa Clara County. Figure 2

visualizes the effect of asymptomatic transmission in Santa Clara County. The simulation

learns the time-varying contact rate β(t), and with it the time-varying effective reproduc-

tion number R(t), top row, for three asymptomatic infectious periods Ca = 3.25 days, 6.5

days, and 13.0 days, from left to right. The effective reproduction number R(t) follows a

similar downward trend as the contact rate β(t). For larger asymptomatic infectious pe-

riods Ca, from left to right, since R(t) = Cs β(t)/[ νs + νaCs/Ca ], as Ca increases, Cs/Ca

decreases, and R(t) increases. Since R(t) represents the number of new infections from

a single case, a decrease below R(t) < 1 implies that a single infectious individual in-

fects less than one new individual, which indicates that the outbreak decays. The dashed

vertical lines indicate the time window of R(t) = 1 during which one infectious individ-

ual, either symptomatic or asymptomatic, infects on average one other individual. For

an asymptomatic infectious period of Ca=3.25 days, this critical transition occurred from

March 24 until April 6, 2020 and lasted 13 days. For Ca=6.5 days, this occurred from

March 27 until April 7, 2020 and lasted 11 days. For Ca=13.0 days, this occurred from

April 4 until April 8, 2020 and lasted 4 days. This confirms our intuition that, the larger the

asymptomatic infectious period Ca, for example because asymptomatic individuals will not

8
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Figure 2: Effect of asymptomatic transmission of COVID-19 in Santa Clara County.

The simulation learns the time-varying contact rate β(t), and with it the time-varying effec-

tive reproduction number R(t), for fixed latent and symptomatic infectious periods A = 2.5

days and Cs = 6.5 days, and for three asymptomatic infectious periods Ca = 3.25 days,

6.5 days, and 13.0 days (from left to right). The downward trend of the effective repro-

duction number R(t) reflects the efficiency of public health interventions (top row). The

dashed vertical lines mark the critical time period during which the effective reproductive

reproduction number fluctuates around R(t) = 1. The simulation predicts the symptomatic

infectious, asymptomatic infectious, and recovered populations Is, Ia, and R (bottom row).

The colored regions highlight the 95% credible interval for uncertainties in the number of

confirmed cases D, the fraction of the symptomatic infectious population νs = Is/I, the

initial exposed population E0 and the initial infectious populations Is0 and Ia0.
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isolate as strictly as symptomatic individuals, the higher the effective reproduction number

R(t), and the more difficult it will be to control R(t) by public health interventions. For each

of the three cases, the symptomatic infectious, asymptomatic infectious, and recovered

population, are shown in the bottom row. For larger asymptomatic infectious periods Ca,

from left to right, the total infectious population I increases and its maximum occurs later

in time. Specifically, the maximum infectious population since March 2, 2020 amounts to

0.53% (95% CI: 0.29%-0.77%) on March 27, 2020 for Ca = 3.25 days, 0.95% (95% CI:

0.51%-1.39%) on March 30, 2020 for Ca = 6.5 days, and 1.69% (95% CI: 0.89%-2.48%)

on April 7, 2020 for Ca = 13.0 days. For larger asymptomatic infectious periods Ca, from

left to right, the recovered population R decreases. Specifically, on May 13, 2020, the

recovered population R amounts to 6.35% (95% CI: 3.42%-9.28%) for an infectious pe-

riod of Ca =3.25 days, 6.17% (95% CI: 3.33%-9.02%) for Ca =6.5 days, and 5.84% (95%

CI: 3.10%-8.57%) for Ca =13.0 days. Similarly, and important when considering different

exit strategies, the total infectious population, I = Is + Ia, on May 13, 2020 is estimated

to 0.12% (95% CI: 0.06%-0.19%) for Ca =3.25 days, 0.28% (95% CI: 0.14%-0.41%) for

Ca =6.5 days, and 0.70% (95% CI: 0.36%-1.03%) for Ca =13.0 days.

Outbreak dynamics of COVID-19 in Santa Clara County, New York City, and Heins-

berg. Figures 3 and 4 illustrate the outbreak dynamics of COVID-19 in three different

locations that reported COVID-19 antibody prevalence in a representative sample of the

population: Santa Clara County (CA, USA), New York City (NY, USA) and Heinsberg

(NRW, Germany). To compare the different outbreak dynamics, we first learn the asymp-
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Figure 3: Outbreak dynamics of COVID-19 in Santa Clara County, New York City, and

Heinsberg. Dynamic effective reproduction number R(t) and reported and simulated de-

tected cases D̂(t) and D(t) at three different locations where antibody prevalence studies

were performed. The simulation learns the asymptomatic infectious period Ca, the time-

varying contact rate β(t), and with it the time-varying effective reproduction number R(t),

for fixed latent and symptomatic infectious periods A = 2.5 days and Cs = 6.5 days. The

colored regions highlight the 95% credible interval for the effective reproductive number

R(t) (top) and for the detected cases D(t) compared to the reported cases D̂(t) (bottom).

This asymptomatic infectious periods are Ca = 4.16 (95% CI: 2.42-6.63) days for Santa

Clara County, Ca = 4.04 (95% CI: 2.85-5.52) days for New York City, and Ca = 4.15 (95%

CI: 2.85-5.67) days for Heinsberg.
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tomatic infectious period Ca for a simplified contact rate β, and then learn the dynamic

contact rate β(t) for fixed Ca. Figure 3 illustrates the learnt asymptomatic infectious peri-

ods Ca, the dynamic effective reproduction number R(t), and the reported and simulated

cases D̂(t) and D(t) in all three locations. Here, to keep the parameter space manage-

able, we approximate the contact rate, β(t) = β0 − 1
2
[ 1 + tanh ([ t− t∗ ]/T ) ][ β0 − βt ], by

a hyperbolic tangent function in terms of the initial and current contact rates β0 and βt,

the adaptation time t∗, and the transition time T 29. To account for variability between

the three locations while simultaneously taking advantage of the entire data, we adopt a

hierarchical model to learn the asymptomatic infectious period Ca
17. For each location,

we draw Ca from normal distributions using weakly informative priors as µCa ∼ Ni(6.5, 2)

and σCa ∼ half-normal(2). This results in asymptomatic infectious periods of Ca = 4.16

(95% CI: 2.42-6.63) days for Santa Clara County, Ca = 4.04 (95% CI: 2.85-5.52) days for

New York City, and Ca = 4.15 (95% CI: 2.85-5.67) days for Heinsberg.

Figure 4 illustrates the learnt effective reproduction number R(t), and the symp-

tomatic and asymptomatic infectious populations Is and Ia, and the recovered population

R for all three locations. Here, we assume fixed latent and infectious periods of A = 2.5

days, Cs = 6.5 days, and Ca = 6.5 days. For all three locations, the calculated metrics dis-

play similar trends, although their absolute numbers and percentage values are different.

The downward trend of the dynamic effective reproductive number evolution R(t) quanti-

fies how fast each location managed to control the spreading of COVID-19. The dashed

vertical lines indicate the critical time window during which the effective reproduction num-

12
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Figure 4: Outbreak dynamics of COVID-19 in Santa Clara County, New York City,

and Heinsberg. Dynamic effective reproduction number R(t) and symptomatic, asymp-

tomatic, and recovered populations at three different locations where antibody prevalence

studies were performed. The simulation learns the time-varying contact rate β(t), and

with it the time-varying effective reproduction number R(t), to predict the symptomatic in-

fectious, asymptomatic infectious, and recovered populations Is, Ia, and R, for fixed latent

and infectious periods A = 2.5 days, Cs = 6.5 days, and Ca = 6.5 days. The dashed

vertical lines mark the critical time period during which the effective reproduction number

fluctuates around R(t) = 1 (top). The colored regions highlight the 95% credible interval

for the effective reproductive number R(t) (top), the symptomatic and asymptomatic popu-

lations Is and Ia, and the recovered population R (bottom), for uncertainties in the number

of confirmed cases D, the fraction of the symptomatic infectious population νs = Is/I, the

initial exposed population E0, and the initial infectious populations Is0 and Ia0.13
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ber fluctuates around R(t) = 1. For Santa Clara County, this critical transition occurred

from March 27 until April 7, 2020 and lasted 11 days. For New York City, this occurred

from April 12 until April 24, 2020 and lasted 13 days. For Heinsberg, this occurred from

March 16 until March 30, 2020 and lasted 15 days. Based on our simulations, the maxi-

mum infectious population size amounted to 0.95% (95% CI: 0.51%-1.39%) on March 30,

2020 in Santa Clara County, to 4.07% (95% CI: 2.81%-5.33%) on April 13, 2020 in New

York City, and to 3.62% (95% CI: 2.97%-4.27%) on March 20, 2020 in Heinsberg. On May

13, 2020, the estimated recovered population in Santa Clara County, New York City, and

Heinsberg reached 6.17% (95% CI: 3.33%-9.02%), 22.74% (95% CI: 15.68%-29.80%),

20.52% (95% CI: 16.83%-24.20%). When using an asymptomatic infectious period of

Ca = 4.1 days, the best fit value in Figure 3, the maximum infectious population would be

slightly smaller and the recovered population would be slightly larger than estimated here

for Ca = 6.5 days.

Forecasting the COVID-19 dynamics in Santa Clara County. Figure 5 shows a fore-

cast of the COVID-19 dynamics in Santa Clara County for an increase of the contact

rate β(t) by 10% after May 13, 2020. Based on the inferred posterior distribution of the

localized SEIIR model parameters, Figure 5 predicts the effective reproduction number

R(t), the symptomatic and asymptomatic infectious populations Is and Ia, the recovered

population R, and the fraction of the population that will be hospitalized and will require in-

tensive care beds. In addition to the different sizes of infectious and recovered populations

throughout the past, up to the dashed line, the three columns show how different asymp-

14
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Figure 5: Forecasting the COVID-19 dynamics in Santa Clara County. Prediction

of the effective reproduction number R(t), the symptomatic and asymptomatic infectious

populations Is and Ia, the recovered population R, the number of hospitalizations, and

the required intensive care beds, from top to bottom, for fixed latent and symptomatic

infectious periods A = 2.5 days and Cs = 6.5 days, and for three asymptomatic infectious

periods Ca = 3.25 days, 6.5 days, and 13.0 days (from left to right). As a forecasting

scenario, we assume a 10% contact increase after May 13, 2020.

15
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tomatic infectious periods Ca affect the projected evolution of the infectious populations

and the need for hospital and intensive care beds. We identify the hospitalization fraction

based on data until May 13, 2020, to νh = 35.24% and the intensive care unit fractions

to νc = 32.38%. Our projections show with 95% confidence that a 10% increase of the

contact rate β(t), compared to today’s contact rate, would lead to an effective reproduc-

tion number R(t) slightly below one. Values of R(t) > 1 would re-initiate the exponential

growth dynamics of the COVID-19 outbreak. Four weeks into the future, for asymptomatic

infectious periods of Ca = 3.25, 6.5, and 13.0 days, a 10% increase in the contact rate

would lead to the need of 36 (95%CI: 21-76), 38 (95%CI: 26-65), and 50 (95%CI: 38-69)

hospital beds, of which 19 (95%CI: 13-32), 20 (95%CI: 15-29), and 24 (95%CI: 19-31)

would be in the intensive care unit, compared to 888 acute hospital beds, 186 intensive

care unit beds, and 1231 surge beds currently available in Santa Clara County 40.

Estimating the outbreak date. Figure 6 shows the estimated outbreak date of COVID-

19 in Santa Clara County. For fixed latent and symptomatic infectious periods A = 2.5

days and Cs = 6.5 days, and for three asymptomatic infectious periods Ca = 3.25 days,

6.5 days, and 13 days, the graphs highlight the estimated date of the first COVID-19 case

in the county. Based on the reported case data from March 2, 2020 onward, and taking

into account uncertainty on the fraction of the symptomatic infectious population νs, on the

initial exposed population E0, and on the initial symptomatic and asymptomatic infectious

populations Is0 and Ia0, we systematically backtracked the date of the first undetected

infectious individual. The three graphs show that, the longer the asymptomatic infectious

16
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Figure 6: Estimating the outbreak date of COVID-19 in Santa Clara County vary-

ing asymptomatic infectious periods Ca. Estimated date of the first COVID-19 case in

Santa Clara County for fixed latent and symptomatic infectious periods A = 2.5 days and

Cs = 6.5 days, and for three asymptomatic infectious periods Ca = 3.25 days, 6.5 days,

and 13 days (from left to right). The colored regions highlight the 95% credible interval

for the exposed and asymptomatic infectious populations E0 and Ia estimated based on

the reported cases D̂(t) from March 2, 2020 onward and taking into account uncertain-

ties on the fraction of the symptomatic infectious population νs = Is/I, and the exposed

and asymptomatic infectious populations E0 and Ia0 on March 2, 2020 (top row). The

histograms show the distribution of the most probable origin dates to February 10, 2020

(95% CI: February 9, 2020 - February 14, 2020) for an asymptomatic infectious period

Ca = 3.25 days, to January 20, 2020 (95% CI: January 16, 2020 - January 24, 2020) for

Ca = 6.5 days and to December 10, 2020 (95% CI: December 1, 2020 - December 18,

2020) for Ca = 13 days (bottom row).
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period Ca, the further the predicted first undetected case would date back in time. Our

results suggest that the first case of COVID-19 in Santa Clara County dates back to

February 10, 2020 (95% CI: February 9, 2020 - February 14, 2020) for an asymptomatic

infectious periods Ca = 3.25 days, to January 20, 2020 (95% CI: January 16, 2020 -

January 24, 2020) for Ca = 6.5 days and to December 10, 2020 (95% CI: December 1,

2020 - December 18, 2020) for Ca = 13 days. For an asymptomatic infectious period of

Ca = 4.1 days, the best fit value in Figure 3, the first case would date back to late January.

Discussion

A key question in understanding the outbreak dynamics of COVID-19 is the dimension of

the asymptomatic population and its role in disease transmission. Throughout the past

three months, dozens of studies have been initiated to quantify the fraction of the general

population that displays antibody prevalence but did not report symptoms of COVID-19.

Here we assume that this subgroup of the population has been infected with the novel

coronavirus, but has remained asymptomatic, or only displayed mild symptoms that were

not directly reported in the context of COVID-19. We collectively map this subgroup into

an asymptomatic population and additively decompose the total infectious population,

I = Is + Ia, into a symptomatic group Is and an asymptomatic group Ia. We parameterize

this decomposition in terms of a single scalar valued parameter, the symptomatic fraction

νs, such that Is = νs I and Ia = νa I = [ 1 − νs ] I. Within this paradigm, we can conceptu-

ally distinguish two scenarios: the special case for which both subgroups display identical

18
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contact rates β, latent periods A, and infectious periods C, and the general case for which

these transition dynamics are different.

For comparable dynamics, the size of the asymptomatic population does not af-

fect overall outbreak dynamics. For the special case in which both subgroups display

identical contact rates β, latent rates α, and infectious rates γ 51, our study shows that

the overall outbreak dynamics can be represented by the classical SEIR model 20 us-

ing equations (7). Importantly, however, since the reported case data only reflect the

symptomatic infectious and recovered groups Is and Rs, the true infectious and recovered

populations I = Is/νs and R = Rs/νs could be about an order of magnitude larger than the

SEIR model predictions. From an individual’s perspective, a smaller symptomatic group

νs, or equivalently, a larger asymptomatic group νa = [1 − νs], could have a personal ef-

fect on the likelihood of being unknowingly exposed to the virus, especially for high-risk

populations: A larger asymptomatic fraction νa would translate into an increased risk of

community transmisson and would complicate outbreak control 12. From a health care

perspective, however, the special case with comparable transition dynamics would not

pose a threat to the health care system since the overall outbreak dynamics would re-

main unchanged, independent of the fraction νa of the asymptomatic population: A larger

asymptomatic fraction would simply imply that a larger fraction of the population has al-

ready been exposed to the virus–without experiencing significant symptoms–and that the

true hospitalization and mortality rates would be much lower than the reported rates 22.

For different dynamics, the overall outbreak dynamics depend on both size and in-

19
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fectiousness of the asymptomatic group. For the general case in which the transition

rates for the symptomatic and asymptomatic groups are different, the overall outbreak

dynamics of COVID-19 become more unpredictable, since little is known about the dy-

namics of the asymptomatic population 33. To study the effects of different dynamics

between the symptomatic and asymptomatic groups, we decided to collectively repre-

sent a lower infectivity of the asymptomatic population through a smaller infectious period

Ca < Cs and a lack of early isolation of the asymptomatic population through a larger in-

fectious period Cs < Ca, while, for simplicity, keeping the latent period A and contact rate

β similar across both groups 26. Our study shows that the overall reproduction number,

R(t) = [CaCs]/[νsCa + νaCs] β(t), and with it the outbreak dynamics, depend critically on

the fractions of the symptomatic and asymptomatic populations νs and νa and on the ratio

of the two infectious periods Cs and Ca. To illustrate these effects, throughout this study,

we consistently report the results for three different scenarios where the asymptomatic

group is half as infectious, Ca = 0.5Cs, equally infectious, Ca = Cs, and twice as infectious

Ca = 2.0Cs as the symptomatic group. The second case, the middle column in Figures

1, 2, 5, and 6, corresponds to the special case with comparable dynamics and similar

parameters. Our learnt asymptomatic infectious periods of Ca = 4.1 days in Figure 3

suggest that Ca is consistently smaller than the symptomatic infectious period of Cs = 6.5

days and that the asymptomatic population is about two third as infectious as the symp-

tomatic population.

Dynamic contact rates are a metric for the efficiency of public health interven-

20
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tions. Classical SEIR epidemiology models with static parameters are well suited to

model outbreak dynamics under unconstrained conditions and predict how the suscepti-

ble, exposed, infectious, and recovered populations converge freely toward the endemic

equilibrium 20. However, they cannot capture changes in disease dynamics and fail to

converge towards a temporary equilibrium before the entire population has become suf-

ficiently immune to prevent further spreading 36. To address this limitation, we introduce

a time-dependent contact rate β(t), which we learn dynamically from the reported case

data. Figure 1 demonstrates that our approach can successfully identify a dynamic con-

tact rate that not only decreases monotonically, but is also capable of reproducing local

contact fluctuations. With this dynamic contact rate, our model can capture the character-

istic S-shaped COVID-19 case curve that plateaus before a large fraction of the population

has been affected by the disease, resembling a Gompertz function. Previous studies have

inferred discrete date points at which the contact rates vary 6 or used sliding windows over

the amount of novel reported infections 34 to motivate dynamic contact rates. As such,

our framework provides a model-based method for statistical inference of virus transmis-

sibility: It naturally learns the most probable contact rate from the changing time evolution

of new confirmed cases and concomitantly quantifies the uncertainty on that estimation.

The dynamics of the asymptomatic population affect the effective reproduction

number. Our analysis in equations (5) and (6) and our simulations in Figure 2 illus-

trate how asymptomatic transmission affects the effective reproduction number, and with

it the outbreak dynamics of COVID-19. Our results show that, the larger the infec-
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tious period Ca of the asymptomatic group, the larger the effective reproduction number,

R(t) = Cs β(t)/[ νs + νaCs/Ca ], and the later the drop of R(t) below the critical value of

one. A recent study analyzed the dynamics of the asymptomatic population in three con-

secutive windows of two weeks during the early outbreak in China 27. The study found

relatively constant latency and infectious periods A and C, similar to our assumption, and

a decrease in the contact rate β = 1.12, 0.52, 0.35 days−1 and in the effective reproduc-

tion number R(t) = 2.38, 1.34, 0.98, which is consistent with our results. However, rather

than assuming constant outbreak parameters within pre-defined time windows, our study

learns the effective reproduction number dynamically, in real time, from the available data.

Figures 2 and 4 demonstrate that we can successfully learn the critical time window of

R(t) = 1, which, in Santa Clara County, starts as early as March 24 for Ca =3.25 days,

on March 27 for Ca = 6.5 days, and on April 4 for Ca = 13.0 days. Our findings are con-

sistent with the observation that the basic reproduction number will be over-estimated if

the asymptomatic group has a shorter generation interval, and underestimated if it has a

longer generation interval than the symptomatic group 33. Naturally, these differences are

less pronounced under current conditions where the effective reproduction number is low

and the entire population has been sheltering in place for ten weeks. It will be interesting

to see if the effects of asymptomatic transmission become more visible as we gradually

relax the current constraints and allow all individuals to move around and interact with

others more freely. Seasonality, effects of different temperature and humidity, and other

unknown factors may also influence the extent of transmission.
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Estimates of the infectious asymptomatic population may vary, but general trends

are similar. Throughout the past months, an increasing number of researchers around

the globe have started to characterize the size of the asymptomatic population to better

understand the outbreak dynamics of COVID-19 22. Two major challenges drive the in-

terest in these studies: estimating the severity of the outbreak, e.g., hospitalization and

mortality rates 12, and predicting the success of surveillance and control efforts, e.g.,

contact tracing or vaccination 14. This is especially challenging now–in almost complete

lockdown–when the differences in transmission dynamics between the symptomatic and

asymptomatic populations are small and difficult to quantify. However, as Figure 2 sug-

gests, these transmission dynamics can have a significant effect on the size of the asymp-

tomatic population: For infectious periods of Ca = 0.5, 1.0, and 2.0 Cs, the maximum

infectious population varies from 0.53% to 0.95% and 1.69%. Interestingly, not only the

sum of the infectious and recovered populations, but also the uncertainty of their predic-

tion, remain relatively insensitive to variations in the infectious period. To explore whether

this is a universal trend, we perform the same analysis for three different locations, Santa

Clara County 3, New York City 5, and Heinsberg 46. The fraction of the symptomatic pop-

ulation in these three locations is νs = 2.44%, 10.15%, and 20.76% and falls right within

the range of reported symptomatic versus estimated total cases 3,4,7,10,13,41–43,46,47,49,52.

Of the three locations we analyzed here, Santa Clara County tested IgG and IgM, New

York City tested IgG, and Heinsberg tested IgG and IgA. While we did include reported

uncertainty on the seroprevalence data, seroprevalence would likely have been higher if
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all three locations had tested for all three antibodies. Despite these differences, the effec-

tive reproduction numbers R(t) and the infectious and recovered populations Is, Ia, and

R in Figure 4 display remarkably similar trends: In all three locations, the effective repro-

duction number R(t) drops rapidly to values below one within a window of about three

weeks. However, the maximum infectious population, a value that is closely monitored

by hospitals and health care systems, varies significantly between 0.95% in Santa Clara

County, 4.07% in New York City, and 3.62% in Heinsberg. An effect that we do not ex-

plicitly address is that immune response not only results COVID-19 antibodies (humoral

response), but also from innate and cellular immunity 18. While it is difficult to measure the

effects of the unreported asymptomatic group directly, and discriminate it precisely from

innate and cellular immunity, mathematical models can provide valuable insight into how

this population modulates the outbreak dynamics and the potential of successful outbreak

control 27.

Simulations provide a window into the outbreak date. Santa Clara County was home

to the first individual who died with COVID-19 in the United States. Although this hap-

pened as early as February 6, the case remained unnoticed until April 22 1. The unex-

pected new finding suggests that the new coronavirus was circulating in the Bay Area

as early as January. The estimated uncertainty on the exposed, symptomatic infectious,

and asymptomatic infectious populations of our model allows us to estimate the initial

outbreak date. Figure 6 indicates that this initial outbreak data is sensitive to the asymp-

tomatic transmission and moves towards later points in time for increasing asymptomatic
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infectious periods: The outbreak dates back to February 10 for Ca = 0.5Cs, around Jan-

uary 20 for Ca = 1.0Cs, and around December 10 for Ca = 2.0Cs. These back-calculated

dates not only confirm the undetected community spreading of COVID-19 before the first

death of an individual with no history of travel on February 6, but also suggest that an

asymptomatic contact period close to Ca = Cs would be more realistic to describe these

early events. These back-calculated early outbreak dates are in line with our intuition that

COVID-19 is often present in a population long before the first official case is reported.

Interestingly, our analysis comes to this conclusion purely based on a local serology anti-

body study 3 and the number of reported cases 40.

Limitations. Our approach naturally builds in and learns several levels of uncertainties.

By design, this allows us to estimate sensitivities and credible intervals for a number of

important model parameters and discover important features and trends. Nevertheless, it

has a few limitations, some of them by design, some simply limited by the current avail-

ability of data: First, our current SEIIR model assumes a similar contact rate β(t) for

symptomatic and asymptomatic individuals. While we can easily adjust this in the model

by defining individual symptomatic and asymptomatic rates βs(t) and βa(t), we currently

do not have data about the temporal evolution of the hidden asymptomatic infectious pop-

ulation Ia(t) and longitudinal large population antibody studies would be needed to ap-

propriately calibrate βa(t). Second, the ratio between the symptomatic and asymptomatic

populations νs : νa can vary over time, especially, as we have shown, if both groups dis-

play notably different dynamics, in our model represented through Cs and Ca. Since this
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can have serious effects on the overall reproduction number R(t), and with it on required

outbreak control strategies, it seems critical to perform more tests and learn the dynam-

ics of the fractions νs(t) and νa(t) of both groups. Third, and this is not only true for our

specific model, but for COVID-19 forecasts in general, all predictions can be sensitive to

the amount of testing in time. As such, they crucially rely on testing policies and testing

capacities. We expect to see a significant increase in the symptomatic-to-asymptomatic,

or rather detected-to-undetected, ratio as we move towards systematically testing larger

fractions of the population and more and more people who have no symptoms at all. The

intensity of testing increased significantly in all locations during our simulation period. For

example, in Santa Clara County, testing was extremely limited until early April, increased

substantially in the first three weeks of April, and even more after. Including limited testing

and more undocumented cases during the early outbreak would shift the case distribu-

tion towards earlier days, result in lower Ca values, and predict an even earlier outbreak

date. Fourth, while we have included uncertainty in the seroprevalence data, the three

locations we analyzed here tested different types of antibodies and had different sampling

procedures. Seroprevalence could have been higher if all three locations had tested for

the same three antibodies and data may differ depending on biases introduced by the

sampling procedure. Finally, our current model does not explicitly account for innate and

cellular immunity. If the fraction of the population with innate and cellular immunity is

substantially high, we would anticipate a smaller susceptible population and a larger and

earlier protective immunity overall. These, and other limitations related to the availability
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of information, can be easily addressed and embedded in our model and will naturally

receive more clarification as studies and data become available in the coming months.

Conclusions.

The rapid and devastating development of the COVID-19 pandemic has raised many open

questions about its outbreak dynamics and unsuccessful outbreak control. From an out-

break management standpoint–in the absence of effective vaccination and treatment–the

two most successful strategies in controlling an infectious disease are isolating symp-

tomatic infectious individuals and tracing and quarantining their contacts. Both critically

rely on a rapid identification of infections, typically through clinical symptoms. Recent

antibody prevalence studies could explain why these strategies have largely failed in con-

taining the COVID-19 pandemic: Increasing evidence suggests that the number of unre-

ported asymptomatic cases could outnumber the reported symptomatic cases by an order

of magnitude or more. Mathematical modeling, in conjunction with reported symptomatic

case data, antibody seroprevalence studies, and machine learning allows us to infer, in

real time, the epidemiology characteristics of COVID-19. We can now visualize the invis-

ible asymptomatic population, estimate its role in disease transmission, and quantify the

confidence in these predictions. A better understanding of asymptomatic transmission will

help us evaluate strategies to manage the impact of COVID-19 on both our economy and

our health care system.
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Methods

Epidemiology modeling. We model the epidemiology of COVID-19 using an SEIIR

model with five compartments, the susceptible, exposed, symptomatic infectious, asymp-

tomatic infectious, and recovered populations. Figure 7 illustrates our SEIIR model, which

is governed by a set of five ordinary differential equations,

Ṡ = −S [ βs Is + βa Ia ]

Ė = +S [ βs Is + βa Ia ] − αE

İs = + νs αE − γs Is

İa = + νa αE − γa Ia

Ṙ = + γs Is + γa Ia ,

(1)

where the fractions of all five populations add up to one, S+E+Is+Ia+R = 1. We assume

that both the symptomatic group Is and the asymptomatic group Ia can generate new

infections. We introduces these two groups as fractions νs and νa of the total infectious

group I,

I = Is + Ia with Is = νs I and Ia = νa I where 0 ≤ νs, νa ≤ 1 and νs + νa = 1 .

(2)

We postulate that the two infectious groups Is and Ia have the same latent period A =

1/α, but can have individual contact periods Bs = 1/βs and Ba = 1/βa to mimic their

different community spreading, and individual infectious periods Cs = 1/γs and Ca = 1/γa

to mimic their different likelihood of isolation. From the infectious fractions (2), we can

derive the overall contact and infectious rates β and γ from their individual symptomatic
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Figure 7: SEIIR epidemiology model. The SEIIR model contains five compartments

for the susceptible, exposed, symptomatic infectious, asymptomatic infectious, and re-

covered populations. The transition rates between the compartments, β, α, and γ are

inverses of the contact period B = 1/β, the latent period A = 1/α, and the infectious

period C = 1/γ. The symptomatic and asymptomatic groups have the same latent period

A, but they can have individual contact periods Bs = 1/βs and Ba = 1/βa and individ-

ual infectious periods Cs = 1/γs and Ca = 1/γa. The fractions of the symptomatic and

asymptomatic subgroups of the infectious population are νs and νa. We assume that the

infection either goes through the symptomatic or the asymptomatic path, but not both for

one individual.

and asymptomatic counterparts, βs, βa, γs, and γa,

β = νs βs + νa βa and γ = νs γs + νa γa . (3)

Similarly, we can express the overall contact and infectious periods B and C in terms of

their symptomatic and asymptomatic counterparts, Bs, Ba, Cs, and Ca,

B =
BaBs

νsBa + νaBs

and C =
CaCs

νsCa + νaCs

. (4)

Naturally, the different dynamics for the symptomatic and asymptomatic groups also affect

the basic reproduction number R0, the number of new infections caused by a single one
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individual in an otherwise uninfected, susceptible population,

R0 =
C

B
=
CaCs

BaBs

νsBa + νaBs

νsCa + νaCs

=
νs βs + νa βa
νs γs + νa γa

=
β

γ
. (5)

For a large asymptomatic group νa → 1, the basic reproduction number approaches the

ratio between the infectious and contact periods of the asymptomatic population, R0 →

Ca/Ba, which could be significantly larger than the basic reproduction number for the

symptomatic group, R0 = Cs/Bs, that we generally see reported in the literature. To

characterize the effect of changes in social behavior and other interventions that may

affect contact, we assume that the contact rate β(t) can vary as a function of time 29, but

is the same for the symptomatic and asymptomatic groups,

β = βs = βa = β(t) such that R(t) =
C

B(t)
=

CaCs

[νsCa + νaCs]B(t)
=

β(t)

νs γs + νa γa
=
β(t)

γ
.

(6)

This introduces a time-varying effective reproduction number R(t), which is an important

real time characteristic of the current outbreak dynamics. For the special case when the

dynamics of the symptomatic and asymptomatic groups are similar, i.e., βs = βa = β and

γs = γa = γ, we can translate the SEIIR model (1) into the classical SEIR model (7) with

four compartments, the susceptible, exposed, infectious, and recovered populations 28.

For this special case, we can back-calculate the symptomatic and asymptomatic groups

from equation (7.3) as Is = νs I and Ia = νa I. Figure 8 illustrates the SEIR model, which
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Figure 8: SEIR epidemiology model. The SEIR model contains four compartments

for the susceptible, exposed, infectious, and recovered populations. The transition rates

between the compartments, β, α, and γ are inverses of the contact period B = 1/β, the

latent period A = 1/α, and the infectious period C = 1/γ. If the transition rates are similar

for the symptomatic and asymptomatic groups, the SEIIR model simplifies to the SEIR

model with Is = νsI and Ia = νaI.

is governed by a set of four ordinary differential equations 20,

Ṡ = − β SI

Ė = + β SI − αE

İ = + αE − γ I

Ṙ = + γ I .

(7)

We draw the daily number of confirmed cases for Santa Clara County, CA, USA 40, New

York City, NY, USA 31, and Heinsberg, NRW, Germany 19, and scale the number of re-

ported cases by the total population N to obtain the relative detected population D̂(t).

The day on which the relative detected population passed the pandemic outbreak thresh-

old, D̂(t) > 0.001%, marks day 0 and the beginning of our simulation. From this day on,

we calculate the simulated detected population, D(t) = Is(t) + Rs(t) with Ṙs(t) = γs Is(t)

and compare it against the relative detected population D̂(t).

Uncertainty quantification. Our SEIIR model uses the following set of parameters,

ϑ = {A,Cs, Ca, νs, β(t), E0, Is0, Ia0, σ }. To reduce the set of unknowns, we fix the la-
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tency period A = 2.5 days and and the symptomatic infectious period Cs = 6.5 days

25,26,39. Since the asymptomatic infectious period Ca is unreported, we study three cases

with Ca : Cs = 0.5, 1.0, and 2.0, resulting in infectious periods of Ca = 3.25, 6.5, and

13.0 days. We assume that the symptomatic fraction of the infectious group, νs = Is/I,

is normally distributed. For Santa Clara County, on April 3, 2020, there were 956 de-

tected confirmed cases 40, and an antibody serology study estimated the number of total

cases to 25,000 to 91,000 (95% CI) 3 resulting in νs = 2.43% (95% CI: 1.05%-3.82%).

For Heinsberg, between March 31 and April 6, 2020, the detected confirmed cases made

up 3.10% of the population 19, and a local antibody prevalence study estimated the frac-

tion of the total cases to 12.30% to 19.00% (95% CI) 46 resulting in νs = 20.76% (95%

CI: 16.32%-25.20%). For New York City, on May 2, 2020, the detected confirmed cases

made up 2.02% of the population 31, and a local large-scale antibody testing survey es-

timated the fraction of the total cases to 19.90% 5 resulting in νs = 10.15% (95% CI:

6.37%-13.93%), where we assume the 95% confidence width as the weighted average

of the relative confidence widths for Santa Clara County and Heinsberg since the New

York City credible interval was unreported. We estimate the remaining parameters in-

cluding the time-varying contact rate β(t), the initial exposed population E0, and the initial

symptomatic and asymptomatic infectious populations Is0 and Ia0 using Bayesian infer-

ence. For the time-varying contact rate β(t), we set a log-Gaussian random walk prior,

which we construct with weakly informative priors with a drift µRW and a daily step width

σRW. For the initial symptomatic infectious population Is0, we set a weakly informative log-
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normal prior distribution with a mean equal to the amount of detected confirmed cases on

day 0 and a standard deviation equal to one. We express the initial asymptomatic infec-

tious population as Ia0 = [ 1−νs ]/νs Is0, and approximate the initial exposed population as

E0 = [A/Cs ] [ Is0 + Ia0 ]
9. Table 1 summarizes the choice of our priors.

Table 1: Prior distributions for SEIIR model parameters.

Parameter Interpretation Distribution Ref.
normal(0.0243,0.0071); bounds [0.0105,0.0382] 3

νs symptomatic fraction normal(0.1015,0.0193); bounds [0.0637,0.1393] 5

normal(0.2076,0.0227); bounds [0.1632,0.2520] 46

A latent period fixed; 2.5 days 25,26,36

Cs infectious period fixed; 6.5 days 26,39

Ca infectious period fixed; 3.25 or 6.5 or 13.0 days 26,39

log(β(t)) dynamic contact rate Gaussian random walk(µRW, σRW)
µRW drift normal(µ = 0.0, σ = 1.0)
σRW daily step width half-normal(σ = 0.02)
E0 initial exposed determinstic([A/Cs ] [ Is0 + Ia0 ])
Is0 initial symptomatic log-normal(D̂(t = 0), 1.0)
Ia0 initial asymptomatic deterministic([ 1− νs ]/νs Is0)
σ likelihood width half-Cauchy(β = 1)

For each parameter set, we deterministically calculate the time series of each com-

partment using an explicit time integrator. For each point in time, we calculate the detected

cases, D(t) = Is(t)+Rs(t) with Ṙs(t) = γs Is(t). We quantify the likelihood of the parameter

set and model outcome in correlation to the reported cases D̂(t) 19,31,40, using Student’s

t-distribution,

p(D̂(t) |D(t,ϑ)) ∼ studentTν=4(mean = D(t,ϑ); width = σ ). (8)

We choose this distribution because it resembles a Gaussian distribution and makes the
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Markov-Chain Monte Carlo more robust with respect to outliers 6,24. Here, σ represents

the width of the likelihood p(D̂(t) |ϑ) between the time-varying reported and the modeled

symptomatic populations. Using Bayes’ rule, we compute the posterior distribution of the

parameters 35,37 to account for the prior knowledge on the parameters and the reported

confirmed cases themselves,

p(ϑ | D̂(t)) =
p(D̂(t) |D(t,ϑ)) p(ϑ)

p(D̂(t))
. (9)

Since we cannot describe the posterior distribution over the model parameters ϑ analyti-

cally, we adopt approximate-inference techniques to calibrate our model on the available

data. We use the NO-U-Turn sampler (NUTS) 21, which is a type of Hamiltonian Monte

Carlo algorithm as implemented in PyMC3 38. We use four chains, and the first 500 sam-

ples serve to tune the sampler and are later discarded. We use the subsequent 1000

samples as the posterior distribution for the parameters ϑ. From the converged posterior

distribution, we sample multiple combinations of parameters that describe the time evolu-

tion of reported cases. Using these posterior samples, we quantify the uncertainty of each

parameter based on the reported case data. As such, each parameter set provides a set

of values for the initial exposed population E0, the initial symptomatic and asymptomatic

populations Is0 and Ia0, the symptomatic fraction νs, and the time evolution of the contact

rate β(t). From these values, we quantify the effective reproductive number R(t) and the

time evolution of the susceptible, exposed, symptomatic infectious, asymptomatic infec-

tious and recovered populations, S(t), E(t), Is(t), Ia(t), and R(t) and report their values

with the associated 95% credible interval.
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Forecasting. From the posterior distributions, for the three asymptomatic infectious pe-

riods Ca = 3.25, 6.5 and 13.0 days, we predict the COVID-19 outbreak dynamics from

mid May to mid June. As a forecasting scenario, we assume a gradual relaxation of the

current public health interventions that translates into a 10% increase in the current con-

tact rate β(t). With this projected new β(t), we predict the daily increments in each SEIIR

compartment. To quantify the number of hospital and intensive care unit beds needed

for this scenario, we introduce the fraction of symptomatic individuals that requires hos-

pitalization νh and the fraction of hospitalized individuals that requires intensive care νc

30,36. Since the hospitalization and intensive care fractions νh and νc strongly depends on

the local testing frequency and age demographics, we learn these fractions as location-

dependent parameters from the reported hospitalizations and intensive care unit needs

40. Specifically, we assume a mean hospitalized period of four days and a mean intensive

care unit period of ten days 39 and use a Nelder-Mead optimization algorithm 16 to find the

most probable νh and νc fractions.

Estimating the outbreak date. For each sample from the posterior distribution, we use

the estimated initial exposed population E0 and the estimated initial asymptomatic infec-

tious population Ia0 to estimate the date of the very first COVID-19 case in Santa Clara

County 40. Specifically, for each parameter set, we create an SEIIR model and assume

that the outbreak begins with one single infectious individual. We fix the latency and symp-

tomatic infectious periods to A = 2.5 days and Cs = 6.5 days and the three asymptomatic

infectious periods Ca = 3.25, 6.5 and 13.0 days. For each Ca case and posterior sample

35

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.23.20111419doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.23.20111419
http://creativecommons.org/licenses/by/4.0/


for the exposed, symptomatic infectious, and asymptomatic infectious population size at

day 0, on March 2, 2020, we use the Nelder-Mead optimization method 16 to find the most

probable outbreak origin date. Specifically, we solve the SEIIR model forward in time us-

ing an explicit time integration, starting from various start dates before March 2, 2020,

and iteratively minimize the difference between the computed exposed, symptomatic, and

asymptomatic infectious populations and the sample’s actual exposed, symptomatic, and

asymptomatic infectious populations. We concomitantly fit a static contact rate parameter

β which is bounded between zero and the posterior sample’s estimated contact rate on

day 0, β(0). Repeating this process for each sample of the Bayesian inference gener-

ates a distribution of possible origin dates. From this distribution, we compute the most

probable origin date and its uncertainty.
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Hübinger, M. Exner2, R.M. Schmithausen, M. Schmid, G. Hartmann. Infection fatality

rate of SARS-CoV-2 infection in a German community with a super-spreading event.

medRxiv doi:10.1101/2020.05.04.20090076.

47. S. Stringhini, A. Wisniak, G. Piumatti, A.S. Azman, S.A. Lauer, H. Baysson, D. De

Ridder, D. Petrovic, S. Schrempft, M. Kailing, I. Arm-Vernez, S. Yerly, O. Keiser,

S. Hurst, K. Posfay-Barbe, D. Trono, D. Pittet, L. Getaz, F. Chappuis, I. Eckerle,

N. Vuilleumier, B. Meyer, A. Flahault, L. Kaiser, I. Guessous. Repeated seropreva-

44

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.23.20111419doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.23.20111419
http://creativecommons.org/licenses/by/4.0/


lence of anti 1 -SARS-CoV-2 IgG antibodies in a population-based sample. medRxiv

doi:10.1101/2020.05.02.20088898.

48. B. Tang, F. Xia, N.L. Bragazzi, Z. McCarthy, X. Wang, S. He, X. Sun, S. Tang, Y.

Xiao, J. Wu. Lessons drawn from China and South Korea for managing COVID-19

epidemic: insights from a comparative modeling study. Bulletin of the World Health

Organization. doi: http://dx.doi.org/10.2471/BLT.20.257238.

49. C. Thompson, N. Grayson, R.S. Paton, J. Lourenco, B.S. Penman, L. Lee. Neu-

tralising antibodies to SARS coronavirus 2 in Scottish blood donors – a pi-

lot study of the value of serology to determine population exposure. medRxiv

doi:10.1101/2020.04.13.20060467.

50. T.A. Treibel, C. Manisty, M. Burton, A. McKnight, J. Lambourne, J.B. Augusto,

X. Couto-Parada, T. Cutino-MOguel, M. Noursadeghi, J.C. Moon. COVID-19:

PCR screening of asympotmatic healthcare workers at London hospital. Lancet.

doi:10.1016/S0140-6736(20)31100-4.

51. A. Viguerie, G. Lorenzo, F. Auricchio, D. Baroli, T.J.R. Hughes, A. Patton, A. Reali, T.E.

Yankeelov, A. Veneziani. Simulating the spread of COVID-19 via a spatially-resolved

SEIRD model with heterogeneous diffusion. Oden Institute Report 20-09, Austin.

52. X. Wu, B. Fu, L. Chen, Y. Feng. Serological tests facilitate identification of asymp-

tomatic SARS-CoV-2 infection in Wuhan, China. Journal of Medical Virology.

doi:10.1002/jmv.25904.

45

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.23.20111419doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.23.20111419
http://creativecommons.org/licenses/by/4.0/

