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Abstract

The recent spread of COVID-19 across the U.S. led to concerted efforts by states

to “flatten the curve” through the adoption of stay-at-home mandates that en-

courage individuals to reduce travel and maintain social distance. Combining

data on changes in travel activity with COVID-19 health outcomes and state pol-

icy adoption, we characterize nationwide changes in mobility patterns, isolate the

portion attributable to statewide mandates, and link these reductions to changes

in COVID-19 health outcomes. We find evidence of dramatic nationwide declines
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in mobility prior to any statewide mandates, beginning early in a state’s outbreak.

Once states adopt a mandate, we estimate further mandate-induced declines be-

tween 2.8 and 6.5 percentage points across methods. Using previous changes in

mobility, we find significant effects on current mortality and morbidity, with 1% re-

ductions in visits to non-essential businesses weeks prior being associated with 9.2

fewer deaths per 100 million per day, corresponding with over 74,000 lives saved

nationwide for the months of March and April - nearly 1.3 times the actual deaths

during these months. These averted deaths correspond with estimated economic

benefits between $249-$745 billion for observed behavioral changes in March and

April. These estimates represent a lower bound of direct health benefits, as they do

not account for spillovers or undercounting of COVID-19 mortality. Our findings

indicate that statewide policies reduced travel and helped attenuate the negative

consequences of COVID-19. Further, substantial reductions in mobility prior to

state-level policies convey important policy implications for re-opening.

Introduction

Since December 2019, the novel coronavirus SARS-CoV-2 (COVID-19) has spread rapidly

around the world and in the U.S., prompting dramatic policy responses. Local, state,

and national governments around the world have an extensive set of policy instru-

ments with which to fight the pandemic and limit the virus’ impact on their con-

stituents. As many regions have exhibited exponential growth in coronavirus cases

[26], policymakers are increasingly implementing aggressive stay-at-home mandates

to reduce transmission through human interaction in order to “flatten the curve” [45]

[21]. As of March 31, the U.S. had the highest number of confirmed cases (more than
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67% more than the next country) with at least one resident of every state affected [64].

Improving our understanding of how existing stay-at-home policies reduce travel ac-

tivity and ultimately mitigate negative health consequences of the pandemic will help

local and state policymakers determine the optimal policies to help “flatten the curve”

and quell the spread of COVID-19. To investigate this, we combine data on human

mobility with state policy variation and health outcomes, allowing us to determine

the reductions in distance traveled, visits to non-essential businesses, and human en-

counters, and ultimately relate these to changes in hospitalizations and deaths directly

attributable to mobility changes and stay-at-home mandates.

While the benefits of non-pharmaceutical interventions (NPI), such as quarantin-

ing infected households, closing schools, and banning social events or large gatherings

to reduce infection rates has largely been informed by mathematical models [35], some

anecdotal and historical evidence supports their efficacy. In California’s San Francisco

Bay Area, the first area of the country to implement stay-at-home mandates, doctors

reported “fewer cases than expected” after two weeks of social distancing [39]. Anal-

ysis of internet-connected thermometers suggests that new fever rates on March 23

were below those at the start of the month, while state hospitalization rates showed a

commensurate decline in growth rates [44]. Washington state officials reported simi-

lar reductions in COVID-19 transmission as a result of the state’s containment strate-

gies [9]. Exploration of death rates and NPI rollout in 17 U.S. cities during the 1918

influenza pandemic support these claims, finding that implementation of multiple so-

cial distancing practices intended to reduce infectious contacts early in the outbreak

led to 50% lower peak death rates and flatter epidemic curves relative to cities that

did not implement such policies [35]. Gaining insight into the effectiveness of these
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stay-at-home mandates is critical for understanding the benefit of making the consid-

erable economic sacrifices required to enact such policies. Even before mandates lim-

ited economic activity, GDP forecasts suggested an economic contraction in the U.S. of

24% [42]. Concerns over these costs prompted comments from the executive branch re-

garding relaxation of restrictions and allowing non-essential businesses to reopen [52],

prompting opposition from public health experts [31, 43] and economists [13, 36].

Recent simulations provide further insight into the benefits of social distancing.

While epidemiological models of the U.K. and U.S. suggest that techniques for miti-

gating exposure of those most at risk may drastically reduce peak load on the health-

care system and cut COVID-19 deaths by half, such techniques on their own might

not be enough to prevent the healthcare system from being overwhelmed. Some ar-

gue that, in this case, a combination of social distancing, self-quarantine of infected

people, and suspension of schools would need to be maintained until a vaccine is

available to prevent a rebound [28]. Other experts call for widespread testing coupled

with digital contact tracing as a means to reduce viral spread while minimizing harm-

ful social and economic side-effects [30]. Simulations based on a moderate mitigation

policy (comprising 7-day isolation following any symptoms, a 14-day quarantine for

the household, and social distancing for all citizens over age 70), had it been imple-

mented in late March, find that such policies would have reduced potential U.S. deaths

by 1.76 million [34]. Given that this simulated policy is less stringent and maintained

for a shorter duration than many of the policies currently observed, the actual benefits

(either directly from reduced COVID-19 deaths or indirectly due to decreased trans-

mission of other illnesses) from existing stay-at-home mandates could be substantially

larger.
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This paper contributes to the existing literature by looking first at mobility pat-

terns during the pandemic across states and time and second by providing the first

empirical evidence of stay-at-home policies’ effectiveness. These mandates combine

closures of non-essential businesses with instructions for all residents to remain at

home except for the purchase of necessities (i.e. groceries or medicine), with the goal

of limiting “unnecessary person-to-person contact” [48] and to “mitigate the impact

of COVID-19” [15]. We examine changes in travel behavior in response to these so-

cial distancing policies due to the pandemic across the entire United States, estimate

the portion of these reductions attributable to early state stay-at-home mandates, and

correlate reduced travel behavior with changes in health outcomes weeks later.

To estimate the changes in travel activity and social distancing since the spread of

COVID-19 in the United States, we use data on changes in average distance traveled,

visits to non-essential businesses, and unique human encounters per square kilome-

ter by day and by state [63] relative to pre-COVID-19 baseline levels. Through data

visualization and descriptive event studies, we show that tremendous nationwide re-

ductions in travel activity levels occurred prior to statewide mandates, suggesting res-

idents were already responding to local policies and perceived risks. By the time the

average adopter had implemented its statewide mandate, average travel distances had

already fallen by 38 percentage points, the human encounter rate by 76 percentage

points, and non-essential visits by 52 percentage points, providing evidence of exten-

sive social distancing occurring even before statewide orders requiring such behavior.

We then estimate econometric models that isolate the effect of statewide man-

dates by comparing differences before and after mandate implementation and be-

tween early-adopting and control states. Identification of the stay-at-home policy ef-
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fect originates from residual variation in changes to mobility measures relative to a

state-specific flexible trend and a day-to-day flexible national trend, and between man-

date and non-mandate states. Using this panel fixed effects control structure, we test

whether states’ stay-at-home policies induce significant changes in mobility and daily

human encounters in the United States once the mandate is implemented, relative to

the change in non-mandate states.

After presenting results from the difference-in-differences model, we employ a

weighted event study approach, following [10]. This approach combines a partially

pooled synthetic control method with an outcome model to obtain an improved pre-

period outcome match between treated and control states in a doubly-robust manner.

Results suggest similar effects as the difference-in-differences estimates, supporting

the finding that statewide mandates induced further reductions in travel activity even

after considerable pre-mandate reductions.

Across both methods, we find evidence that residents reduced daily activity, even

before mandates, and that patterns differ by state. Moreover, we estimate significant

reductions in travel and increased social distance in response to early stay-at-home

mandates. We estimate a 4.1 percentage point reduction in average distance traveled,

a 5.2 percentage point decline in non-essential visits, and a 4.7 percentage point re-

duction in the daily rate of human encounters once early stay-at-home mandates were

implemented in the early adoption states of California, New York, Illinois, and New

Jersey. These estimated “mandate effects” represent approximately one-tenth of the

pre-mandate reductions in mobility. Focusing on all the mandate states, we again find

evidence of mandate-induced behavioral responses. These reductions come in addi-

tion to the considerable pre-mandate reductions, and are smaller compared to those
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following early mandates.

Finally, we merge the daily behavior changes with data on changes in daily state-

level death rates and hospitalization rates of patients from COVID-19 [22] to provide

an early indication of whether current health outcomes are informed by past behav-

ioral responses. We estimate lagged specifications to test whether past changes in the

three mobility measures (one, two and three weeks prior)i have an effect on current

health outcomes. In doing so, we control for state-specific trends in pandemic trajecto-

ries over time, and also for day-to-day changes common to all states and state-specific

factors affecting health outcomes for all states.We also distinguish between early man-

date states and all the mandate states. We find evidence that reduced travel does

ultimately affect health outcomes, with reduced daily COVID-19 deaths of 9.2 per 100

million (0.092 per million) per day associated with a one percentage point reduction

in non-essential visits three weeks prior. Calculations of the resulting economic bene-

fits suggest savings between $249 and $745 billion due to avoiding over 74,000 deaths

from COVID-19 during the months of March and April. Given that the actual death

toll for March and April was 57,943, our estimate of 74,415 lives saved nationwide is

nearly 1.3 times the actual deaths that occurred. In other words, without the observed

behavioral changes, deaths would have been nearly 2.3 times what they were. We also

find evidence of a relationship between reduced travel distance and COVID-19 mor-

tality in early adoption states, suggesting economic benefits of $23.1-$99.1 billion and

providing evidence that earlier implementation of non-pharmaceutical interventions

may have increased the effectiveness of mobility reductions in reducing the spread of

the pandemic.

To our knowledge, ours is the first paper that investigates mobility during the
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COVID-19 pandemic and provides evidence of reduced travel activity and social dis-

tancing and of health benefits associated with improved social distancing and reduced

travel activity resulting from stay-at-home mandates and pre mandate mobility de-

clines. We contribute to the overall understanding of the direct health benefits of

current COVID-19 policies and provide evidence that these policies are having the

intended effect of reducing social interactions and are correlated with reductions in

negative health consequences from the current pandemic. Our findings that there are

substantial reductions in mobility prior to state-level policies convey important policy

implications.

Materials and Methods

Mobility Data

We obtain travel activity and social distancing data from the analytics company Un-

acast [63]. To understand how well different communities are social distancing, Un-

acast uses cellular location data for 15-17 million identifiers per day to construct three

measures of behavior in response to COVID-19 policies [60]. Each measure is aggre-

gated to the state-by-day level and is defined as the daily percentage point change

relative to that weekday’s average for the four weeks prior to March 8 (pre-COVID-

19 period). While all data is published directly to their Social Distancing Dashboard

in the form of figures and maps [60], we obtained the balanced panel of state-by-day

observations for the period of February 24 through April 29, 2020 directly from Un-

acast. Unacast receives location data from mobile devices through authorized appli-

cations, Wi-Fi or Bluetooth connections, and A-GPS positions. Obtained information

8



includes the location of the device at a given point in time (latitude, longitude, and

elevation) along with the mobile device make, model, and operating system, the cor-

responding application gathering the data, GPS accuracy value, and the direction and

rate of travel. Each state-day observation we use is calculated using position informa-

tion. The three measures we use together paint a comprehensive picture of behavior

changes in response to state stay-at-home mandates. See Appendix A for more de-

tails on the data collection process, the equations used to construct each measure, and

further discussion on sample composition and potential biases or measurement errors.

The first measure we use is the change in average distance traveled ( ˙ADT ), which

captures changes in both the number of trips and the length of trips taken outside

the home relative to the pre-COVID-19 baseline period. Reductions in ADT following

mandate implementation would reflect average compliance with states’ guidance to

work from and stay at home except for essential activities. A value of ˙ADT it = 0 indi-

cates that the average distance traveled for individuals in state i on date twas identical

to the pre-COVID-19 distance for that day of the week. A value of−7 conveys that, on

average, devices assigned to the state traveled an average distance 7 percentage points

shorter than during the pre-COVID-19 baseline. This approach allows us to account

for differences in travel potential by day of week, making sure our comparison accu-

rately reflects the average conditions for that day of the week prior to behavior and

policy changes due to COVID-19.

The second measure is the change in visits to non-essential businesses, defined as

Non-Essential Visits ( ˙NEV ). To the extent that non-essential businesses are closed

following stay-at-home mandates, we expect to see reductions in the number of trips

residents take to these types of retail or service businesses. Our utilized measure of

9



the change in visits to non-essential businesses (ṄEV ) offers a similar comparison

targeted at travel to the types of businesses most heavily impacted by stay-at-home

mandates. Businesses likely to be deemed “non-essential” include department stores,

spas and salons, fitness facilities, event spaces, and many others. To improve accu-

racy, non-essential businesses are defined according to group definitions in both the

Unacast SDK and the OpenStreetMaps POI’s (see the data appendix for a table with

the complete list of included business types). The metric ṄEV is constructed simi-

larly to ȦDT , replacing the average distance traveled per day with the average visits

to non-essential businesses and the baseline is again constructed as the average for a

given weekday in the pre-COVID-19 period for a given state. A value of ˙NEV it = 2

indicates a two percentage point increase in visitations to non-essential businesses rel-

ative to baseline norms for that weekday in a given state.

Finally, we use changes in the rate of unique human encounters ( ˙ENC) as a mea-

sure of social distancing. Following [50], ( ˙ENC) is calculated as the rate of unique

human encounters per square kilometer, and is initially normalized relative to the na-

tional median over the four weeks prior to March 8. To match measurement of the

other activity variables we further adjust the rate of encounters as the change relative

to the state’s mean change from the national average for the period February 24 to

March 8.1 An encounter rate equal to that of the state baseline rate results in a value of

ENCit = 0, while a value of ENCit = −12 indicates a 12 percentage point reduction

in the encounter rate for state i on date t relative to the state’s pre-COVID-19 level.

In Table 1, we provide summary statistics for each of the three Unacast data mea-

sures by column, with rows organized into three panels. Each panel reports the av-

1For data quality reasons, we drop observations for Washington D.C. from our analysis of human
encounter rates.
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erages, first and third quartiles, and medians for each mobility measure along with

the count of observations during the week.The first panel corresponds to the last week

in February (February 24-29), the first week for which data are available. The middle

panel is for the month of March, and the bottom panel is for the month of April up to

April 29th, 2020.

Table 1: Summary Statistics on Travel Behavior and Social Distancing

˙ADT ˙NEV ˙ENC
Distance Traveled Non-Essential Visits Human Encounters

February 24th to Feb 29th

Average 2.49 -0.71 2.80
25th Percentile 0.11 -4.30 -10.44
Median 2.37 -0.66 0.39
75th Percentile 4.68 2.25 15.15
Number of Observations 408 408 400

March 1 to March 31st

Average -19.55 -31.86 -46.49
25th Percentile -33.79 -55.78 -74.70
Median -17.63 -28.84 -58.02
75th Percentile -3.66 -7.09 -15.77
Number of Observations 1428 1428 1400

April 1 to April 29th

Average -40.92 -59.02 -78.85
25th Percentile -47.87 -65.44 -85.25
Median -39.98 -58.92 -80.53
75th Percentile -33.33 -53.13 -73.58
Number of Observations 1530 1530 1500

Total Sample

Average -26.59 -40.43 -55.22
Median -30.93 -51.75 -71.59
Standard Deviation 19.98 26.23 34.87
Number of Observations 3366 3366 3300
Source: Unacast. This table reports summary statistics for the changes in Average Distance Traveled (column 1),
Non-Essential Visits (column 2) and Human Encounter Rate (column 3) Data from February 24th to April 29th.
Each observation is measured at the state-by-day level and represents an aggregate of mobile device-level travel
and social distancing behavior on a given day.

11



In the top panel for the end of February, we see that average distance traveled was

larger than pre-COVID-19 baseline levels by 2.49 percentage points. In column 2, we

see that non-essential visits were 0.71 percentage points lower than the pre-COVID-19

baseline, with the rate of human encounters 2.8 percentage points higher in column

3. For the month of March, all three mobility measures experience large decreases rel-

ative to pre-COVID-19 levels, attesting to drops in average mobility and also social

interactions. In the month of March, at least 75% of the observations experience neg-

ative changes relative to baseline. In particular 75% of the observations have changes

in average distance traveled less than -3.7 percentage points, changes in non-essential

visits less than -7 percent, and changes in encounter rates less than -15.8 percentage

points. Travel reductions become even more dramatic in the month of April, with the

drops in all three measures exceeding in magnitude those in the two previous time

periods.

Our change in distance traveled measure displays very high correlations with travel

data produced by other sources. To investigate the validity of our measures, we com-

pare the Unacast measures with the mobility report measures from Google’s COVID-

19 Community Mobility Reports for the relative change for retail and recreation travel

[33]. For California, we observe a correlation of 0.9689, while for New York we observe

a correlation of 0.9821. The activity measures remain highly correlated when consid-

ering all the states, with Wyoming having the lowest correlation for the change in av-

erage distance traveled and Google retail and recreation measure (correlation of 0.75)

and Mississippi having the lowest correlation between the change in non-essential vis-

its measure and the Google measure (correlation of 0.962). These strong relationships

across data providers suggest that our results are indicative of general mobility pat-
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terns and not spurious results arising from anomalies of our chosen data source.2

Stay-at-Home Mandate Data

To denote periods before or after a state implemented a “stay at home order,” we ob-

tain the date each statewide policy was issued [45] for all fifty states and the District

of Columbia. We define our early adopters as the first four states to implement a stay-

at-home mandate: California, Illinois, New Jersey, and New York. The second group

comprises the 39 late adoption states. The last group comprises the eight remain-

ing states that never implemented statewide mandates: Arkansas, Iowa, Nebraska,

North Dakota, Oklahoma, South Dakota, Utah, and Wyoming. The observed stay-at-

home mandates all consist of a mix of specific non-pharmaceutical interventions; each

observed policy closes or places considerable limits on non-essential businesses and

requires residents to stay at home except for essential activities. Essential services in-

clude grocery stores, gas stations, pharmacies, banks, laundry services, and business

essential to government functions [16]. Throughout this paper, we refer to all man-

dates that implement this combination of policies as a “stay-at-home mandate.”

While we focus our attention on statewide stay-at-home policies, many county and

local policies had already been implemented and were already affecting individual-

level mobility around the country. Six San Francisco Bay Area counties required res-

idents to stay-at-home beginning March 17, two days prior to the statewide man-

date [55]. By mid-March, schools of all levels had begun closing their doors and tran-

sitioning to online instruction. On March 9, Stanford University moved classes online

“to the extent possible,” with Harvard and many other institutions swiftly following

2See the data appendix for all state-specific correlations between the Unacast measures and the retail
and recreation measures from Google’s COVID-19 Community Mobility Reports.
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suit [38]. Further, business leaders including Google, Microsoft, Twitter, Facebook,

and Amazon transitioned some or all of their employees to working remotely well be-

fore statewide mandates entered into effect [7]. As a result, any behavioral response

to statewide stay-at-home mandates represents only a partial response to the suite of

actions and policies undertaken to combat the spread of COVID-19. Our estimated

“mandate effects” that follow therefore capture the behavioral responses specific to

statewide stay-at-home mandates and underestimate the effect of all combined poli-

cies. If local, county, and business policies had already incentivized residents to stay

at home, then we would expect minimal response to later statewide mandates, which

would be reflected in small magnitude estimates in our models. Whatever impact our

empirical methods are able to pick up reflects mobility responses in addition to those

already realized for existing policies.

Health Outcome Data

We obtain information on hospitalizations and deaths due to COVID-19 by state from

the COVID Tracking Project (CVT) [22] for the period of February 24 to May 2, 2020.

CVT obtains data on positive and negative tests, deaths, hospitalizations, and the

counts of patients currently in intensive care units and on ventilators. Outcome data

are obtained directly from the respective public health authorities, supplemented with

additions from press conferences or trusted news sources. As the bulk of data is ob-

tained directly from state public health bodies, CVT represents one of the most trans-

parent and up-to-date source of COVID-19 mortality and morbidity data. We scale the

change in hospitalizations and deaths by state population in 100 millions. We obtain

population data by state from the 2010 U.S. Decennial Census [61].
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While all states report both the change and running total of deaths, reporting of

hospitalizations is less consistent and often incomplete. Appendix Tables 2 to 4 sum-

marize the data quality and coverage for deaths and hospitalizations across all states

and Washington D.C. for states reporting and not reporting hospitalization data, re-

spectively. As of May 2, 37 states report at least two days of hospitalization data,

while 13 states and Washington D.C. report no hospitalization data. Missing states in-

clude three of the first four early adopters: California, Illinois, and New Jersey. While

states consistently report between 30 and 60 days of death data as both daily changes

and running totals, hospitalization data is much more sparse and reported in different

ways by different states. Alaska and Connecticut report hospitalizations as both the

daily change and running total, while the remaining 35 states only report the cumula-

tive number of hospitalizations by date. Hospitalization data coverage ranges from a

minimum of 2 days (Connecticut) to a maximum of 42 days (Colorado, Florida, Mas-

sachusetts, New York, North Dakota, Ohio, and Oklahoma). As we utilize the daily

change per 100 million residents as outcomes of interest in our main analyses, we con-

vert all hospitalization data provided as sums only to the daily change before dividing

by 100 million population.

Health outcome summary statistics are provided in Table 2. Table 2 is structured

like Table 1, presenting summary statistics for death and hospitalization rates per 100

million residents for the periods of February 24 to 29, March 1 to 31, and April 1 to May

2. In the top panel for the end of February, we see that the average death rate across all

states during the last week of February is 1.26 deaths per 100 million, with at least 75%

of the observations reporting death rates of zero. In the middle panel, for the month

of March, the average death rate rises to about 29 deaths per 100 million per day as
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COVID-19 permeates the country. During this period there is extensive heterogeneity

in death rates across states: 50% of the states’ observations during this period indicate

zero deaths. Finally, in the month of April, only 25% of the observations report zero

deaths, with the average death rate for the period roughly 337 deaths per 100 million

per day, and average hospitalization rates near 1080 per 100 million per day.

Table 2: Summary Statistics for Mortality and Morbidity

Death Rate Hospitalization Rate
per 100M per 100M

February 24 to February 29th

Average 1.26
25th percentile 0.00
Median 0.00
75th percentile 0.00
Number Observations 130 0

March 1 to March 31st

Average 28.75 706.63
25th percentile 0.00 113.12
Median 0.00 281.60
75th percentile 15.64 526.44
Number Observations 1307 171

April 1 to May 2nd

Average 336.67 1079.35
25th percentile 0.00 177.42
Median 106.63 491.29
75th percentile 308.69 1044.72
Number Observations 2183 983
Source: COVID Tracking Project (CVT). This table presents summary statistics for the death rates (column 1) and
hospitalization rates (column 2) due to COVID-19 for the period of Feb 24th to May 2nd. Each observation is
measured at the state-by-day level and represents the change in COVID-19 deaths or hospitalizations per 100
million population.

Mortality and morbidity data obtained from CVT correlate strongly with other

sources of COVID-19 health data. We chose CVT as our main source of health out-

come data because they were found to balance transparency with coverage and stood
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out as the most complete source of hospitalization data. We find evidence that the

CVT measure of COVID-19 mortality correlates strongly with comparable measures

obtained from other sources – see the Data Appendix for tables correlating CVT, the

New York Times, and Johns Hopkins’ death rates. This provides evidence for the in-

sensitivity of our health findings to our choice of data source.

While our measures of mortality and morbidity represent the most up-to-date data

available, they are still preliminary and likely represent underestimates of the true

impacts of COVID-19. Widespread lack of access to testing, especially in rural areas

and early on in the U.S. outbreak, means many deaths (especially at-home deaths)

due to respiratory issues caused by COVID-19 may have gone uncounted [14]. As

more information becomes known, state health authorities are likely to update their

reported counts. Because CVT actively updates their data and we pull data directly

from CVT each day, the numbers used in this paper accurately reflect mortality and

morbidity information as is currently known at the time of writing. The true public

health impact of COVID-19 will likely not be known for years to come as reporting

protocol is improved and prior deaths are verified.

Empirical Framework

Descriptive Event Study

To investigate how travel activity and social distancing behavior evolved day-to-day

during the COVID-19 period, we begin by estimating an event study regression for

each mobility measure:
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Ẏsd = α +
42∑

k=−6

βk1{k Days Since First Case}sd + εsd (1)

Here the change in mobility measure Ẏ is expressed as a function of a constant and

a set of 49 indicator variables, equal to one in state s on the date k days since the state’s

first reported case and equal to zero otherwise. The coefficient β−1 is normalized to

zero, such that all estimated coefficients β̂k measure the difference in the predicted

change in mobility outcome Y relative to the day prior to a state’s first case. We re-

port estimates from Eq 1 using event study figures, allowing us to understand how

behavior changes in a state are correlated with the spread of COVID-19 within that

state. As no additional controls are included, these figures merely report differences

in conditional means and provide evidence of substantial changes in mobility patterns

prior to states’ implementation of stay-at-home mandates.

Difference-in-Differences Statistical Model

To determine the effect of statewide stay-at-home mandates on travel activity, we be-

gin by estimating the following model:

Ẏsd = α + βSAHsd + ηs + δd +
3∑
0

γjs t
j + εsd (2)

Here the outcome Ẏsd denotes the change in a given measure of travel activity

( ˙ADT , ˙NEV , or ˙ENC) for state s on date d relative to the baseline level, and is ex-

pressed as a function of a constant α, whether a state has a statewide mandate in ef-

fect, time controls, and state fixed effects. SAH is an indicator equal to one if state

s has a stay-at-home mandate in place on date d and zero otherwise. In the sec-
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tions that follow, we consider the two cases where SAH includes variation for just

the first four states to adopt statewide mandates and for all states that ever adopted

a statewide mandate. The vector of state fixed effects ηs controls for time-invariant

characteristics of states that affect travel behavior, while date fixed effects δd control

for factors affecting travel on a given date common to all states (i.e. executive branch

press conferences or daily changes in nationwide total deaths/hospitalizations). In

our preferred specification, we also include state-specific cubic time trends,
∑3

0 γjs t
j =

γ0s + γ1st+ γ2st
2 + γ3st

3, allowing the effect of time elapsed since February 24 to affect

each state differently in a flexible fashion. ε is an idiosyncratic error comprised of un-

observed determinants of changes in travel activity that are not controlled for by the

variables specified in the linear Eq 2.

The coefficient β measures the difference in the change in average daily travel ac-

tivity for states that have implemented a stay-at-home mandate relative to the change

in activity in states that had yet to implement or never implemented such policies,

after controlling for state and time-varying factors that also correlate with changes in

daily activity. In this way β̂ provides an estimate of the average treatment effect for

treated states (ATT). We estimate the model in Eq 2 using a daily state-level panel data

set on changes in average travel activity by state and day.

This empirical approach allows us to identify the relationship between stay-at-

home mandates and daily changes in each of the three measures while also explicitly

controlling for other confounding factors that are specific to each state or date. The

shares of local population previously working from home or employed are controlled

for with η, while day-to-day changes in activity common to all states – motivated by

new information on the virus’ spread and nationwide media coverage or federal ap-
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peals for social distancing – are controlled for through δ. We include state-specific cu-

bic trends,
∑3

j=0 γjs t
j = γ0s+γ1st+γ2st

2+γ3st
3, allowing the effect of time elapsed since

late February to flexibly affect travel behavior in state s.3 The mandate effect β is iden-

tified under the assumption that, after controlling for the state-specific trends, com-

mon day-to-day trends, and time-invariant state characteristics, stay-at-home man-

dates are as good as random. Equivalently, the day-to-day travel activity changes in

states that had yet to adopt or never adopted a mandate are what the change in travel

would have been for stay-at-home states absent the mandate. Given the time-varying

nature of adoption, we can express this underlying assumption as the weighted aver-

age of parallel trends for each simple two-by-two DD estimators [32]. Our approach is

identified using changes in travel behavior that differ from typical pre-COVID-19 lev-

els for a state and the states average change during the COVID-19 time. A remaining

source of bias would be if the early mandate states were trending differently than the

control states before March 8 in ways that differed from trends after March 8. Stan-

dard errors of the estimated parameters are clustered by state to account for variation

in state policies potentially affecting the magnitude of the error term ε.

Weighting

All empirical results that follow are obtained through unweighted ordinary least squares

(OLS). We choose to report results for unweighted linear regression because we pre-

fer the potential loss in efficiency from using heteroskedasticity-robust standard er-

ror procedures to the implications of a misspecified form of variance with weighted

least squares (by imposing variance proportional to state population). Implicitly OLS

3Because our outcome variables are defined relative to levels from a baseline period not used in esti-
mation, this is equivalent to estimating Eq 2 with data beginning February 24 and including a baseline
fixed effect.
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would assign even weight to each state regardless of population in a two-by-two

difference-in-differences estimand with uniform adoption timing. However, weights

become less straightforward in the panel setting with staggered adoption timing; ap-

plying population weights in this setting will apply additional weighting schemes on

top of existing weights due to variation in policy timing and group comparisons [32].

Further, weighting would not allow us to recover a consistent estimator for the popu-

lation average effect in the presence of over or under-sampling of particular groups in

our state averages [57].

Given that group membership is determined by location of residence, individual

observations within a state are likely not independent and the population of a state

may not substantively influence the variance of the population residual. In this case,

weighting by population could reduce efficiency of the estimator and bias standard

errors [24]. Given an error-components model for single-period individual error terms

of the form

εij = ci + uij

the variance for a particular state’s average error becomes

V ar(vi) = σ2
c +

σ2
u

Ji

where σ2
c represents a group-specific variance and σ2

u the idiosyncratic error, with Ji

the number of devices observed in group i. Given that each observation in our sample

is an aggregation of travel activity conducted by millions of individuals, the second

term will be negligible in comparison to the group-level variance component. In this

case, introducing population weights would exacerbate heteroskedasticity and lead to
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lower precision than in OLS [24]. Here, the number of individuals contained in each

states average is very large and we have no evidence that these sampled individuals

are more or less likely to respond to SAH policies than the average American. Given

the lack of evidence of endogenous sampling, use of population weights in our chosen

control structure would not offer a consistency gain [57]. To allow more transparent

understanding as to how our overall ATT estimate is obtained, we explore the role of

policy timing and group comparisons in informing the DD estimator weights in the

Appendix B. Further, our later use of partially pooled synthetic control weights in a

weighted event study decomposes the ATT by time elapsed since mandate adoption,

while controlling for endogenous treatment timing.

Synthetic Control Method under Staggered Adoption

A primary concern for violation of the difference-in-differences identifying assump-

tion rests on the endogeneity of mandate adoption timing. If states that chose to adopt

mandates early did so due to larger initial case counts or earlier realizations of a first

death from COVID-19, then travel behavior by that states’ residents may have already

been trending differently than that for residents of states that had not yet adopted a

mandate. To account for differences between early and late adoption states, we con-

duct analysis using the weighted event study approach of [10] , which extends the

synthetic control method to the staggered adoption panel setting and the event study

framework that nests within the fixed effects approach employed earlier.

The synthetic control method (SCM), developed by [1], creates a “synthetic” con-

trol group for a single treated unit using weights to balance the treatment and syn-

thetic control groups on pre-treatment outcomes. Because SCM does not require as
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strong a parallel trend assumption as difference-in-differences (now requiring that an

appropriate counterfactual can be obtained using the convex hull of untreated units),

it quickly became a preferred tool of applied researchers. While this offered a clear

advantage for identifying a valid counterfactual, it was not immediately clear how

to extend the approach into panel data settings with multiple treated units receiving

treatment potentially at different points in time.

Partially Pooled Synthetic Control Method

Partially pooled SCM integrates the two most common ad-hoc approaches (applying

synthetic control separately to each treated unit before taking an average across treated

units, and estimating weights to fit the average pre-treatment outcome for all treated

units) in a manner that simultaneously minimizes error arising from both the single-

unit fits and the pooled fit [10]. While the approach does not guarantee perfect balance

of both unit-specific and overall pre-treatment outcomes, it offers a way to minimize

the sources of bias associated with each choice on its own.

Let Yit(1) be the potential outcome for unit i in period t after having received the

treatment, and let Yit(0) be the potential outcome for a unit in the absence of treatment

(i.e. a unit that has yet to receive treatment or never receives the treatment). In our

setting, 43 units eventually adopt a stay-at-home mandate (42 states and Washington

D.C.), and are denoted by Wi = 1. Wi = 0 for the eight states that never adopted

a mandate. We can then express the observed outcome for the units that adopt a

mandate at time Ti as Yit = Yit(0)I{t < Ti} + Yit(1)I{t ≥ Ti} and as Yit = Yit(0) for

the never-mandate states.

In this framework, an estimate for the average treatment effect on the treated (ATT)
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is given by

ATTk =
A

J

J∑
j=1

Yj,Tj+k(1)− Ŷj,Tj+k(0) =
A

J

J∑
j=1

Yj,Tj+k(1)−
N∑
i=1

τ̂ijYi,Tj+k

where k indicates the “event time” elapsed relative to the treatment time Tj , given

by k = t − Tj . Yj,Tj+k(1) is observed for all treated units after mandate adoption,

and following [10] the unobserved potential outcome Ŷj,Tj+k(0) is obtained through a

modified SCM approach using the available donor pool at time Tj + k (units that have

yet to receive treatment or never receive treatment). For treated units j1, ..., jJ , the

N-vector SCM weights τ̂j are the solution to the partially pooled SCM optimization

problem:

min
τ1,...,τJ∈4scm

j

ν

2
qpool(Γ) +

1− ν
2

qsep(Γ) + λ
J∑
j=1

N∑
i=1

f(τij) (3)

In contrast to [1], weights are based solely on lagged outcomes with the potential

addition of the penalization term λ
J∑
j=1

N∑
i=1

f(τij) to promote uniformity.4 qpool is the

mean square error for the average of the pre-treatment periods across all J treated

units when running SCM separately for each unit, and qsep is the equivalent object

when SCM is applied to the “pooled” average of all treated units. ν ∈ [0, 1] is the hy-

perparameter determining the weight given to each SCM approach; a value of ν = 0

corresponds to separate SCM weights while ν = 1 yields weights derived from the

pooled SCM approach. In this way, the partially pooled SCM weights trade off im-

balance resulting from state-specific matches with the pooled imbalance; see [10] for

additional discussion of the balance possibility frontier.

4We set λ = 0 for our estimation because we have a sufficiently large donor pool to obtain pre-
treatment balance.
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The partially pooled SCM approach can obtain a causal estimate of the average

treatment effect on the treated (ATT) under two key assumptions [8]. First, we assume

that a treated unit’s potential outcomes prior to receiving treatment are equal to the

control unit’s potential outcomes: Yit(s) = Yit(0) for t < s. This assumption serves

as a generalization of SUTVA, ruling out interference across states in our setting [54].

Second, we must assume that, for a given unit with Wi = 1, the potential outcomes

following treatment are identical to the observed treated potential outcome: Yit(s) =

Yit(1) for any 0 < s ≤ t . This assumption imposes stability of the treatment effect over

time within a given unit while still allowing {Yit(0), Yit(1)} to vary across units.

Weighted Event Studies

To correct for imperfect pre-treatment balance in partially pooled SCM, we augment

the partially pooled SCM estimator with a fixed effects outcome model and estimate

weighted event studies. Synthetic controls are constructed based on the balance of

residualized pre-treatment outcomes; in this way, the approach builds upon recent

research on doubly-robust estimators with an extension to the staggered adoption set-

ting [2, 5, 6, 10, 20].

The weighted event study obtains the counterfactual for treated unit j, k periods

after adopting a mandate, as

Ŷ aug
j,Tj+k

= m̂ijk +
n∑
i=1

τ̂ ∗ij(Yi,Tj+k − m̂ijk) (4)

Where τ̂ ∗ij are partially pooled SCM weights obtained using residualized outcomes

and m̂ijk is obtained as the uniformly-weighted average of pre-period outcomes, equiv-

alent to augmentation with unit fixed effects. This approach yields a unit-specific ATT
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estimate k periods post-adoption as

ÂTT
aug

jk =

(
Yj,Tj+k −

Tj−1∑
`=1

1

Tj − 1
Yi,Tj−`

)
−

N∑
i=1

τ̂ ∗ij

(
Yi,Tj+k −

Tj−1∑
`=1

1

Ti − 1
Yi,Tj−`

)
(5)

This approach builds upon the robustness properties of the intercept-shifted or de-

meaned SCM estimators in a way that allows for staggered adoption [25, 29]. ÂTT
aug

jk

can be thought of as a doubly-weighted difference in differences estimator, wherein

the change in the treatment unit is obtained as the difference between the treatment

unit’s outcome in period k and its pre-period average, and the change in the control

group is the average for equivalent changes for all donor units, weighted by partially

pooled synthetic control weights. Averaging ÂTT
aug

jk across all treated units at a given

point in event time yields a period-specific treatment effect ÂTT
aug

k that can be thought

of as equivalent to the typical dynamic ATT obtained from an event study design. Av-

eraging across all post-treatment periods yields the overall treatment effect estimate,

ÂTT
aug

. Standard errors are obtained using a jackknife approach [6].

Model for Health Outcomes and Past Changes in Mobility and Encounter Rates

Finally, we consider a distributed lag model specification to empirically test whether

changes in mobility weeks prior have an effect on current health outcomes from COVID-

19. Across models, we control for day-to-day changes common to all states and state-

specific factors affecting health outcomes, as well as state-specific trends affecting

health outcomes, and distinguish between mandate and non-mandate states. We model

daily new COVID 19 deaths and hospitalizations per 100 million residents by state as
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Hsd = α +
3∑

k=1

˙MOBs,−kβ−k + δd +
3∑
j=0

γjs t
j + εsd (6)

Where Hsd is the daily health outcome reported for state s on date d, and ˙MOBs,−k

is the lagged change in the chosen mobility measure (either average distance traveled

˙ADT , non-essential visits ˙NEV , or human encounters ˙ENC). k ∈ {1, 2, 3} so that

˙ADT s,−1, ˙ADT s,−2 and ˙ADT s,−3 are the changes in the average distance traveled in the

previous week, 2 weeks previously, and 3 weeks previsouly, respectively.

In each of the empirical analyses, the coefficient α is a constant,
∑3

0 γjs t
j are state

specific cubic trends controlling for time-variant state characteristics that affect health

outcomes, and δd are date fixed effects controlling for common time shocks measured

relative to the first period. The disturbance εsd are unobserved determinants of health

outcomes that vary over time within a given state that cannot be explained by the flex-

ible trend. For changes in average distance traveled, in Eq 6, the coefficient on ˙ADT s,−3

captures the estimated effects of reducing activity three weeks prior. Inclusion of ad-

ditional lags for one and two weeks prior allows us to estimate a lagged long-term

impact of reducing activity; in this case, the long-term impact of changes in activity

is given by the sum of the three lagged variable coefficients of the lagged changes in

average distance traveled one, two and three weeks prior. Similar interpretation ap-

plies to the models for the other two lagged measures. We estimate the equation for

all states, and then separately for early mandate and for all mandate states.
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Results

Across the United States, COVID-19 upended daily routines. As a result of layoffs,

revised work-from-home guidelines, school closures, family needs, and state policies,

travel behavior has changed dramatically in the U.S. over the last two months. Figure 1

plots over time the changes in average distance traveled ( ˙ADT ), visits to non-essential

businesses ( ˙NEV ), and the unique human encounter rate ( ˙ENC) per day for all U.S.

states, measured as the percent change relative to typical pre-COVID-19 levels. The

solid line plots the average for the first four states to implement mandatory stay-at-

home policies: California (implemented March 19) [41], Illinois (March 21) [51], New

Jersey (March 21) [37], and New York (March 22) [49]. The dotted line plots the average

for the 15 states that adopted stay-at-home mandates later in the sample period, while

the dashed line plots the daily average for the remaining 30 states that had yet to adopt

a stay-at-home mandate by end-of-day March 25.5

Travel behavior in late February and through the first week of March looks largely

typical for distances traveled and visits to non-essential businesses, with small fluc-

tuations relative to baseline activity levels for all states. The change in the human

encounter rate exhibits much greater variation throughout the week, increasing over

the course of the work week before falling considerably over the weekend. Despite

this greater within-week variation, the average human encounter rate for all states

finishes the work week of March 2-6 above baseline levels.

Beginning the week of March 9, residents across the country began deviating from

typical travel patterns. By Wednesday March 11, residents of all states had begun

5Colorado, Connecticut, Delaware, Hawaii, Idaho, Indiana, Louisiana, Michigan, New Mexico,
Ohio, Oregon, Vermont, Washington, West Virginia, and Wisconsin all implemented similar stay-at-
home mandates between March 23 and March 26. Massachusetts adopted a stay-at-home advisory,
recommending but not requiring that residents stay home.
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Figure 1: Each series represents the change in each day’s mobility measure relative
to pre-COVID-19 levels for the given group of states. The solid line corresponds to
the average change for the four states that implemented stay-at-home mandates by
end-of-day March 22 (California, Illinois, New Jersey, and New York). The dotted line
plots the average for the 39 states that adopted statewide mandates at later points,
while the dashed line represents the average for the eight states that never adopted a
statewide mandate. The first panel plots changes in average distance traveled, the sec-
ond changes in unique human encounters per square kilometer, and the third changes
in visits to non-essential businesses. The gray bars designate weekend days. The
vertical line indicates March 19, the date the first state policy was implemented in
California.

reducing their distances traveled, trips to non-essential businesses, and encounters

with others relative to pre-COVID-19 norms. Initially, changes to mobility patterns

in early-adoption states are largely indistinguishable from those for other states; by

March 15, residents across all three groups had reduced travel distance by 8 to 13

percentage points, unique human encounters by 28 to 29 percentage points, and visits
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to non-essential visits by 12 to 17 percentage points.

By March 18, before the first statewide mandate went into effect, these declines had

grown dramatically in magnitude. The decline in travel distances grew in magnitude

to between 12 and 23 percentage points, and between 34 to 49 percentage points fewer

non-essential visits. Unique human encounters had already fallen between 61 and 71

percentage points relative to pre-COVID-19, a dramatic indicator of extensive social

distancing occurring even before statewide orders requiring such behavior.

By the time many state implemented their policies in the coming weeks, travel

behavior and social interactions had already largely bottomed out. While gaps be-

gin appearing in mobility patterns for residents of early adoption, later adopters, and

never adopter states at this time, these gaps and weekly patterns remain remarkably

consistent through mid-April.

Figure 1 provides initial evidence that changes in travel behavior are correlated

with the decisions of whether and when to adopt stay-at-home mandates. Follow-

ing the start of statewide mandate adoption on March 19, residents of early adopter

states exhibit larger magnitude reductions every single day through April 29 across all

three measures. Each week during this period, mean encounter rates in early adop-

tion states are consistently 10 to 16 percentage points lower than in states that never

adopted mandates, with a larger weekly gap in travel distance (between 13 and 19

percentage points), and a similar 12 to 22 percentage point gap for non-essential vis-

its. Late adoption states similarly display greater reductions in comparison to never

adopters, albeit smaller in magnitude (between 5 and 7 percentage points for human

encounter rates, 7 and 10 percentage points for travel distance, and 6 and 10 percent-

age points for non-essential visits).
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Travel Behavior Changes and COVID-19 Outbreaks in a State

To investigate how changes in travel activity evolved in response to a state’s COVID-

19 outbreak, we next present estimates from the event study model in Eq 1 in Figure 2.

Each panel plots the point estimates and 95% confidence interval for the effect of being

k days away from the state’s first reported COVID-19 case. Because the effect for the

baseline period k = −1 is normalized to zero, all coefficient estimates are interpreted

as the difference in mobility changes relative to the day before a state’s first case.

The leftmost vertical line of First Case denotes the baseline period, while the second

line for Mean SAH Date denotes the average date of mandate adoption relative to a

state’s first case (21 days later). If individuals began working from and staying at

home well in advance of statewide mandates, this would manifest as negative and

statistically significant coefficient estimates for the period k = 1, ..., 20.

Figure 2 provides further evidence of increasing behavioral responses over time.

Across our three mobility measures, we observed a decline nearly monotonic in time

elapsed since a state’s first case. While travel activity is generally slightly higher or

indistinguishable from baseline levels for the few pre-case periods in our sample, ac-

tivity begins a nearly linear decline after the first case. This roughly linear trend con-

tinues for distances traveled for the next thirty days, before bottoming out around a

40 percentage point reduction. The unique human encounter rate displays a similar

pattern, with its decline slowing after two weeks’ time, before reaching a stable level

around an 80 percentage point reduction. Changes in non-essential visits follow suit,

declining rapidly over the first two weeks of the outbreak before fluctuating between

a 50 to 60 percentage point reduction.

Additionally, we see that dramatic reductions in travel behavior occurred prior
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Figure 2: Travel change event study. Each series represents the change in each day’s mobility measure
at k days since a state’s first case. The dotted line plots the daily difference in the travel change relative
to the day prior to a state’s first case, while the gray band denotes the 95% confidence interval (clustered
at the state level). The Mean SAH Date line denotes the average date of statewide stay-at-home mandate
adoption relative to a state’s first case (21 days later).
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to statewide SAH mandates. By the time the average adopter had implemented its

statewide mandate, average travel distances had already fallen by 38 percentage points,

the human encounter rate by 76 percentage points, and non-essential visits by 52 per-

centage points. While small reductions in travel activity measures occur more than 21

days after a first COVID-19 case, they are generally not distinguishable from effects on

the 21st day. For periods 22 or more days after the first case, only 5 days for travel dis-

tance, 2 days for human encounters, and 7 days for non-essential visits are statistically

distinguishable at the 95% level from comparable changes on the 21st day.

Effect of Early Stay-at-Home Mandates on Daily Travel

While Figures 1 and 2 provide preliminary evidence that residents across the country

have drastically reduced travel activity and engaged in social distancing in response

to COVID-19 and that residents of mandate states differentially modified their travel

behavior, it is difficult to visually isolate the share of the difference attributable to

states’ stay-at-home mandates from time trends and characteristics of state residents

and policies. To further investigate the role of stay-at-home mandates for early adopter

states, we next present results of empirical specifications designed to isolate the effect

of stay-at-home policies on changes in travel activity and social distancing for the first

four states to adopt them.

In the empirical regression approaches that follow in this section, we attempt to

isolate the effect of states’ stay-at-home mandates on travel behavior. We start by fo-

cusing our attention on estimating the average treatment effect on the treated (ATT) for

early adopter states (CA, IL, NJ, and NY), given that, unlike many other locations, res-

idents of these states had yet to reach their minimum travel levels before their states’
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mandates came into effect. Initially restricting our attention to policy variation in these

four states will help shed light on whether the greater propensity of residents in these

states to further reduce travel in the post-mandate period plays a role in the size of any

“mandate effect” we obtain. After discussing results for early adopters, we expand our

focus to all states that adopted stay-at-home mandates.

We begin by presenting the results of the linear fixed effects model from Eq 2 in Ta-

ble 3 for changes in average distances traveled, before presenting results for preferred

specifications across all three mobility outcomes in Table 4.

Table 3: Effect of Early Stay-at-Home Mandates on Changes in Average Daily Distance Trav-
eled

˙ADT

(1) (2) (3) (4) (5) (6) (7)

SAHit −21.830∗∗∗ −37.573∗∗∗ −5.859∗∗ −4.454∗∗ −10.158∗∗∗ −4.075∗∗∗ −4.136∗∗∗

(2.761) (1.385) (2.307) (2.074) (0.597) (0.973) (1.010)

After 1st Mandate −34.798∗∗∗

(1.119)

State FE No Yes Yes Yes St x Wk Yes Yes
Date FE No No No Yes St x Wk Yes Yes
Time Trend No No No No No Spl x St Cub X St
Weekday No No Yes No Yes Yes Yes
N 3,366 3,366 3,366 3,366 3,366 3,366 3,366
Adjusted R2 0.053 0.135 0.842 0.926 0.938 0.961 0.961

* p < 0.10, ** p < 0.05, ** p < 0.01. Standard errors are clustered at the state level. These models estimate the effect
of the first four (CA, IL, NJ, and NY) statewide stay-at-home mandates on travel activity. The dependent variable is
the percentage change in average distance traveled per day for the same day of the week relative to the four weeks
before March 8 (pre-COVID-19). A coefficient of one indicates a marginal effect of a 1 percentage point increase in
travel relative to pre-COVID-19 levels, controlling for time and the average COVID-19 mobility change in the case of
state fixed effects. “After 1st Mandate” is an indicator for periods after March 19. “St x Wk” indicates state by week
fixed effects, while “Spl x St” indicates state-specific cubic splines with knots on Feb 29, Mar 19, Apr 1, and Apr 15.
‘Cub x St” indicates state-specific cubic time trends.

Table 3 is organized into seven columns. In column (1), we present results from a

naive ordinary least squares model of changes in average distance traveled regressed

on a constant and an indicator for mandates being in effect in the first four states to
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adopt statewide stay-at-home mandates (California, Illinois, New Jersey, and New

York). In this naive specification, we find that a stay-at-home policy is correlated

with a reduction of average distance traveled by a significant 21.8% relative to pre-

COVID-19 levels and control states. The estimated ATT grows in magnitude to -37.6

percentage points with the addition of state fixed effects in column (2). The mandate

effect estimate attenuates to -5.9 percentage points with the addition of a post-March

19 indicator and day-of-week fixed effects in column (3). Estimates in columns (4) to

(7) correspond to the staggered difference-in-differences estimator with various time

controls.

In column (2), we add state fixed effects, and in column (3) we further add an in-

dicator for all days following implementation of the first state mandate on March 19

(After 1st Mandate) and dummy variables for each day of the week. In column (4)

we add date fixed effects, which control day-to-day changes common to all states, and

estimate a -4.5 change due to early mandates. Columns (5) to (7) include state-specific

trend controls: in column (5) we control for state-by-week fixed effects, in column (6)

for state-specific cubic splines with knots on Feb 29, Mar 19, Apr 1, and Apr 15, and

in column (7) we control for a state-specific cubic trend. When we add state-by-week

fixed effects to day-of-week controls in column (5), we see that the estimated treatment

effect of the early mandates increases in magnitude to -10.2 percentage points. Includ-

ing state-specific flexible trends in columns (6) and (7) results in ATT estimates closer

in magnitude to those of the two-way fixed effects estimator in column (4), with an

estimate of -4.1 with either state-specific cubic splines or state-specific cubic trends. In

columns (6) and (7), we use the residual variation in average distance traveled that is

not explained by state-specific time trends to estimate the treatment effects of the early
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stay-at-home mandates. We see that our estimates for the changes in average distances

traveled stand as quite robust to considering state-specific time factors, which is the

most conservative variation to use.

Table 4 consolidates estimates for the effect of early stay-at-home mandates on

travel activity and presents results across all three mobility measures. For each mea-

sure we present estimates from the two-way fixed effects specification and with state-

specific cubic time trends. Columns (1) and (2) present results for changes in travel

activity from columns (4) and (7) in Table 3, while columns (3) and (4) present re-

sults from corresponding models for changes in non-essential visits, with results for

changes in human encounter rates in columns (5) and (6).

Table 4: Effect of Early Stay-at-Home Mandates on Travel Activity and Social Distancing

˙ADT ˙NEV ˙ENC

(1) (2) (3) (4) (5) (6)

SAHit −4.454∗∗ −4.136∗∗∗ −6.088∗∗∗ −5.185∗∗∗ −6.895∗∗∗ −4.683∗∗∗

(2.074) (1.010) (1.455) (1.307) (1.223) (1.270)

State FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
State Cubic Trends No Yes No Yes No Yes
N 3,366 3,366 3,366 3,366 3,300 3,300
Adjusted R2 0.926 0.961 0.970 0.983 0.968 0.974

* p < 0.10, ** p < 0.05, ** p < 0.01. Standard errors are clustered at the state level. These models estimate the effect
of the first four (CA, IL, NJ, and NY) statewide stay-at-home mandates on travel activity and social distancing.
The dependent variables measure the change in percentage points for the same day of the week relative to the
four weeks before March 8 (pre-COVID-19). A coefficient of one indicates a marginal effect of a 1 percentage point
increase in travel relative to pre-COVID-19 levels, controlling for time and the average COVID-19 mobility change
in the state during the sample period.

Across all columns and time control structures, we estimate large magnitude changes

in travel activity due to early stay-at-home mandates. Looking at estimates for changes

in visits to non-essential businesses, we observe treatment effect estimates of -6.1 and

-5.2 percentage points for columns (3) and (4), respectively, with both statistically sig-
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nificant beyond the 1% level. That is, once a mandate is implemented, we estimate a

5.2 to 6.1 percentage point reduction in the change in average visits to non-essential

businesses per day relative to control states. Given an average reduction of 59 percent-

age points across all states during the month of April, this corresponds to an additional

9 to 10% reduction in addition to prior reductions.

Turning next to changes in human encounter rates in columns (5) and (6), we once

again observe a relatively large response to stay-at-home mandates. We obtain ATT

estimates of−6.9 and−4.7 percentage points once a mandate is implemented, indicat-

ing that unique human encounters per square kilometer declined in response to early

stay-at-home mandates. Once again the treatment effects are statistically significant

beyond the 1% level. While individuals had reduced their daily encounter rates by 79

percentage points on average for the month of April, early mandates encouraged an

additional 6-9% reduction.

Changes in Travel Activity Across All Adopting States

Table 5: Effect of All State Stay-at-Home Mandates on Travel Activity and Social Distancing

˙ADT ˙NEV ˙ENC

(1) (2) (3) (4) (5) (6)

SAHit −5.508∗∗∗ −2.809∗∗∗ −5.196∗∗∗ −4.491∗∗∗ −4.621∗∗∗ −3.648∗∗∗

(1.036) (0.863) (0.721) (0.652) (0.654) (0.771)

State FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
State Cubic Trends No Yes No Yes No Yes
N 3,366 3,366 3,366 3,366 3,300 3,300
Adjusted R2 0.929 0.961 0.972 0.983 0.968 0.974

* p < 0.10, ** p < 0.05, ** p < 0.01. Standard errors are clustered at the state level. These models estimate the
effect of all statewide stay-at-home mandates on travel activity and social distancing. The dependent variables
measure the change in percentage points for the same day of the week relative to the four weeks before March 8
(pre-COVID-19). A coefficient of one indicates a marginal effect of a 1 percentage point increase in travel relative
to pre-COVID-19 levels, controlling for time and the average COVID-19 mobility change in the state during the
sample period. State Cubic Trends indicate state-specific cubic time trends.
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To understand whether later adopters attained reductions in travel activity akin to

those observed for early adopters, we next present results of Eq 2 utilizing variation in

mandate timing for all states that ever adopted a statewide stay-at-home mandate. We

present the difference-in-differences results for all states’ mandates in Table 5. Using

all adopting states provides much greater variation in treatment timing; in this way,

the ATT estimates will be identified both through comparisons of changes in treated

units to changes in states that never adopted a mandate and through comparisons of

states that had adopted and had yet to adopt at a given point in time.

Across all columns and time control structures, we find continued evidence of man-

dates’ effects on travel behavior. ATT estimates in Table 5 are all statistically significant

beyond the 1% level and appear similar to those found for the first four adopters, albeit

with smaller magnitude changes when allowing for state-specific time trends. In col-

umn (1) under the two-way fixed effects control structure, we see that, once a mandate

is implemented, residents reduce their average distance traveled by an additional 5.5

percentage points relative to control states (states that never adopted and those that

had yet to adopt. This point estimate is larger than the ATT estimate of −4.5 when re-

stricting attention just to early mandates. When we add flexible state-specific trends in

column (2), the ATT estimate decreases in magnitude to −2.8, below the −4.1 estimate

for early mandates, but remains distinguishable from no effect.

Changes in visits to non-essential businesses and human encounters display a sim-

ilar pattern. Across all states that ever adopted a statewide mandate, we estimate

a “mandate effect” of −5.2 and −4.5 for changes in non-essential visits without and

with cubic state time trends, respectively. These estimates are within 0.7 − 0.9 of the

comparable estimates for early adopters, suggesting that much of the mandate’s im-
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pact remained, even for mandates adopted much later in the pandemic. Turning to

changes in human encounter rates, we similarly estimate a treatment effect of −4.6

percentage points per day with two-way fixed effects and −3.6 when including state-

specific cubic time trends.

These findings provide evidence that the effectiveness of states’ mandates was not

entirely dependent on early adoption. While estimated effects of stay-at-home man-

dates are slightly larger in magnitude for early adopters than for those adopting at

any point during the spread of the pandemic, all ATT estimates are markedly different

from zero. The larger magnitude effect for early mandates may simply be a product

of individuals’ propensity to reduce travel when the mandates came into effect. When

California, Illinois, New Jersey, and New York adopted their mandates, travel activ-

ity across the country was still in decline. By the time many later adopters’ policies

entered into effect in late March or early April, residents were already largely staying

home and practicing social distancing – either due to local mandates, loss of a job or

work from home policies, or voluntary decisions to self-mitigate risk of infection. The

fact that we are able to find evidence of additional reductions in travel activity for later

mandates supports the effectiveness of these policies in achieving their states’ goals.

Taken together, we find that people across the U.S. decreased their travel and rate of

human encounters early in the pandemic, preempting statewide requirements. More-

over, we find that statewide stay-at-home mandates are related to significant reduc-

tions in all our measures of travel activity, with residents of early mandate states en-

gaging in social distancing at greater rates than individuals not subject to such policies.

This mandate effect persists when considering all statewide policies, suggesting that

adoption early in a state’s pandemic curve was not a necessity for inducing additional
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behavior modification.

Distance traveled is positively linked to an increased number of social trips across

all modes of transportation [62], suggesting that the observed decreases likely reflect

a decline in unique trips away from home as well. As travel activity is a main source

of social interaction beyond one’s immediate family [56] and travel to non-work lo-

cations increases the probability of co-location with others [59], these reductions in

distances traveled likely reflect commensurate decreases in physical interactions with

those outside of one’s immediate family. Our estimates for changes in unique hu-

man encounters reflect these previous studies, providing evidence of further social

distancing once states adopted a stay-at-home mandate. Further, these findings are

not limited to the Unacast mobility measures; use of Google’s COVID-19 Commu-

nity Mobility Reports estimates similarly large and statistically significant effects of

statewide mandates.6 All this provides consistent, preliminary evidence that stay-at-

home mandates are having the intended effect of inducing greater social distancing

than would occur otherwise, helping to reduce the opportunities for communication

of COVID-19 within communities.

Decomposing the Difference-in-Differences ATT

A potential concern of the difference-in-differences estimator relates to the weighting

of individual periods. Under staggered adoption, the estimated treatment effect can

be expressed as a weighted average of all unique two-period by two-group difference-

in-difference estimators [32]. Weights are implicitly assigned to each timing cohort

and unit, proportional to the variance of the treatment indicator in each period and

6See Appendix D for the complete complementary Google mobility analysis, replicating the same
methodology controlling for state-specific flexible trends, state, and day fixed effects.
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the size of each cross-sectional group. A key implication of these weights is a favoring

of units treated near the middle of the sample period, with non-convexity indicating

a potential for negative weights [2,12,23]. Another consequence is that negative treat-

ment effects could also be obtained even when the effects of stay-at-home mandates

for all adopting states are positive [17].

To shed light on how the difference-in-differences ATT estimates presented ear-

lier rely on these timing and group weights, we decompose the two-way fixed effects

estimates from column (4) of Tables 4 and 5 into their component two-by-two com-

parisons following [32]. We find that, after decomposing the ATT for early adopters’

mandates into its nine simple comparisons, over 99% of the weight falls on compar-

isons of treatment vs. control units (states that never adopted or adopted later). Of

these comparisons, Illinois and New Jersey versus control states receive the major-

ity of the ATT weight (50.2%). Equivalent comparisons for California and New York

each receive 24-25% weight, with negative estimates for all three states and across all

measures.

When considering mandate effects for all states, greater weight is placed on within-

treatment group comparisons. With adoption timing spanning March 19 to April 8,

two-by-two comparisons can be made across many more cohorts and donor pools; in

total, 18 comparisons are made between treatment cohorts and never-treated states,

with 306 different comparisons between early and later adopters. More than half the

ATT weight is still given to treatment cohorts versus pure control units, comprising

56-57% of the estimate across activity measures. The remaining weight is split evenly

between comparisons of timing cohorts, with 21-22% of ATT weight given to compar-

isons of early treated units against later treated units still in the donor pool, and to
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later treated units post-treatment relative to previously treated states. Across all three

types of comparisons, we observe consistently negative average ATT estimates, show-

ing that treatment effect heterogeneity is primarily constrained to the size of reduc-

tions in travel activity. See Appendix B for detailed presentation of the decomposition

results and a more thorough discussion of the approach.

Weighted Event Study

To address concerns regarding imbalances in changes to mobility patterns in the pre-

mandate period, we next present results from the weighted event study. As these esti-

mates construct a counterfactual balanced on pre-treatment outcomes for each adopt-

ing state, the estimated ATT now more closely reflects the comparison of the post-

adoption period for each state to an appropriate trend from the pool of donor units

available at each point in time.

We begin by presenting the weighting event study figures for the heuristic ν of [10],

equal to ν =
√
qpool/

√
qsep, the ratio of the square roots of pooled to separate SCM im-

balance. A larger ν trades off reductions in pooled imbalance for increases in separate

state imbalances. We compare the results to an unweighted event study approach and

discuss the evolution of mandate effects with time elapsed post-treatment.

We next present overall mandate effect estimates across the space of ν. While an

interior nu of 0.01− 0.99 offers substantial imbalance reductions relative to the pooled

or separate SCM cases, the optimal choice of ν is not immediately obvious. Estimating

weighted event studies over the range of ν allows us to better understand how sensi-

tive the overall ATT estimate is to the shift in weight from separate SCM for each state

to a purely pooled SCM approach.
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Figure 3 plots the results of a typical event study regression against the weighted

event study results with the heuristic ν for all states’ mandates. The x-axis reports

event time, indicating the number of days elapsed since a state’s stay-at-home man-

date entered into effect. An event time of zero indicates the first full day a state’s man-

date was in effect. The typical event study relies on the parallel trends assumption

required for the overall difference-in-differences approach, while the doubly-robust

approach of the weighted event study necessarily imposes balance on changes in pre-

treatment outcomes.

The typical event study (left panel) plots day-to-day ATT estimates averaged across

all adopting states obtained from a two-way fixed effects control approach akin to

columns (1), (3), and (5) in table 5, with a vector of dummy variables for being each of

k ∈ {−44, 21} days relative to mandate adoption. The day prior to adoption (k = −1)

is normalized to zero, such that all point estimates are interpreted as a differential

change in a given travel outcome on the kth day since mandate adoption relative to

the day immediately preceding adoption. 95% confidence intervals clustered at the

state level are reported in the gray band. Estimates statistically distinguishable from

zero in the post-period measure the treatment effect of stay-at-home mandates on mo-

bility patterns, decomposed by day. Non-zero estimates in the pre-mandate period

(k < 0) are evidence that the difference-in-differences parallel trends assumption is

likely violated: residents of adopting states were already differentially modifying their

travel behavior relative to residents of control states prior to any statewide mandates

requiring such behavior.

Typical event studies for all three travel activities show both an immediate, short-

term mandate effect and considerable differential trends in the pre-mandate periods.
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Typical vs. Weighted Event Study, Average Distance Traveled
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Weighted Event Study for changes in visits to non-essential businesses (%) with ν = 0.29
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Weighted Event Study for changes in average daily distance traveled (%) with ν = 0.49
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Figure 3: Standard and weighted event studies for changes in average distance trav-
eled following state mandates. The standard event study (left panel) plots regression
coefficients for dummy variables equal to one for being k days away from the first
effective date of each statewide stay-at-home mandate, with 95% clustered standard
errors represented in the gray band. A point estimate of -10 indicates a 10 percentage
point greater decline in the average distance traveled per day for a state k days since
mandate adoption relative to the day prior to mandate adoption (k = −1). The left
panel plots equivalent point estimates and jackknife standard errors from a weighted
event study, with partially pooled synthetic controls constructed to match treated units
on residualized pre-treatment outcomes.

Looking first at changes in average distance traveled in Figure 3, we observe a statisti-

cally significant treatment effect of −3 to −4 percentage points immediately following

mandate adoption, which persists for five days. An immediate drop of 5 − 6 percent-

age points is observed for non-essential visits and human encounter rates on the day

following mandate adoption. While both effects remain distinguishable from zero for

a longer period of time than for distance traveled, neither effect persists for more than

two weeks following mandate adoption. All three panels display considerable differ-

ences in trends between treatment and control groups; travel activity levels in mandate

states begin 20-25 percentage points lower than in control states. These trends follow

roughly linear trends, and remain non-parallel for the entire pre-mandate period for

both non-essential visits and the human encounter rate.

Once differences in pre-trends are correctly internalized, a much clearer picture
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Typical vs. Weighted Event Study, Non-Essential Visits
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Figure 4: Standard and weighted event studies for changes in non-essential visits fol-
lowing state mandates. The standard event study (left panel) plots regression coeffi-
cients for dummy variables equal to one for being k days away from the first effective
date of each statewide stay-at-home mandate, with 95% clustered standard errors rep-
resented in the gray band. A point estimate of -10 indicates a 10 percentage point
greater decline in non-essential visits per day for a state k days since mandate adop-
tion relative to the day prior to mandate adoption (k = −1). The left panel plots equiv-
alent point estimates and jackknife standard errors from a weighted event study, with
partially pooled synthetic controls constructed to match treated units on residualized
pre-treatment outcomes.

of stay-at-home mandates’ effectiveness becomes visible. Results from the weighted

event studies presented in the right panels of Figures 3, 4, and 5 show the consider-

able improvements in pre-treatment balance, with a total of three out of 129 pre-period

estimates distinguishable from zero (in contrast to a combined 89 for the standard

event studies). Further, we now observe persistence of the estimated mandate effects,

with travel behavior falling discontinuously immediately after a mandate and per-

sisting below levels observed in the synthetic control units across all but four total

post-mandate periods. Averaging event day-specific ATT estimates across the entire

mandate period yields magnitudes in line with those obtained through the staggered

difference-in-differences approach. We obtain an overall ATT of−6.47 for average dis-

tance traveled, roughly one percentage point larger in magnitude than column (1) of

table 5. A similar pattern is observed with the human encounter rate, with an overall
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ATT of −5.89, 1.3 percentage points larger than column (5) of 5. The weighted event

study ATT for non-essential visits is−4.16, one percentage point smaller in magnitude

than the corresponding difference-in-differences estimate. These estimates are highly

robust to the specific choice of ν.7

Typical vs. Weighted Event Study, Human Encounter Rate
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Figure 5: Standard and weighted event studies for changes in human encounter rates
following state mandates. The standard event study (left panel) plots regression coef-
ficients for dummy variables equal to one for being k days away from the first effective
date of each statewide stay-at-home mandate, with 95% clustered standard errors rep-
resented in the gray band. A point estimate of -10 indicates a 10 percentage point
greater decline in unique human encounters per day for a state k days since mandate
adoption relative to the day prior to mandate adoption (k = −1). The left panel plots
equivalent point estimates and jackknife standard errors from a weighted event study,
with partially pooled synthetic controls constructed to match treated units on residu-
alized pre-treatment outcomes.

The consistency of estimates between the difference-in-differences and weighted

event study approaches provides confirming evidence that statewide stay-at-home

mandates elicited further reductions in travel activity by affected residents. Weighted

event studies provide additional detail as to how these responses evolved, showing

that reductions occurred immediately upon policy implementation and persisted even

as residents were subject to the policies for three full weeks. This pattern is especially

true for human encounters, suggesting that residents of mandate states continued to

7See Appendix C for overall ATT estimates across the entire space of ν.
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socially distance, a key avenue for reducing the transmission of COVID-19.

Early Signs of Flattening the Curve

While stay-at-home mandates reducing travel activity and promoting increased social

distancing behavior provides evidence that individuals are listening to their states’

ordinances even after substantial earlier behavior modification, what matters from a

public health perspective is the impact of these behavioral changes on the spread of

COVID-19 and the resulting health outcomes. Merging the daily state-level changes

in travel activity and social distancing [63] with the daily changes in COVID-19 deaths

and hospitalizations per state [22], we are able to provide early indications of whether

the stay-at-home mandates are having their intended effects of mitigating the pan-

demic’s health consequences.

Prior to the implementation of stay-at-home policies, we find no statistical evi-

dence of differential trends for early-adopter states relative to the rest of the US for the

period February 24 through March 8. Conducting a difference-in-means test for the

two groups, we fail to reject the null hypothesis that the average change in distance

traveled (t-statistic of -1.67) and deaths per million (t = 0.72) each day are different for

CA, IL, NJ, and NY relative to other states.8

To investigate the time patterns of health outcomes, we start by breaking up the

average death rate by day separately for two groups of states: those that are mandate

states and the eight states that are not. In Figure 6, we see that average death rates

8We do not conduct a comparable test for hospitalization, ICU and ventilator rates due to the lack of
consistent data and possibly inconsistent reporting across states in the weeks prior to March 19. We also
have data for the share of COVID-19 positive tests by day and by state but we reject the null hypothesis
of no difference in means for the share of positive tests (t = 4.11), which we take as further evidence
that testing volumes and protocols differ extensively from state to state.
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increase more for states that did not implement mandates than for those states that

did and that the patterns for hospitalization rates are noisier, as shown in the bottom

panel of this figure.
0

20
0

40
0

60
0

80
0

Feb 24 First Mandate April 1
Day

States with Mandates States without Mandates
Source:  Health Data source COVID-19 Tracking Project.

Average Deaths per 100,000 population

0
50

0
10

00
15

00
20

00

Feb 24 First Mandate April 1
Day

States with Mandates States without Mandates
Source:  Health Data source COVID-19 Tracking Project.

Average Hospitalizations per 100,000 population

Evolution of Death and Hospitalization Rates by Mandate States

Figure 6: Source: Health Data source COVID-19 Tracking Project. Mandate states are
all states that adopted at some point a stay at home mandate. The eight non-mandate
states are Arkansas, Iowa, Oklahoma, Nebraska, North Dakota, South Dakota, Utah,
and Wyoming. The red vertical line indicates March 19, the date the first state policy
was implemented in California.

Looking at the time patterns for states that experienced the largest reductions in

mobility and distinguishing them from the average death rates for the states that ex-

perienced the lowest mobility reductions (lower than the median drop), as measured

by daily changes in non-essential visits, we show in Figure 7 that the increase in death

rates is steeper for those states that have the smallest reductions in mobility. Once

again the hospitalization rate patterns are noisy.9

9The pattern is similar for other break downs along average distance traveled and encounter rates,
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Figure 7: Source: Health Data source COVID-19 Tracking Project. The evolution is
broken up by two groups of states: those with drops in the change in Non-Essential
Visits (NEV) larger than the median drop by state, and those with drops lower than
the median (where the median drop is -67%). The states with higher than median drop
in NEV are CA, CO, CT, DE, HI, IA, IL, MA, MD, MI, MN, MT, NH, NJ, NV, NY, PA,
RI, VT, WI. The red vertical line indicates March 19, the date the first state policy was
implemented in California.

While Figures 6 and 7 provide preliminary evidence of variation over time in death

rates across states that are correlated with stay-at-home mandate adoption decisions

and differential mobility behavior by residents, it is difficult to visually isolate the

share of these differences directly attributable to changes in travel behavior. States’

outbreaks developed over time during this period and depended on both the extent

of states’ actions and the responses of their residents. Further, changes in mobility

behavior would be expected to affect health outcomes with a delay. Reductions in

travel activity and increased social distancing would potentially impact the transmis-

as shown in Appendix A.
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sion of COVID-19, evidence of which can take days to manifest in infected individuals.

To investigate the relationship past between changes in mobility patterns and current

health outcomes, we next present results from statistical analyses designed to isolate

the variation in mortality and morbidity associated with changes in travel activity.

In particular, we present results of estimating Eq 6 to test whether changes in dis-

tance traveled, non-essential visits, and human encounter rates one, two, and three

weeks prior have an effect on current health outcomes. We specify daily changes in

deaths and hospitalizations per 100 million population as our dependent variables.

Eq 6 controls for state-specific flexible time trends, day-to-day changes common to all

states, and state-specific factors affecting health outcomes. The inclusion of lagged

effects for one and two weeks prior allows us to measure any cumulative long-term

impact of reducing activity during the prior three weeks. Finding evidence of any such

cumulative long-term effects of lagged mobility changes on current deaths would pro-

vide preliminary evidence that these behavioral changes may ultimately play a valu-

able role in flattening the curve and reducing the severity of COVID-19 pandemic.

In addition to estimating Eq 6 using nationwide data, we also run analyses limiting

the sample to the first four early adopters. We observe a greater post-mandate period

for these states, during which the nature of non-essential visits and human encoun-

ters would likely differ from that in states yet to adopt mandates. Residents of early

adoption states would have more rapidly seen non-essential businesses adopt policies

targeted at restricting foot traffic and improving sanitation. Similarly, the propensity

for transmission from human encounters differs when wearing face coverings and

maintaining at least six feet of distance from others. To the extent that we find a dif-

ferential impact in early mandate states, this provides preliminary evidence that the
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suite of non-pharmaceutical interventions set in place for early stay-at-home mandates

conveys positive cumulative long-term health impacts.

Table 6: Past Changes in Average Distance Traveled and Current Changes in COVID-19 Mor-
tality and Morbidity

(1) (2) (3)
Deaths Hospitalizations Deaths

Change in Distance Traveled 1 week prior -0.779 -0.787 4.633
(1.886) (12.672) (23.501)

Change in Distance Traveled 2 weeks prior 2.670 1.349 6.348
(1.906) (12.065) (25.043)

Change in Distance Traveled 3 weeks prior 2.759 -0.008 59.382∗∗

(1.821) (11.794) (26.194)

Sample All States All States Early Mandate States
State FE Yes Yes Yes
Date FE Yes Yes Yes
State Cubic Trends Yes Yes Yes
N. 2193 1165 156
R2 0.82 0.63 0.92
F 15.42 1.87 10.04
* p < 0.10, ** p < 0.05, ** p < 0.01. Robust standard errors reported in parentheses. These models estimate the
relationship between changes in average distances traveled per day and COVID-19 health outcomes. The dependent
variables measure the number of new daily deaths or hospitalizations per 100 million population in a given state.
Columns (1) and (2) use the entire sample for all U.S. states and Washington D.C., while column (3) only uses data
for the first four states to adopt statewide stay-at-home mandates (CA, IL, NJ, and NY). A coefficient of one indicates
the marginal effect of a 1 percentage point increase in travel relative to pre-COVID-19 levels. ‘State Cubic Trends”
indicate state-specific cubic time trends.

The results from the estimation of Eq 6 for changes in average distance traveled per

day are presented in Table 6. Given that we use three weeks’ lagged data on changes

in distance traveled, our first day in the estimation sample is March 16th. The day-

to-day fixed effects therefore measure changes in the health outcomes common to all

states relative to March 16th. We also include state-specific cubic trends to account for

variations in outbreak development over time that are unique to each state. Column

(1) presents the estimates for new daily COVID-19 deaths per 100 million residents

by state, while column (2) reports equivalent estimates for COVID-19 hospitalizations
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per 100 million. Column (3) reports estimates for new daily COVID-19 deaths per 100

million residents, limiting the sample to the first four mandate states. These changes

in hospitalization and death rates are evidence that reductions in social interactions

results in reduced transmission. A positive coefficient indicates that predicted hos-

pitalization or death rates increase with more travel; because we primarily interpret

results with respect to decreases in distance traveled, a positive sign suggests declines

in hospitalizations or deaths for a reduction in travel activity or in-person social inter-

action.

The first row reports the coefficient on the change in average distance traveled

one week prior, followed by the standard error, then the coefficient for two weeks

prior, followed by three weeks prior. We cannot reject the null that none of these

coefficients are different from zero. The long-term impact, which corresponds to the

cumulative effect of −0.779 + 2.67 + 2.76 = 4.65 over all lagged weeks, is positive but

not statistically significant, with an F statistic of 4.7 for the null hypothesis of the sum

being equal to zero (p-value of 0.11). We find no evidence of significant estimated

long-term impacts for hospitalizations in column (2). Finally, focusing on column (3),

changes in average distance traveled three weeks prior in early mandate states are

associated with significant effects on current death rates. The long-term impact, which

corresponds to the cumulative effect of 4.63 + 6.35 + 59.38 = 68.36 fewer daily deaths

per 100 million, is a positive and significant effect with an F statistic of 4.6 (p-value of

0.04).

Focusing now on changes in visits to non-essential businesses ( ˙NEV ), we present

the results from the estimation of Eq 6 in Table 7. The regressions are comparable to

those presented in Table 6, and measure the effect of changes in NEV on deaths or
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Table 7: Past Changes in Non-Essential Visits and Current Changes in COVID-19 Mortality
and Morbidity

(1) (2) (3)
Deaths Hospitalizations Deaths

Change in Non-Essential Visits 1 week prior -0.068 3.504 -5.796
(2.038) (13.904) (18.355)

Change in Non-Essential Visits 2 weeks prior 2.640 12.348 15.543
(2.001) (12.949) (17.107)

Change in Non-Essential Visits 3 weeks prior 6.589∗∗∗ 2.684 24.025∗

(1.940) (12.756) (14.395)

Sample All States All States Early Mandate States
State FE Yes Yes Yes
Date FE Yes Yes Yes
State Cubic Trends Yes Yes Yes
N 2193 1165 156
R2 0.82 0.63 0.92
F 15.53 1.88 9.75
* p < 0.10, ** p < 0.05, ** p < 0.01. Robust standard errors reported in parentheses. These models estimate the rela-
tionship between changes in the average number of non-essential visits per day and COVID-19 health outcomes. The
dependent variables measure the number of new daily deaths or hospitalizations per 100 million population in a given
state. Columns (1) and (2) use the entire sample for all U.S. states and Washington D.C., while column (3) only uses data
for the first four states to adopt statewide stay-at-home mandates (CA, IL, NJ, and NY). A coefficient of one indicates
the marginal effect of a 1 percentage point increase in non-essential visits relative to pre-COVID-19 levels. ‘State Cubic
Trends” indicate state-specific cubic time trends.
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hospitalizations per 100 million residents. As in Table 6, all columns include state and

date fixed effects, and state-specific cubic trends.

Once again, we find evidence of long-term health benefits following reductions in

non-essential travel for all states. A one percentage point reduction in ˙NEV three

weeks prior is associated with 6.6 fewer daily deaths per 100 million across all states

in column (1) and 24 fewer deaths per 100 million in early mandate states (column

3). We estimate no significant lagged effects on hospitalization rates in column (2).

Looking at column (1), the estimated cumulative effect is positive for daily deaths of

−0.068 + 2.64 + 6.59 = 9.2 over lagged weeks for the entire U.S. This long-run effect

displays strong statistical significance, with an F statistic of 6.6 for the null hypothesis

of the sum being equal to zero (p-value of 0.01). The estimated long-term impact for

early mandate states in column (3) is not statistically significant (p value of 0.27).

Finally, we present evidence of the effect of changes in social distancing behavior

on COVID-19 health outcomes in Table 8. While point estimates of the long-term cu-

mulative effects of prior reductions in human encounters on COVID-19 death rates are

positive for all states and for only early adopters, none exhibit statistical significance.

Once again we find no statistical evidence of changes in hospitalization rates.
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Table 8: Past Changes in Human Encounter Rates and Current Changes in COVID-19
Mortality and Morbidity

(1) (2) (3)
Deaths Hospitalizations Deaths

Change in Encounters 1 week prior -0.429 -13.832 -11.341
(1.978) (15.310) (20.854)

Change in Encounters 2 weeks prior -0.477 -15.043 15.190
(1.392) (9.780) (13.879)

Change in Encounters 3 weeks prior 1.098 -6.661 5.648
(1.081) (7.432) (8.395)

Sample All States All States Early Mandate States
State FE Yes Yes Yes
Date FE Yes Yes Yes
State Cubic Trends Yes Yes Yes
N 2150 1165 156
R2 0.82 0.64 0.92
F 15.06 1.92 9.66
* p < 0.10, ** p < 0.05, ** p < 0.01. Robust standard errors reported in parentheses. These models estimate
the relationship between changes in the average number of unique human encounters per km2 per day and
COVID-19 health outcomes. The dependent variables measure the number of new daily deaths or hospi-
talizations per 100 million population in a given state. Columns (1) and (2) use the entire sample for all
U.S. states and Washington D.C., while column (3) only uses data for the first four states to adopt statewide
stay-at-home mandates (CA, IL, NJ, and NY). A coefficient of one indicates the marginal effect of a 1 percent-
age point increase unique human encounters relative to pre-COVID-19 levels. ‘State Cubic Trends” indicate
state-specific cubic time trends.
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Long-Term Impacts and Robustness Complementary Analysis

The estimated significant long-term impact of past changes in non-essential visits of

9.2 fewer deaths per 100 million is robust to including other controls, such as lagged

changes in other mobility measures. In particular, we estimate a significant long-term

impact of non-essential visits, controlling for changes in lagged encounter rates and

also state-specific trends, and find that a drop of non-essential visits of one percentage

point three weeks prior has a long-term impact of reducing daily death rates by 8.2

deaths per 100 million. We reject the null of no long-term impact given the F statistic

of 4.95 (p value of 0.02). Focusing on the early mandate states, the estimated long-term

impact of changes in average distance traveled is also robust to controlling for lagged

changes in encounter rates. We estimate that a drop in average distance traveled by

one percentage point results in 68.36 fewer deaths per 100 million per day, which is

statistically significant (F statistic of 4.45 and p value 0.05).

Additional and consistent evidence is found when projecting the variation of health

outcomes on lagged mobility measures from alternative sources. Use of the Google

measures results in similar patterns of lagged health effects, attesting once again to

the robustness of our earlier findings to the particular source of mobility measures. In

particular, we find that a one percentage point increase in the time spent at one’s place

of residence is associated with a long-term impact three weeks later of 6 fewer daily

daily deaths per million. Given that we estimate a 0.02 percentage point increase in

time spent at home due to stay-at-home mandates, this is equivalent to 1.2 fewer daily

deaths (0.02× 6) per million.10

10See the Appendix for estimated results and more details on this additional robustness analysis and
for the complete complementary Google health analysis.
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Economic Benefits from Improved Health Outcomes

Our estimates are an average of the effects of behavioral changes that occurred early

in the COVID-19 pandemic as well as after states began implementing health policies.

We estimate significant cumulative long-term effects of lagged mobility on current

deaths, which provides preliminary evidence that the behavioral changes of reduc-

tions in mobility do contribute to flattening the health outcome curves weeks later.

Specifically, we estimate that a one percent reduction in non-essential travel three

weeks earlier has a significant long-term correlation of reducing deaths by 9.2 per 100

million each day. Given that residents across the U.S. averaged a decline of 40 percent-

age points in non-essential visits in the months of March and April relative to baseline

levels, this would correspond to an estimated 360 (40 × 9) fewer daily deaths per 100

million residents. Using the estimated mandate-induced changes in non-essential vis-

its of -4 percentage points from the weighted event study analyses, this is 10% of the

overall reductions during this period and corresponds to a decline of 36 deaths per

day due to mandate-induced behavior changes. We estimate a differential impact in

mandate states, which provides preliminary evidence that mandate policies convey

long-term health impacts.

Further, we estimate a differential impact in mandate states, providing prelimi-

nary evidence that stay-at-home mandates may convey positive cumulative long-term

health impacts. Specifically, we estimate that a one percent reduction in average dis-

tance traveled three weeks earlier is significantly associated with 70 fewer deaths per

100 million per day. Given that on average residents across the U.S. reduced average

distances traveled by 30 percentage points in the months of March and April, this cor-

responds to 70 × 30 = 2100 fewer deaths per 100 million each day, or 21 fewer daily
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deaths per million. Given the estimated mandate effect of a 6 percentage point reduc-

tion in average distance traveled (obtained from the weighted event studies), this im-

plies that 20% of these overall declines in deaths are attributable to mandate-induced

behavioral changes, or roughly 4 fewer daily deaths per million residents.

When considering the extent of pre-mandate and mandate-induced behavior changes,

there is evidence of considerable economic benefits across a range of value of statistical

life (VSL) estimates. A value of $10 million corresponds to the United States Environ-

mental Protection Agency’s central VSL estimate, recommended for benefit calculation

use “regardless of the age, income, or other population characteristics of the affected

population” [27]. While this value may reasonably capture the average impact of air

or water pollution on the population at large, it does not accurately reflect the de-

mographics of those most affect by COVID-19: the elderly [19, 53]. To account for the

greater mortality risk associated with older cohorts, we also present calculations using

two alternate VSL estimates.

First is the cohort-adjusted value utilized by the Council of Economic Advisers

(CEA) for pandemic guidelines [18], adjusted for current COVID-19 death rates. In

their report for mitigating a future influenza pandemic, they derive estimates from

the semi-logarithmic hedonic wage regression with compensating replacement rates

approach of [3] and apply adjustments by age cohort to account for differences in

pandemic mortality rates. Their approach yields a population-weighted average of

$8.87 million in 2018 dollars, or $9.06 million in 2020. When adjusting this estimate for

age cohort death rates for COVID-19, [58] obtain a revised estimate of $5.77 million

per statistical life. This $5.77 million estimate more accurately reflects the conditions

of the pandemic in the United States.
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Second, we employ the value of a statistical life year (VLSY) estimate of [58] that

further reflects the nature of mortality from COVID-19. While age-adjusted, the CEA

approach makes several limiting assumptions as to the VSL for both the youngest

and oldest populations. For all individuals aged 24 and younger, the CEA approach

uses the same $3.43 million estimate. More critically, every person over 62 is assigned

the $3.43 million VSL for the aged 55-62 group. In order to accurately reflect the dif-

ferences in COVID-19 death rates within elderly cohorts, [58] use cohort-specific life

expectancy values for individuals aged 65-74, 75-84, and 85 or older, which are mul-

tiplied by the inflation-adjusted VLSY estimate of [3] to derive cohort-specific VSL

estimates for narrower elderly cohorts. The authors obtain estimates of “$3.63 million

for the 65-74 age group, $2.18 million for the 75-84 age group, and $1.1 million for the

85 and up age group,” which translate into an overall estimate of $3.35 million per

statistical life.

Table 9 provides estimates of the economic benefits due to averted deaths from

mandate-induced changes in travel activity in early adoption states. The EPA and

adjusted CEA estimates more closely reflect values used for federal policy guidance,

while the life expectancy-adjusted approach of [58] provides a more targeted estimate

than the government guidelines and more closely reflect the economic costs associated

with lives lost from COVID-19.

To obtain an estimate of the economic benefit from stay-at-home mandate-induced

travel activity changes in early adoption states, we multiply the 4 fewer daily deaths

per million obtained earlier with estimates of the mandate-induced travel activity

changes attained from the difference-in-differences and weighted event study approaches.

Column (4) of Table 4 yielded a mandate ATT of a−4.1 percentage point change in av-
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Table 9: Calculations of Economic Benefit of Averted Deaths Due to Mandate-Induced Behav-
ioral Changes, Early Adopters

Variation in Travel Activity Mandate-Induced
Sample Early Adopters

Avoided state-level Deaths (per
PP decline in activity) 70 per 100M population

Average State Population (per
100M)

0.2

Mandate Length 30 days
# Early Adoption States 4

Total Averted Deaths per 1 pp
change in travel activity 1680

Difference-in-Differences Weighted Event Study
PP Change in travel activity due
to Mandate

-4.1 -5.9

EPA CEA S&S EPA CEA S&S
VSL Estimates $10M $5.77M $3.35M $10M $5.77M $3.35M

Total Economic Benefit $68.9B $39.7B $23.1B $99.1B $57.2B $33.1B
This table presents estimates for the total economic benefit of averted deaths resulting from travel activity change in
states that implemented early mandates (CA, IL, NJ, and NY). PP refers to percentage point. EPA is the Environmental
Protection Agency’s central value of a statistical life (VSL) estimate, CEA the age-adjusted Council of Economic Adviser’s
2019 pandemic estimate, and S&S the COVID-19 life-expectancy adjusted estimate from [58] .
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erage distance traveled in direct response to states’ stay-at-home mandates. When

adjusting for pre-treatment imbalances between treatment and control units in the

weighted event study approach, we estimate an overall ATT of −5.9. 11 Multiplying

each of these estimated mandate effects by the averted deaths per percentage point

decline in travel (70) per 100 million population and each VSL estimate in turn yields

six estimates of the reductions in COVID-19 deaths per 100 million population per

day associated with statewide mandate-induced travel reductions. Multiplying these

by the average population of early adopter states (0.20 hundred million residents), by

four early adopters, and extrapolating results to a 30 day-long mandate, yields six es-

timates of the total direct mortality benefit from “flattening the curve” with statewide

mandates.

Using the estimated mandate effect from the difference-in-differences model in

conjunction with the [58] VSL yields a lower bound estimate of a $23.1 billion eco-

nomic benefit from averted deaths for a month-long mandate in early adoption states.

This estimate grows to $39.7 billion when using the age cohort-adjusted CEA value of

a statistical life, and grows to a considerable $69.8 billion for the EPA central VSL esti-

mate. Comparable estimates are larger when using the weighted event study estimate

of the mandate ATT, yielding estimates of $99.1 billion for the EPA VSL, $57.2 billion

for the CEA value, and $33.1 billion for the [58] COVID-19-specific value.

A similar approach yields valuations of the benefits of travel reductions from all

sources during the COVID-19 period in Table 10. As seen in Figures 1 and 2, residents

across the country greatly reduced visits to non-essential businesses well before states

implemented their mandates. Results from the health analyses in Table 7 found a

11The−6 estimate is obtained from a model comparable to Figure 3 using only the first four adoption
states as the treated group with ν = 0.49. See Appendix C for a summary of overall ATT estimates for
weighted event studies specific to early adoption states.
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long-run cumulative association of 360 fewer daily deaths per 100 million residents

for the average decline in non-essential visits for the average state. Multiplying this

by the three VSL estimates, by the average population of all states (0.065 hundred

million residents) and extrapolating to the period of March and April (61 days) yields

an overall estimate of the economic benefits of reduced travel activity during COVID-

19.

Table 10: Calculations of Economic Benefit of Nationwide Reductions in Travel Activ-
ity due to COVID-19

Variation in Travel Activity Nationwide

Avoided state-level Deaths (per PP decline in NEV ) 9.2 per 100M population

Average Daily Change in NEV for March and April
relative to pre-COVID-19 Levels 40 PP

Average State Population (per 100M) 0.065
Days in March and April 61 days
# States & Washington D.C. 51

Total Nationwide Averted Deaths in March and
April 74,415

EPA CEA S&S
VSL Estimates $10M $5.77M $3.35M

Total Economic Benefit $744.7B $429.4B $249.3B
This table presents estimates for the total economic benefit of averted deaths resulting from nationwide
travel activity change in response to COVID-19 in the months of March and April. PP refers to per-
centage point. EPA is the Environmental Protection Agency’s central value of a statistical life (VSL)
estimate, CEA the age-adjusted Council of Economic Adviser’s 2019 pandemic estimate, and S&S the
COVID-19 life-expectancy adjusted estimate from [58].

Given the greater time period and number of states, the estimated nationwide ben-

efits dwarf those of early mandates alone. On the upper bound, use of the EPA central

VSL estimate yields an overall benefit of $744.7 billion for reductions in non-essential

visits equal to the nationwide averages for March and April. This estimate falls to

$429.4 billion when using the age cohort-adjusted CEA value. Using the most con-

servative VSL estimate from [58] yields an overall economic benefit of $249.3 billion
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due to behavioral reductions in the months of March and April. In total, we estimate

74,415 averted deaths in these two months. Compared to the actual reported death toll

of 57,943 nationwide during March and April, the volume of averted deaths represent

nearly 1.3 times the observed deaths.

Conclusion

Temporarily closing non-essential businesses and mandating that residents stay at

home except for essential activity is the prime policy instrument currently employed

by states to promote social distancing and slow the transmission of COVID-19. If ef-

fective, these policies will have reduced strain on the medical system and provided

much-needed time for the development of pharmaceutical treatments that can reduce

transmission rates and end the pandemic. If unsuccessful, states will have incurred

large economic costs with few lives saved. Whether these mandates cause people to

stay at home and engage in social distancing is a key requirement of a successful pol-

icy. Knowing whether such policies will have their intended effect is of increasing

policy relevance, as all but eight states eventually adopted such policies. Understand-

ing whether and how individuals reduce travel activity and maintain social distance

in response to stay-at-home mandates is the primary empirical question we tackle in

this paper.

First, we find that, by the time the average adopter had implemented its statewide

mandate, residents had already reduced travel by considerable amounts relative to

pre-COVID-19 levels. Average travel distances had already fallen by 38 percentage

points, human encounter rates by 76 percentage points, and non-essential visits by

52 percentage points before the first statewide mandate came into effect, providing
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evidence of extensive social distancing occurring even before this was required by

statewide orders.

Second, we find evidence that adoption of state-level stay-at-home mandates in-

duced further reductions in all three travel activity measures. The mandate effect per-

sists not just for the early adoption states (where residents’ travel activity had not yet

stabilized at new, lower norms) but also for mandates adopted weeks later. For the

early mandate states of California, Illinois, New Jersey, and New York, our staggered

difference-in-differences models estimate a reduction in average distance traveled of

4.1 percentage points, a decline in visits to non-essential businesses of 5.2 percent-

age points, and a decrease in the rate of unique human encounters of 4.7 percentage

points relative to pre-COVID-19 baselines. These effects remain present when con-

sidering all mandates implemented, albeit to a slightly smaller degree, with mandate

ATT estimates of a −2.8 change in distance traveled, −4.5 change in non-essential vis-

its, and a −3.6 change in unique human encounters. Estimated magnitudes remain

highly comparable when directly accounting for differences in pre-mandate behavior

for treatment and control states. Through the weighted event studies that construct

control units to balance pre-treatment travel behavior net of state fixed effects, we find

large, statistically significant drops immediately following mandate implementation

that persist for the duration of the sample period. Resulting estimates of the overall

mandate effects range between -7.29 and -6.47 for changes in average distance trav-

eled, between -4.38 and -4.14 for non-essential visits, and between -5.89 and -4.98 for

encounter rates, for any mix of pooled and separate synthetic control weights.

Our estimates suggest that, importantly, residents subject to stay-at-home man-

dates are on average responding as desired to curb the spread of COVID-19. Our
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empirical approaches isolate the mandate effect from other drivers of daily changes in

travel activity levels and from state-specific trends, and control for a host of potential

confounding factors that differ between states that adopted early policies relative to

other states. Under these rigorous control approaches, we find persistent evidence of

state mandates inducing further reductions in travel activity even after considerable

earlier declines around the country. Further, our estimates are average treatment ef-

fects in response to statewide mandates only; given the extent of prior school closures,

new work from home abilities, and county-level stay-at-home policies, our findings

represent only a portion of the way individuals responded to COVID-19 policies and

are a considerable lower bound on how individuals responded to all COVID-19 poli-

cies.

Linking changes in travel activity and social distancing to health outcomes, we

find evidence that these reductions help “flatten the curve” and reduce health conse-

quences. We find that, on average, a one percentage point decrease in non-essential

visits per day three weeks prior has a long-term average effect of reducing nationwide

death rates by 0.92 fewer deaths per million per day. Converting these reductions in

deaths to economic benefits in terms of standard valuations of life, we find that the

observed reduced travel activity nationwide during the months of March and April

translate into reduced deaths benefits of $249-$755 billion due to associated reductions

in deaths. We estimate over 74,000 fewer deaths, which suggest death tolls would have

been nearly 2.3 times their actual counts during these months without these behavior

changes.

Further, we find evidence of differential declines in deaths from shorter distances

traveled in the first four states to adopt statewide mandates. Residents of these states
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were subject to modified business policies and face covering requirements for greater

periods of time; our findings provide preliminary evidence that the non-pharmaceutical

interventions employed by statewide mandates helped further flatten these states’ epi-

demic curves. The reductions in deaths from a month-long mandate in these states are

associated with total benefits between $23.1 and $99.1 billion.

Our findings have important policy implications for the fight against COVID-19.

First, individuals on average responded as intended to statewide mandates. Despite

considerable prior reductions, residents heeded their states’ directives and stayed at

home. Second, the declines in economic activity directly attributable to statewide man-

dates may be much smaller than previously thought. Because individuals around the

country had already more than halved the quantity of trips taken to non-essential re-

tail and service businesses, much of the lost business and resulting unemployment

would have likely still occurred even if states had not adopted their stay-at-home

policies. Further, as the mandate-induced reductions in visits to non-essential busi-

nesses amount to only one-tenth of the overall reductions since COVID-19, it is likely

that loosening or removing statewide policies will not be sufficient to induce mobility

patterns to quickly return to pre-COVID-19 levels. Further policies will be needed to

ensure that individuals can safely resume activity and return to local businesses.

Our estimates do not take into account the benefits from avoided hospitalizations

and other indirect health benefits from reduced travel activity and social distancing.

Because reductions in travel distance and increased social distance likely decrease ex-

posure to other potentially deadly illnesses, and reduce traffic accidents, this is likely

an underestimation of the overall health benefit of these policies. Further, the patterns

in under-reporting and under-counting of COVID-19 deaths suggest that we likely
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underestimate the direct benefits of these policies. Future identification of additional

COVID-19 deaths may prove difficult, as many death certificates list only the imme-

diate cause of death and fail to report underlying diseases – likely understating the

presence of COVID-19 [40]. Further, procedures for counting COVID-19 deaths may

be correlated with adoption of stay-at-home mandates. If adoption of a state-level or-

dinance indicates additional preparedness on the part of the adopting state, then states

that were slower to (or have yet to) pass stay-at-home mandates may also have been

slower to properly attribute deaths to COVID-19, resulting in our estimated effects be-

ing understatements of the true effect. Given the challenges to proper identification of

COVID-19 deaths, we may not know the true death count for years, or ever. As a re-

sult it may never be possible to determine the exact loss of life due to COVID-19, and

accordingly we heed caution in interpreting our result as capturing a de-facto rela-

tionship. We support continued efforts to obtain accurate counts of the mortality and

morbidity consequences from COVID-19 to help ensure future research can provide

sufficient policy guidance in the case of future pandemics.

While this paper may help policymakers evaluate tradeoffs and weigh the costs

and benefits of extending and relaxing such policies, there are avenues for future re-

search. First, whether these policies result in a true flattening of the epidemic curve

or merely postpone illness deserves additional attention. Particularly as states weigh

the difficult decisions of reopening business as usual, it is necessary to understand

how caseloads and health consequences may rebound. Second, future work should

consider within-state policy variation and the relationship between local and national

policies. Knowing whether county-level mandates that preceded statewide policies

conveyed additional benefits will improve our understanding of the full set of policy
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tools available to combat future pandemics. Further, the economic forces and psycho-

logical incentives behind compliance with stay-at-home mandates are complex, and

additional work is needed that can characterize the mechanisms behind the policy

effects we observe.

References

[1] Alberto Abadie, Alexis Diamond, and Jens Hainmueller. 2010. “Synthetic Con-

trol Methods for Comparative Case Studies: Estimating the Effect of Californias

Tobacco Control Program,” American Statistical Association, Journal of the American

Statistical Association June, Vol. 105, No. 490, Applications and Case Studies. DOI:

10.1198/jasa.2009.ap08746

[2] Abraham, S. and L. Sun. 2008 “ Estimating dynamic treatment effects in event

studies with heterogeneous treatment effects.” arXiv:1804.05785v1

[3] Aldy, Joseph E., and W. Kip Viscusi. 2008. “Adjusting the value of a statistical life

for age and cohort effects.” The Review of Economics and Statistics 90, no. 3: 573-581.

[4] Apuzzo, Matt, and Selam Gebrekidan. 2020. “Can’t Get Tested? Maybe

You’re in the Wrong Country.” The New York Times, March 20, 2020.

https://www.nytimes.com/2020/03/20/world/europe/coronavirus-testing-

world-countries-cities-states.html

[5] Arkhangelsky, Dmitry, Susan Athey, David A. Hirshberg, Guido W. Imbens,

and Stefan Wager. 2019. “Synthetic Difference In Differences. Technical report.

arXiv:1812.09970

68

https://www.nytimes.com/2020/03/20/world/europe/coronavirus-testing-world-countries-cities-states.html
https://www.nytimes.com/2020/03/20/world/europe/coronavirus-testing-world-countries-cities-states.html


[6] Arkhangelsky, Dmitry, and Guido W. Imbens. 2019. “Double-robust identification

for causal panel data models.”’ arXiv:1909.09412.

[7] Aten, Jason. 2020. “Microsoft, Google, and Twitter Are Telling Employees

to Work From Home Because of Coronavirus. Should You?” INC, March

6, 2020. https://www.inc.com/jason-aten/microsoft-google-twitter-are-telling-

employees-to-work-from-home-because-of-coronavirus-should-you.html

[8] Athey, Susan, and Guido Imbens. 2018 “Design-based Analysis in Difference-In-

Differences Settings with Staggered Adoption.” arXiv:1808.05293 [econ.EM]

[9] Baker, Mike. 2020. “Coronavirus Slowdown in Seattle Suggests Re-

strictions Are Working.” The New York Times, March 29, 2020.

https://www.nytimes.com/2020/03/29/us/seattle-washington-state-

coronavirus-transmission-rate.html

[10] Ben-Michael, Eli, Avi Feller, and Jesse Rothstein. 2019. “Synthetic Controls

and Weighted Event Studies with Staggered Adoption,”Cornell University.

https://arxiv.org/abs/1912.03290

[11] Bevil, Dewayne, and Gabrielle Russon. 2020. “Universal Or-

lando: Theme Parks Now Staying Closed Through April 19

Due to Coronavirus.” The Orlando Sentinel, March 24, 2020.

https://www.orlandosentinel.com/coronavirus/os-ne-coronavirus-universal-

orlando-extends-closing-20200324-tn3cskrhqrhndfccwc5eak2f5m-story.html

[12] Borusyak, Kirill, and Xavier Jaravel. 2017. “Revisiting Event Study Designs”.

Available at http://dx.doi.org/10.2139/ssrn.2826228

69

https://www.inc.com/jason-aten/microsoft-google-twitter-are-telling-employees-to-work-from-home-because-of-coronavirus-should-you.html
https://www.inc.com/jason-aten/microsoft-google-twitter-are-telling-employees-to-work-from-home-because-of-coronavirus-should-you.html
https://www.nytimes.com/2020/03/29/us/seattle-washington-state-coronavirus-transmission-rate.html
https://www.nytimes.com/2020/03/29/us/seattle-washington-state-coronavirus-transmission-rate.html
https://arxiv.org/abs/1912.03290
https://www.orlandosentinel.com/coronavirus/os-ne-coronavirus-universal-orlando-extends-closing-20200324-tn3cskrhqrhndfccwc5eak2f5m-story.html
https://www.orlandosentinel.com/coronavirus/os-ne-coronavirus-universal-orlando-extends-closing-20200324-tn3cskrhqrhndfccwc5eak2f5m-story.html


[13] Brandom, Russell. 2020. “Relaxing Isolation Rules Won’t Help

the Economy, Say Economists.” The Verge, March 25, 2020.

https://www.theverge.com/2020/3/25/21193670/trump-easter-coronavirus-

isolation-relax-rules-economy-social-distancing

[14] Brown, Emma, Beth Reinhard, and Aaron C. Davis. 2020. “Coron-

avirus Death Toll: are Almost Certainly Dying of COVID-19 but Be-

ing Left Out of the Official Count.” The Washington Post, April 5, 2020.

https://www.washingtonpost.com/investigations/coronavirus-death-toll-

americans-are-almost-certainly-dying-of-covid-19-but-being-left-out-of-the-

official-count/2020/04/05/71d67982-747e-11ea-87da-77a8136c1a6d story.html

[15] California Department of the Executive. Executive Order N-33-20. California, 2020.

https://covid19.ca.gov/img/Executive-Order-N-33-20.pdf

[16] California Coronavirus (COVID-19) Response. 2020. “Stay Home Except For

Essential Needs.” Accessed April 5, 2020. https://covid19.ca.gov/stay-home-

except-for-essential-needs/#top

[17] Callaway, Brantly, and Pedro H.C. Sant’Anna. 2018. “Difference-in-Differences

with Multiple Time Periods and an Application on the Minimum Wage and Em-

ployment.” arXiv:1803.09015.

[18] CEA (Council of Economic Advisers). 2019. “Mitigating the Impact of Pandemic

Influenza through Vaccine Innovation.” https://www.whitehouse.gov/wp-

content/uploads/2019/09/Mitigating-the-Impact-of-Pandemic-Influenza-

through-Vaccine-Innovation.pdf

70

https://www.theverge.com/2020/3/25/21193670/trump-easter-coronavirus-isolation-relax-rules-economy-social-distancing
https://www.theverge.com/2020/3/25/21193670/trump-easter-coronavirus-isolation-relax-rules-economy-social-distancing
https://www.washingtonpost.com/investigations/coronavirus-death-toll-americans-are-almost-certainly-dying-of-covid-19-but-being-left-out-of-the-official-count/2020/04/05/71d67982-747e-11ea-87da-77a8136c1a6d_story.html
https://www.washingtonpost.com/investigations/coronavirus-death-toll-americans-are-almost-certainly-dying-of-covid-19-but-being-left-out-of-the-official-count/2020/04/05/71d67982-747e-11ea-87da-77a8136c1a6d_story.html
https://www.washingtonpost.com/investigations/coronavirus-death-toll-americans-are-almost-certainly-dying-of-covid-19-but-being-left-out-of-the-official-count/2020/04/05/71d67982-747e-11ea-87da-77a8136c1a6d_story.html
https://covid19.ca.gov/img/Executive-Order-N-33-20.pdf
https://covid19.ca.gov/stay-home-except-for-essential-needs/#top
https://covid19.ca.gov/stay-home-except-for-essential-needs/#top
https://www.whitehouse.gov/wp-content/uploads/2019/09/Mitigating-the-Impact-of-Pandemic-Influenza-through-Vaccine-Innovation.pdf
https://www.whitehouse.gov/wp-content/uploads/2019/09/Mitigating-the-Impact-of-Pandemic-Influenza-through-Vaccine-Innovation.pdf
https://www.whitehouse.gov/wp-content/uploads/2019/09/Mitigating-the-Impact-of-Pandemic-Influenza-through-Vaccine-Innovation.pdf


[19] Centers for Disease Control and Prevention. 2020. “Provisional COVID-19

Death Counts by Sex, Age, and State.” https://data.cdc.gov/NCHS/Provisional-

COVID-19-Death-Counts-by-Sex-Age-and-S/9bhg-hcku/data

[20] Chernozhukov, Victor, Kaspar Wuthrich, and Yinchu Zhu. 2020. “Practical and

Robust t-test Based Inference for Synthetic Control and Related Methods.”

arXiv:1812.10820

[21] Chudik, Alexander, Hashem M. Pesaran, and Alessandro Rebucci. 2020 “Volun-

tary and Mandatory Social Distancing: Evidence on COVID-19 Exposure Rates

from Chinese Provinces and Selected Countries.” Johns Hopkins Carey Business

School Research Paper No. 20-03. http://dx.doi.org/10.2139/ssrn.3576703

[22] The COVID Tracking Project. 2020. “Most Recent Data.” Accessed March 27, 2020.

https://covidtracking.com/data

[23] de Chaisemartin, Clment, and Xavier D’Haultfuille. 2020. “Two-way Fixed Effects

Estimators with Heterogeneous Treatment Effects.” arXiv:1803.08807.

[24] Dickens, William T. 1990. “Error components in grouped data: is it ever worth

weighting?” The Review of Economics and Statistics. 72(2): 328-333.

[25] Doudchenko, Nikolay and Guido W. Imbens. 2017. “Balancing, Regression,

Difference-In-Differences and Synthetic Control Methods: A Synthesis.” arxiv

1610.07748

[26] European Centre for Disease Prevention and Control. “Situation

worldwide, as of 14 April 2020.” COVID-19. ecdc.europa.com.

71

https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-by-Sex-Age-and-S/9bhg-hcku/data
https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-by-Sex-Age-and-S/9bhg-hcku/data
 https://ssrn.com/abstract=3576703
https://covidtracking.com/data


https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases

(accessed March 25, 2020).

[27] U.S. Environmental Protection Agency. (2020). Mortality Risk Valuation.

Available at: https://www.epa.gov/environmental-economics/mortality-risk-

valuation

[28] Ferguson, Neil M., Daniel Laydon, Gemma Nedjati-Gilani, Nat-

sukoand Imai, Kylie Aisnlie, Marc Baguelin, Sangeeta Bhatia, Adhi-

ratha Boonyasiri, Zulma Cucunub, Gina Cuomo-Dannenburg, et al. “Im-

pact of Non-Pharmaceutical Interventions (NPIs) to Reduce COVID-

19 Mortality and Healthcare Demand.” Imperial College COVID-19

Response Team, (2020). https://www.imperial.ac.uk/media/imperial-

college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-

NPI-modelling-16-03-2020.pdf

[29] Ferman, Bruno and Cristine Pinto. 2019. “Synthetic Controls with Imperfect Pre-

Treatment Fit.” arXiv:1911.08521

[30] Ferretti, Luca, Chris Wymant, Michelle Kendall, Lele Zhao, Anel Nurtay, Lucie

Abeler-Dörner,Michael Parker, David Bonsall, and Christophe Fraser. “Quantify-

ing SARS-CoV-2 Transmission Suggests Epidemic Control with Digital Contact

Tracing”, (March 2020). https:doi.org/10.1126/science.abb6936

[31] Finucane, Martin, and Travis Andersen. 2020. “Experts Say Relaxing So-

cial Distancing Rules Could be ‘Catastrophic’.” The Boston Globe, March

24, 2020. https://www.bostonglobe.com/2020/03/24/metro/experts-say-its-

too-soon-relax-social-distancing/

72

https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases
https://www.epa.gov/environmental-economics/mortality-risk-valuation
https://www.epa.gov/environmental-economics/mortality-risk-valuation
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
https:doi.org/10.1126/science.abb6936
https://www.bostonglobe.com/2020/03/24/metro/experts-say-its-too-soon-relax-social-distancing/
https://www.bostonglobe.com/2020/03/24/metro/experts-say-its-too-soon-relax-social-distancing/


[32] Goodman-Bacon, Andrew. 2018. “Difference-in-Differences with Variation in

Treatment Timing.” National Bureau of Economic Research Working Paper Series No.

25018. doi: 10.3386/w25018

[33] Google. 2020. “COVID-19 Community Mobility Reports.” Accessed March 27,

2020. https://www.google.com/covid19/mobility/

[34] Greenstone, Michael, and Vishan Nigam. “Does Social Distancing

Matter?” Becker Friedman Institute Working Papers No. 2020-26 (2020).

https://dx.doi.org/10.2139/ssrn.3561244

[35] Hatchett, Richard J., Carter E. Mecher, and Marc Lipsitch. “Public Health

Interventions and Epidemic Intensity During the 1918 Influenza Pandemic,”

Proceedings of the National Academy of Sciences, 104 no. 18 (2007): 7582-7587.

https://www.pnas.org/content/104/18/7582

[36] IGM Economic Experts Panel. 2020. “Policy for the COVID-19 Crisis. March 27,

2020. http://www.igmchicago.org/igm-economic-experts-panel/

[37] Johnson, Brent. 2020. “New Jersey Lockdown Rules: What Residents

Need to Know About Stay-at-home Order.” NJ.com, March 21, 2020.

https://www.nj.com/coronavirus/2020/03/new-jersey-lockdown-rules-what-

residents-need-to-know-about-stay-at-home-order.html

[38] Kadvany, Elena. 2020. “Stanford Tells 7,000 Undergraduates to Leave Campus;

Class Will Be Online Only Next Quarter.” Palo Alto Online, March 6, 2020.

https://paloaltoonline.com/news/2020/03/06/stanford-cancels-in-person-

classes-two-students-possibly-exposed-to-coronavirus-in-self-isolation

73

https://www.google.com/covid19/mobility/
https://dx.doi.org/10.2139/ssrn.3561244
https://www.pnas.org/content/104/18/7582
http://www.igmchicago.org/igm-economic-experts-panel/
https://www.nj.com/coronavirus/2020/03/new-jersey-lockdown-rules-what-residents-need-to-know-about-stay-at-home-order.html
https://www.nj.com/coronavirus/2020/03/new-jersey-lockdown-rules-what-residents-need-to-know-about-stay-at-home-order.html
https://paloaltoonline.com/news/2020/03/06/stanford-cancels-in-person-classes-two-students-possibly-exposed-to-coronavirus-in-self-isolation
https://paloaltoonline.com/news/2020/03/06/stanford-cancels-in-person-classes-two-students-possibly-exposed-to-coronavirus-in-self-isolation


[39] Kahn, Debra, and Carla Marinucci. 2020. “Bend it Like the Bay Area: Doctors

See Flatter Curve After 2 Weeks of Social Isolation.” Politico, March 30, 2020.

https://www.politico.com/states/california/story/2020/03/30/bend-it-like-

the-bay-area-doctors-see-flatter-curve-after-2-weeks-of-social-isolation-1269663

[40] Kliff, Sarah, and Julie Bosman. 2020. “Official Counts Understate

the U.S. Coronavirus Death Toll.” The New York Times, April 5,

2020. https://www.nytimes.com/2020/04/05/us/coronavirus-deaths-

undercount.html

[41] Koseff, Alexei, and Erin Allday. 2020. “Coronavirus Order: Gov. Gavin

Newsom Tells Americans to Stay at Home.” The San Francisco Chronicle,

March 19, 2020. https://www.sfchronicle.com/politics/article/Coronavirus-

order-Gov-Gavin-Newsom-tells-15144649.php#

[42] McCabe, Caitlin. 2020. “Analysts Slash GDP Estimates as Coronavirus

Ripples Through Economy.” The Wall Street Journal, March 20, 2020.

https://www.wsj.com/articles/analysts-slash-gdp-estimates-as-coronavirus-

ripples-through-economy-11584735139

[43] McNeil, Donald G. Jr. 2020. “The Virus Can Be Stopped, but Only

With Harsh Steps, Experts Say.” The New York Times, March 22, 2020.

https://www.nytimes.com/2020/03/22/health/coronavirus-restrictions-

us.html

[44] McNeil, Donald G. Jr. 2020. “Restrictions Are Slowing Coronavirus In-

fections, New Data Suggest.” The New York Times, March 30, 2020.

74

https://www.politico.com/states/california/story/2020/03/30/bend-it-like-the-bay-area-doctors-see-flatter-curve-after-2-weeks-of-social-isolation-1269663
https://www.politico.com/states/california/story/2020/03/30/bend-it-like-the-bay-area-doctors-see-flatter-curve-after-2-weeks-of-social-isolation-1269663
https://www.nytimes.com/2020/04/05/us/coronavirus-deaths-undercount.html
https://www.nytimes.com/2020/04/05/us/coronavirus-deaths-undercount.html
https://www.sfchronicle.com/politics/article/Coronavirus-order-Gov-Gavin-Newsom-tells-15144649.php
https://www.sfchronicle.com/politics/article/Coronavirus-order-Gov-Gavin-Newsom-tells-15144649.php
https://www.wsj.com/articles/analysts-slash-gdp-estimates-as-coronavirus-ripples-through-economy-11584735139
https://www.wsj.com/articles/analysts-slash-gdp-estimates-as-coronavirus-ripples-through-economy-11584735139
https://www.nytimes.com/2020/03/22/health/coronavirus-restrictions-us.html
https://www.nytimes.com/2020/03/22/health/coronavirus-restrictions-us.html


https://www.nytimes.com/2020/03/30/health/coronavirus-restrictions-

fevers.html

[45] Mervosh, Sarah, Denise Lu, and Vanessa Swales. 2020. “See Which States and

Cities Have Told Residents to Stay at Home.” The New York Times, March

24, 2020. https://www.nytimes.com/interactive/2020/us/coronavirus-stay-at-

home-order.html

[46] Miller, Jen A. 2020. “How to Work From Home, if You’ve

Never Done it Before.” The New York Times, March 12, 2020.

https://www.nytimes.com/2020/03/12/smarter-living/how-to-work-from-

home-if-youve-never-done-it-before.html

[47] Nguyen, Terry. 2020. “U.S. Airlines Are Waiving Fees and Canceling Flights

as Coronavirus Spreads.” Vox, April 3, 2020. https://www.vox.com/the-

goods/2020/3/5/21166359/us-airlines-coronavirus-cancel-flights-waiving-fees

[48] New Jersey Department of the Executive. Executive Order No. 107 New Jersey,

2020. https://nj.gov/infobank/eo/056murphy/pdf/EO-107.pdf

[49] Opam, Kwame. 2020. “It’s Not ‘Shelter in Place’: What The New

Coronavirus Restrictions Mean.” The New York Times, March 24, 2020.

https://www.nytimes.com/article/what-is-shelter-in-place-coronavirus.html

[50] Pepe, Emanuele, Paolo Bajardi, Laetitia Gauvin, Filippo Privitera, Ciro Cattuto,

and Michele Tizzoni. 2020. “COVID-19 Outbreak Response: First Assessment of

Mobility Changes in Italy Following Lockdown.” medRxiv 2020.03.22.20039933;

doi: https://doi.org/10.1101/2020.03.22.20039933

75

https://www.nytimes.com/2020/03/30/health/coronavirus-restrictions-fevers.html
https://www.nytimes.com/2020/03/30/health/coronavirus-restrictions-fevers.html
https://www.nytimes.com/interactive/2020/us/coronavirus-stay-at-home-order.html
https://www.nytimes.com/interactive/2020/us/coronavirus-stay-at-home-order.html
https://www.nytimes.com/2020/03/12/smarter-living/how-to-work-from-home-if-youve-never-done-it-before.html
https://www.nytimes.com/2020/03/12/smarter-living/how-to-work-from-home-if-youve-never-done-it-before.html
https://www.vox.com/the-goods/2020/3/5/21166359/us-airlines-coronavirus-cancel-flights-waiving-fees
https://www.vox.com/the-goods/2020/3/5/21166359/us-airlines-coronavirus-cancel-flights-waiving-fees
https://nj.gov/infobank/eo/056murphy/pdf/EO-107.pdf
https://www.nytimes.com/article/what-is-shelter-in-place-coronavirus.html
https://doi.org/10.1101/2020.03.22.20039933


[51] Petrella, Dan, Stacy St. Clair, Steve Johnson, and Gregory Pratt.

2020. “Gov. J.B. Pritzker Issues Order Requiring Residents to ‘Stay

at Home’ Starting Saturday.” The Chicago Tribune, March 20, 2020.

https://www.chicagotribune.com/coronavirus/ct-coronavirus-illinois-shelter-

in-place-lockdown-order-20200320-teedakbfw5gvdgmnaxlel54hau-story.html

[52] Politico Magazine. 2020. “When Can American Reopen

From its Coronavirus Shutdown?” Politico, April 2, 2020.

https://www.chicagotribune.com/coronavirus/ct-coronavirus-illinois-shelter-

in-place-lockdown-order-20200320-teedakbfw5gvdgmnaxlel54hau-story.html

[53] Reason. 2020. “Should the Coronavirus Lockdowns End Immediately? A Soho

Forum Debate.” https://reason.com/video/should-the-coronavirus-lockdowns-

end-immediately-a-soho-forum-debate/

[54] Rubin, D. B. 1980. “Randomization Analysis of Experimental Data: The Fisher

Randomization Test Comment,” Journal of the American Statistical Association 75:

591593

[55] County of San Mateo. March 16, 2020 - Seven Bay Area Jurisdictions Order

Residents to Stay Home. https://www.smcgov.org/press-release/march-16-2020-

seven-bay-area-jurisdictions-order-residents-stay-home

[56] Silvis, Julia, Deb Niemeier, and Raissa D’Souza. 2006. “Social Networks and

Travel Behavior: Report from an Integrated Travel Diary,” 11th International Con-

ference on Travel Behavior Research: Tokyo.

76

https://www.chicagotribune.com/coronavirus/ct-coronavirus-illinois-shelter-in-place-lockdown-order-20200320-teedakbfw5gvdgmnaxlel54hau-story.html
https://www.chicagotribune.com/coronavirus/ct-coronavirus-illinois-shelter-in-place-lockdown-order-20200320-teedakbfw5gvdgmnaxlel54hau-story.html
https://www.chicagotribune.com/coronavirus/ct-coronavirus-illinois-shelter-in-place-lockdown-order-20200320-teedakbfw5gvdgmnaxlel54hau-story.html
https://www.chicagotribune.com/coronavirus/ct-coronavirus-illinois-shelter-in-place-lockdown-order-20200320-teedakbfw5gvdgmnaxlel54hau-story.html
https://reason.com/video/should-the-coronavirus-lockdowns-end-immediately-a-soho-forum-debate/
https://reason.com/video/should-the-coronavirus-lockdowns-end-immediately-a-soho-forum-debate/
https://www.smcgov.org/press-release/march-16-2020-seven-bay-area-jurisdictions-order-residents-stay-home
https://www.smcgov.org/press-release/march-16-2020-seven-bay-area-jurisdictions-order-residents-stay-home


[57] Solon, Gary, Steven J. Haider, and Jeffrey M. Wooldridge. 2015. “What

are we Weighting for?” Journal of Human Resources. 50(2): 301-316. Doi:

10.3368/jhr.50.2.301.

[58] Sullivan, Ryan, and Jason F. Shogren. 2020. “New Estimates on the Value of a

Statistical Life for Fatalities During the COVID-19 Pandemic,”working paper.

[59] Tronch, Picornell M., Ruiz T Snchez, M. Lenormand, JJ. Ramasco, T. Dubernet,

and E. Fras-Martnez. “Exploring the Potential of Phone Call Data to Characterize

the Relationship Between Social Network and Travel Behavior,” Transportation, 42

no. 4 (2015): 647-688. http://dx.doi.org/10.1007/s11116-015-9594-1

[60] Unacast. 2020. “Unacast Social Distancing Dataset” Accessed March 26, 2020.

https://www.unacast.com/data-for-good

[61] U.S. Census Bureau. “State Population,” 2010 Decennial Census, Accessed March

26, 2020. https://www.census.gov/library/publications.html

[62] van den Berg, Pauline, Theo Arentze, and Harry Timmermans. “A Path Anal-

ysis of Social Networks, Telecommunication and Social Activity-Travel Pat-

terns,” Transportation Research Part C: Emerging Technologies, 26 (2013): 256-268.

http:doi.org/10.1016/j.trc.2012.10.002

[63] Walle, Thomas. “The Unacast Social Distancing Scoreboard.” Unacast Blog (blog),

March 23, 2020, https://www.unacast.com/post/the-unacast-social-distancing-

scoreboard

77

http://dx.doi.org/10.1007/s11116-015-9594-1
https://www.unacast.com/data-for-good
https://www.census.gov/library/publications.html
http:doi.org/10.1016/j.trc.2012.10.002
https://www.unacast.com/post/the-unacast-social-distancing-scoreboard
https://www.unacast.com/post/the-unacast-social-distancing-scoreboard


[64] World Health Organization. “Novel Coronavirus (COVID-

19) Situation Dashboard.” Accessed March 25, 2020,

https://experience.arcgis.com/experience/685d0ace521648f8a5beeeee1b9125cd

78

https://experience.arcgis.com/experience/685d0ace521648f8a5beeeee1b9125cd

