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Abstract: 

In this article, we analyze the growth pattern of Covid-19 pandemic in India from March 4th to 
May 15th using regression analysis (exponential and polynomial), auto-regressive integrated 
moving averages (ARIMA) model as well as exponential smoothing and Holt-Winters models. 
We found that the growth of Covid-19 cases follows a power regime of (t2, t,..) after the 
exponential growth. We found the optimal change points from where the Covid-19 cases shift 
their course of growth from exponential to quadratic and then from quadratic to linear. We have 
also found the best fitted regression models using the various criteria such as significant p-
values, coefficients of determination and ANOVA etc. Further, we search the best fitting 
ARIMA model for the data using the AIC (Akaike Information Criterion) and CAIC (Consistent 
Akaike Information Criterion) and provide the forecast of Covid-19 cases for future days. We 
also use usual exponential smoothing and Holt-Winters models for forecasting purpose. We 
further found that the ARIMA (2,2,0) model is the best-fitting model for Covid-19 cases in India.  

Keywords: Covid-19, Regression analysis, Exponential growth, Polynomial growth, ANOVA, 
ARIMA, Exponential Smoothing and Holt-Winters models, Prediction, Forecast. 

1. Introduction 

The Covid-19 pandemic has created a lot of havoc in the world. It is caused by a virus called 
SARS-CoV-2, which comes from the family of coronaviruses and is believed to be originated 
from the unhygienic wet seafood market in Wuhan, China but it has now infected more than 200 
countries of the world. With around 5.2 million people affected around the world (As of 22nd 
May, 2020, *to be updated*), it has forced people to stay in their homes and has caused huge 
devastation in the world economy. (Ref Singh & Jadaun [1], [2], Gupta et al. [3]). 

In India, the first case of Covid-19 was reported on 30th January, which is linked to the Wuhan 
city of China (as the patient has travel history to the city). On 4th March, India saw a sudden hike 
in the number of cases and since then, the numbers are increasing day by day. As of 22nd May 
(*to be updated*), India has more than 124,000 cases with more than 3700 deaths. (Ref [4]). 

Since the outbreak of the pandemic, scientists across the world have been indulged in the studies 
regarding the spread of the virus. Lin et al. [5] suggested the use of the SEIR (Susceptible- 
Exposed- Infectious- Removed) model for the spread in China and studied the importance of 
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government-implemented restrictions on containing the infection. As the disease grew further, 
Ivorra et al. [6] suggested a θ-SEIHRD model that took into account various special features of 
the disease. It also included asymptomatic cases into account (around 51%) in order to forecast 
the total cases in China (around 168500). Giordano et al. [7] also suggested an extended SIR 
model called SIDHARTHE model for cases in Italy which was more customized for Covid-19 in 
order to effectively model the course of the pandemic to help plan a better control strategy.  

Petropoulos and Makridakis [8] suggested the use of exponential smoothing method to model the 
trend of the virus, globally. Kumar et al. [9] gave a review on the various aspects of modern 
technology used to fight against COVID-19 crisis. 

Apart from the epidemiological models, various data-oriented models were also suggested in 
order to model the cases and predict future cases for various disease outbreaks from time-to-
time. Various time-series models were also suggested in order to model the cases and predict 
future cases. ARIMA and Seasonal ARIMA models are widely used by researchers in order to 
model and predict the cases of various outbreaks. In 2005, Earnest et al. [10] conducted a 
research to model and predict the cases of SARS in Singapore and predict the hospital supplies 
needed using this model. Gaudart et al. [11] modelled malaria incidence in the Savannah area of 
Mali using ARIMA. Zhang [12] compared Seasonal ARIMA model with three other time series 
models to compare Typhoid fever incidence in China. Polwiang [13] also used this model to 
determine the time-series pattern of Dengue fever in Bangkok. 

For Covid-19 as well, various researchers tried to model the cases through ARIMA. Ceylan [14] 
suggested the use of Auto-Regressive Integrated Moving Average (ARIMA) model to develop 
and predict the epidemiological trend of Covid-19 for better allocation of resources and proper 
containment of the virus in Italy, Spain and France. Chintalapudi et al. [15] suggested its use for 
predicting the number of cases and deaths post 60-days lockdown in Italy. Fanelli and Piazza 
[16] analyzed the dynamics of Covid-19 in China, Italy and France using iterative time-lag maps. 
It further used SIRD model to model and predict the cases and deaths in these countries. Zhang 
et al. [17] developed a segmented Poisson model to analyze the daily new cases of six countries 
in order to find a peak point in the cases. 

Since the spread of the virus started to grow in India, various measures were taken by the Indian 
Government in order to contain it. A nationwide lockdown was announced on March 25th to 
April 14th, which was later extended to May 3rd. The whole country was divided into 
containment zones (where large number of cases were observed from a relatively smaller 
region), red zones (districts where risk of transmission was high and had higher doubling rates), 
green zones (districts with no confirmed case from last 21 days) and orange zones (which didn’t 
fall into the above three zones). After the further extension of the lockdown till May 17th, various 
economic activities were allowed to start (with high surveillance) in areas of less transmission. 
Further, the lockdown is now extended to May 31st and some more economic activities have 
been allowed as per the transmission rates, which are the rates at which infectious cases cause 
new cases in the population, i.e. the rate of spread of the disease. 
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On the other hand, Indian scientists and researchers are also working on addressing the issues 
arising from the pandemic, including production of PPE kits and tests kits as well as studying the 
behaviour of spread of the disease and other aspects of management. Various mathematical and 
statistical methods have been used for predicting the possible spread of Covid-19. The classical 
epidemiological models (SIR, SEIR, SIQR etc.) suggested the increasing trend of the virus and 
predicted the peaks of the pandemic. Early researches showed the pandemic to reach its peak by 
mid-May. They also showed that the basic reproduction number (R0) and the doubling rates are 
lower in India, with comparison to European nations and USA. A tree-based model was 
proposed by Arti and Bhatnagar [18] and Bhatnagar [19] in order to study and predict the trends. 
They suggest that lockdown and social-distancing in India has played a significant role to control 
the infection rates. Chatterjee et al. [20] suggests growth of the pandemic through power law and 
its saturation at the later stages. Due to the complexities in the epidemic models of Covid-19, 
various researchers have been focusing on the data in order to forecast the future cases. 
Chatterjee et al. [20, 21] and Ziff & Ziff [22] suggest that after exponential growth, the total 
count follows a power regime of t3, t2, t and √t before flattening out, where ‘t’ refers to time. It 
can therefore be realized that there is an urgent need to model and forecast the growth of Covid-
19 in India as the virus is in the growing stage here. 

In India, the most affected states are Maharashtra with over 41,000 cases (as of 22nd May,2020 
*need to be updated*), Tamil Nadu (around 14,000 cases) and Gujarat (around 13,000 cases). 
The greatest number of cases per million have been seen in the national capital of Delhi (621.73 
cases per million). (Refer [23] for population estimates). Various states such as Arunachal 
Pradesh, Goa, Mizoram and Manipur have been declared Covid-19 free states as they have 
treated all their cases since more than 14 days. States of Nagaland and Sikkim and Union 
Territories of Lakshwadeep Islands and Daman and Diu are yet to report a single case. These 
large variations suggest the effectiveness of lockdown and sealing of state borders in containing 
the virus. In the latest research, Singh & Jadaun [1] studied the significance of lockdown in India 
and suggested that the new Covid-19 cases would stop by the end of August in India with around 
350,000 total cases. While some states may see an early stopping of new cases such as Telangana 
(mid-June), Uttar Pradesh and West Bengal (July-end) etc., the badly affected states of 
Maharashtra, Tamil Nadu and Gujarat will achieve this by August-end.  

Since a proven vaccine and medication is yet to be developed by the researchers then in such a 
scenario, modelling the present situation and forecasting the future outcome becomes crucially 
important in order to utilize our resources in the most optimal way. Therefore, the article aims to 
study the growth curve of Covid-19 cases in India and forecast its future observations. Since the 
disease is still in its growing age and very dynamic in nature, no model remains perfectly valid 
for future. We need to develop the understanding of the present situation of the pandemic.  

In this article, we first study the growth curve using regression methods (exponential, linear and 
polynomial etc.) and propose an optimal model for fitting the cases till May 15th. Further, we 
propose the use of time-series models for forecasting the future observations on Covid-19 cases. 
Here we reach the best-fitted ARIMA model for forecasting the Covid-19 cases. We also 
compare these results with Exponential Smoothing (Holt-Winters) model. This study will help us 
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to understand the course of spread of SARS-CoV-2 in India better and help the government and 
the people to optimally use the resources available to them. 

 

 

 

2. Statistical Methodologies 

In this section, we briefly present the statistical techniques used for analyzing the Covid-19 cases 
in India.  Here, we used usual regression (exponential, polynomial), times series (ARIMA) and 
exponential smoothing models.  

2.1 Exponential- Polynomial Regression  

Regression is a statistical technique that attempts to estimate the strength and nature of 
relationship between a dependent variable and a series of independent variables. Regression 
analyses may be linear and non-linear. A regression is called linear when it is linear in 
parameters e.g. � � �� � �����  and � � �� � ��� � ���� � ������, � ~��0, ���, where � is 
response variable, � denotes the indepenet variable, ��  is the intercept and other βs are known as 
slope.  

A non-linear regression is a regression when it is non-linear in its parameters e.g. � � ��� �
���� � �������. In the beginning of the spread of a disease, we see that the new cases are directly 

proportional to the existing infected cases and may be represented by 
���	


�	
� �����, where � is 

the proportionality constant. Solving this differential equation, we get that, at the beginning of a 
pandemic,  

���� � ���	  
Thus, at the beginning of a disease, the growth curve of the cases grows exponentially.  

As the disease spreads in a region, governments start to take action and people start becoming 
conscious about the disease. Thus, after some time, the disease starts to follow a polynomial 
growth rather than continuing to grow exponentially.  

In order to fit an exponential regression to our data, we linearize the equation by taking the 
natural logarithm of the equation and convert it to a linear regression in first order.  

We estimate the parameters of a linear regression of order � as following- 

Let the model of linear regression of order � be: �� � �� � ∑ ��
�


� �� with � ~��0, ���  and 

� � 1,2, . . , �. Let � � ∑ ��� � �� � ∑ �
��
�


� ���
���   represent the residual sum of square (RSS). 

By minimizing the RSS, we get the best estimates of these coefficients by solving the following 

normal equations; 
��

���
� 0, 

��

���
� 0,…, ��

���
� 0. This technique is referred to as the ordinary 
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least squares (OLS). We will use this technique of the OLS in order to estimate the coefficients 
of our proposed model. (Refer Montgomery et al. [24]) 

Since we know that the growth curve of the disease changes after some time point, exponential 
to polynomial, we propose to use the following joint regression model with change point �,  

                         � �  !����;  � #  �,
!����;  � $ �, %                                       …(1) 

 

where we take !���� � &����	 , !���� � �� � ��� � ���� � ' � ������, � ~��0, ��� and �  is 
the order of the polynomial regression model and � stands for the time (an independent variable). 

During the analysis, we found that a suitable choice of !���� is a quadratic or a cubic model. 
Once the order of the polynomial is kept fixed, an optimum value of the change point can be 
obtained by minimizing the residuals/errors. We can obtain the OLS estimates of the parameters 
of the model (1) as given below. 

The least square estimates (LSEs) of the parameters, Θ � �&�, &�, �, ��, ��, ��, ��, … … , ��� can 
be obtained by minimizing the residual sum of squares (RSS) as given by- 

RSS�Θ� � ∑ ,�� � �-����.��

��� � ∑ ,�� � �-�����.��
����� ,                              …(2) 

where, �-���� and �-����� are the estimates value of ��  from the exponential and polynomial 
regression models, respectively and � is the size of the data set. 

The LSEs of Θ � �&�, &�, �, ��, ��, ��, ��, … … , ��� can be obtained as the simultaneous solution 

of the following normal equations, 
������


���
� 0, ������


���
� 0, ������


��
� 0, ������


���
� 0, ������


���
�

0, 
������


���
� 0, 

������


���
� 0, … … , ������


���
� 0. Solution to these equations is difficult since the 

parameter � is decenter time point. We suggest to use the following algorithm while � is kept 
fixed. 

Algorithm 1:  

1. Set � � /;  / � 1,2, … , �. 
2. For a given �, obtain LSEs of &�, &� using the data ����, ���, ���, ���, … , ,�
 , �
.�. 
3. For a given �, obtain LSEs of ��, ��, ��, �� using the data 

�,�
��, �
��., ,�
��, �
��., … , ���, ����. 

4. Compute RSSj using the estimates of �&�, &�, ��, ��, ��, ��, … … ��� and fixed � 

5. Repeat steps 2-4 for all  / � 1,2, … , � and obtain the RSS for each iteration. 
6. Search /� which is a / that corresponds to the minimum RSS. 
7. Take � � /�as an optimum value of the parameter �. 
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In order to find the optimal value of µ, i.e. the turning point between the exponential and 
polynomial growth, we will use the technique of minimizing the residual sum squares in section 
3. 

We will use MAPE (Mean Absolute Percentage Error) in order to evaluate the performance of 
the mode. 

MAPE �  100%
� 5 6�	 � �-	

�	 6 ,
�

	��

 

where, �	 is the observed value at time point � and �-	 is an estimate of  �	. 
 

 

2.2 ARIMA Model 

The Auto-Regressive Integrated Moving Averages method gauges the strength of one dependent 
variable relative to other changing variables. It is one of the most used time-series models in 
diverse fields of data analysis as it takes into account the changing of trends, periodic changes as 
well as random disturbances in the time-series data. It is used for both better understanding of the 
data as well as forecasting, see Brockwell et al. [25]. 

Autoregressive models (AR) is effectively merged with the Moving Averages models (MA) to 
formulate a useful time-series model, ARIMA model. The Autoregression (AR) element of the 
model shows a changing variable that regresses on its own prior values and the Moving Average 
(MA) element incorporates the dependency between an observation and a residual error from a 
moving average model applied to prior observations. However, this model can only be applied to 
stationary data. Since many real-life datasets consist of an element of non-stationarity, in order to 
model such datasets, ARIMA model was developed. This model is open for non-stationary data 
as the Integrated (I) factor of the model represents the differencing of raw observations to allow 
the time-series to become stationary. 

Here, we may refer the reader to follow Box et al. [26] and Box et al. [27] for more details on 
ARIMA model, estimation and its application. 

The general forms of AR (p) and MA (q) models can be respectively represented as the 
following equations: 

7	 �  8�7	�� � 8�7	�� � 8�7	�� � ' … … … . �8�7	�� � 9	,    …(3) 

7	 �  &�9	�� � &�9	�� � &�9	�� � ' … … … . �& 9	� � 9	,                …(4) 

where 8s and θs are autoregressive and moving averages parameters, respectively, 7	  represents 
value of time-series at time point �, 9	 represents the random disturbance at time point t and is 
assumed to be independently and identically distributed (i.i.d.) with mean 0 and variance ��. 
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The ARMA (p, q) model can be represented as- 

7	 �  : � 8�7	�� � 8�7	�� � 8�7	�� � ' … … … . �8�7	�� � &�9	�� � &�9	�� � &�9	�� �
' … … … . �& 9	� � 9	 ,         …(5) 

where α is an intercept. 

The differenced stationary time-series can be modelled as an ARMA model in order to use 
ARIMA model on the time-series data. (Refer Ceylan [14], He & Tao [28] and Manikandan et al. 
[29]). The ARIMA model is generally denoted as ARIMA (�, ;, <) where, � is the order of auto-
regression, ; is the degree of difference and < is the order of moving average. 

 

The first step to model the time-series by ARIMA is to transform the non-stationary time series 
into stationary time series by differencing processes. ‘;’ is the order of the difference. The 
Augmented Dickey-Fuller (ADF) Test may be applied to determine if the time series after 
differencing is stationary or not. The ADF test is applied to test the null hypothesis for the 
presence of a unit root (which indicates non-stationarity of the series). 

The second step is to plot the graphs of the Autocorrelation function (ACF) and the Partial 
Autocorrelation Function (PACF) to determine the most-likely values of � and <.  

We obtain the optimal values of �, ; and < by using the AIC (Akaike Information Criterion) and 
CAIC (Consistent Akaike Information Criterion), for more details see 
https://en.wikipedia.org/wiki/Akaike_information_criterion.  These information criteria may be 
used for selecting the best fitted models. Lower the values of criteria, higher will be its relative 
quality. The AIC and CAIC are given by 

�=> �  �2�ℓ� � 2@, 

>�=> �  �2�ℓ� � @Aln��� � 1D, 
where K=number of model parameters, ℓ � EF��E�G�; HFIJ� K! IKL � I���I�MKK; !JNO��KN 
and N=no. of data points. 

2.3 Exponential Smoothing 

Exponential smoothing is one of the simple techniques to model time-series data where the past 
observations are assigned weights that are exponentially decreasing over time. We propose the 
following models, for modelling of Covid-19 cases (see Holt [30] and Winters [31]).  

For single exponential smoothing, let the raw observations be denoted by Ay	D and As	D denote 
the best estimate of trend at time t. Then, R� � ��, R	 � :�	 � �1 � :��R	���, where : � �0,1� 
denotes the data smoothing factor. 

For double exponential (Holt-Winters) smoothing, let the raw observations be denoted by Ay	D, 
smoothened values by As	D , and Ab	D  denotes the best estimate of trend at time t. Then,  

R� � ��, 
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T� � �� � �� , 

R	 � :�	 � �1 � :��R	�� � T	���, 

T	 � ��R	 � R	��
 � �1 � ��T	��, 

where : � �0,1�  denotes the data smoothing factor and � � �0,1�  denotes the trend smoothing 
factor. For the forecast at � � �� � E� days (U��!) is calculated by 

U��! � R	 � ET	. 
 

 

3. Analysis of Covid-19 cases in India 

For this study, we have used the data available at GitHub, provided by Centre for Systems 
Science and Engineering (CSSE) at John Hopkins University (see [32]). We have used the data 
from March 4th to May 15th (*to be updated later*) for continuity of the data. In for this study, we 
use R software. (see R Core Team [33]).  

3.1 Exponential-Polynomial Regressions 

We know that at the beginning of the spread of the disease in India, the growth was exponential 
and after some time, it was shifted to polynomial. We first obtain optimum turning point of the 
growth, i.e. when did the growth rate of the disease shifted to polynomial regime from the 
exponential. We consider both quadratic and cubic regression model for second part of the data. 
We will also discuss the types of polynomial growth (with their equations) in India.  

In order to find the turning point of the growth curve, we follow the Algorithm 1, given in the 
previous section. Using that, we evaluate the RSS for all the days (from March 4th) and find the 
date on which it is minimum. The change points of growth curve for cubic and quadratic 
regressions are presented in Figure 1 depending upon the size of the data set. From Figure 1, we 
can confirm that the growth rate of Covid-19 cases was exponential till April 5th and then after 
it follows the polynomial growth regime while we use the Covid-19 cases till May 2nd. 
 
Table 1: Turning point of growth curve for cubic and quadratic regression beyond change point 

using the Covid-19 cases from 4th March to a given day. 

Day Change Point 
Cubic Quadratic 

25th April 5th April 5th April 
30th April 5th April 5th April 
2rd May 5th April 5th April 
3rd May 7th April 5th April 
5th May 10th April 11th April 
10th May 10th April 18th April 
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Figure 1: Trend of RSS and optimum µ for exponential-quadratic regression model. 

We call the region of exponential growth in India as Region I. The coefficients of the model are 
presented in Table 2.  
 

Table 2:  Regression Table for Region I (Exponential Regression) 
Parameter Coefficients S.E. t PV 

&� 16.543 1.969 8.40 1.7e-09 
&� 0.163 0.00389 41.97 2e-16 

 
We see that after the exponential regime (till April 5th), the growth curve follows a polynomial 
growth till May 2nd. After this, we again see a change in the behavior of the growth curve. In 
Tables 3 and 4, we try to model these growth curves through regression analysis. 
 

Table 3:  Regression models fitting for Region II (5 April – 2 May). 

Model Paramet
er 

OLS 
Estimates 

S.E. t PV R2 (F statistic, PV) 

Linear 
�� -43427.02 1889.22 -22.99 <2e-16 0.9773 (1119, <2e-16) 
�� 1326.49 39.66 3.45 <2e-16 

Quadratic 
�� 17410.66 1501.022 11.60 2.52e-11 0.9997 (3.901e+04, 

<2.26e-16) �� -1335.45 65.087 -20.52 <2e-16 
�� 28.32 0.6905 41.01 <2e-16 

Cubic  

�� 6196.57 10073.87 0.615 0.545 0.9997 (2.63e+04, 
<2e-16) �� -594.89 661.096 -0.9 0.378 

�� 12.29 14.2489 0.863 0.397 
�� 0.113 0.1009 1.126 0.272 

 

Table 4:  Regression models fitting Table for Region III (3rd May – 15 May). 

Model Parameter OLS 
Estimates 

S.E. t PV R2 (F statistic, 
PV) 

Linear �� - 3244.99 -91.62 <2e-16 0.9990 (1.264e+04, 
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2998284.88 <2e-16) 
�� 3584.12 32.11 111.63 <2e-16 

Quadratic 
�� -23424.15 56089.18 -0.418 0.68505 0.9997 (1.329e+04, 

<2.26e-16) �� -1866.15 1111.75 -1.679 0.12416 
�� 26.98 5.50 4.903 0.00062 

Cubic 

�� -8.967e+05 1.837e+06 -0.488 0.637 0.9997 (1.187e+04, 
<2e-16) �� 2.411e+04 5.464e+04 0.441 0.669 

�� -2.305e+02 5.413e+02 -0.426 0.680 
�� 8.497e-01 1.786e+00 0.476 0.646 

 

Having evaluated the coefficients for various models (i.e. linear, quadratic and cubic) as well as 
the important statistics (i.e. R2 values, p-values of the models as well as individual coefficients 
and F-statistic), we will select the best fitting models. In order to select the best fitting models for 
Region II (April 6th to May 2nd) and III (May 3rd to May 15th), we have the following steps. We 
select that model which has high R2 values, significant p-value, high F-statistic and where the p-
values of all the variables are significant. 

We see for Region II, from Table 3 that the linear model is having a relatively lower F-statistic 
and R2 values in comparison to the Quadratic and Cubic models. So, we eliminate the possibility 
of linear fitting. Further, we see that the p-values, F-statistics and the R2 values are quite 
significant in both Quadratic as well as the Cubic models. But, if we look at the individual p-
values of the coefficients, we see that the individual p-values are not significant for the Cubic 
model. On the other hand, the individual p-values are significant for the Quadratic model. Thus, 
we can conclude that the Quadratic model is the best fitting model for Region II (April 6th to 
May 2nd). 

For Region III, from Table 4, that all the three models have high F-statistic values, high p-values 
and high R2 values. But we notice that the coefficient individual p-values are not significant in 
both Quadratic and Cubic models. Thus, we conclude that the Linear model is the best fitting 
model for Region III (May 3rd to May 15th). 

Table 5:  ANOVA Table for Region II (Quadratic Regression) and III (Linear Regression) 

Region  Model Variable Degrees 
of 
freedom 

Sum of 
squares  

Mean sum 
of squares  

F 
statistic 

P-Value 

II Quadratic t 1 2882180732 2882180732 76347 <2.2 
x10-16 

t2 1 63489615 63489615 1681 <2.2 
x10-16 

Residuals 24 906026 37751   
III Linear t 1 2337950722 2337950722 12462 <2.2 

x10-16 
Residuals 11 2063722 187611   
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Both the ANOVA tables for Region II and III suggest significant p-values for its coefficients and 
suggest that the models fit well the respective regions.  

Thus, according to our study, the growth of the virus was exponentially increasing from March 
4th to April 5th. Then after, the virus grew by following a quadratic rate from April 6th to May 2nd. 
Since May 3rd, we have been experiencing a linear growth, see Table 6 for best fitted regression 
models. Figure 2 shows the best fitted regression models to the daily cumulative cases of Covid-
19 in India till 15th May. 

Table 6: Course of Covid-19 growth in India 

Region Dates Best fitted model MAPE 
(%) 

RSE 

I March 4th to 
April 5th 

���� � 16.54 � ��.����  8.60 81.66 

II April 6th to 
May 2nd 

���� � 17410.67 � 1335.45� � 28.32�� 0.83 194.3 

III May 3rd to 
May 15th 

���� � �29825� 3584� 
 

0.49 433.1 

 

 

Figure 2: Fitted Regression models to the daily cumulative cases of Covid-19 in India till May 
15th (Bar chart shows the daily confirmed cases). 

3.2 Time series Models fitting  
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First, we check the stationarity of the transformed time-series using ADF Tests. Dickey-Fuller 
statistic is 11.98 with p-value 0.99 which indicates that the growth of Covid-19 cases is not 
stationary. The ARIMA models may be useful over the ARMA models. The ACF and PACF 
plots are shown in Figure 3. 

We then obtain the optimal ARIMA parameters (�, ;, <) by using the AIC and CAIC Criteria. 
We take various possible combinations of (�, ;, <) and compute the AIC and CAIC Criteria. 
Then, select the best fitted ARIMA model that has the lowest AIC and CAIC among all 
considered models. According to the AIC and CAIC, the ARIMA (2, 2, 0) is the best fitted 
model for the Covid-19 cases, India (see Table 7). Estimates of ARIMA (2, 2, 0) parameters and 
MAPE are shown in Table 8.  

 

Figure 3: ACF and PACF for Covid-19 cases in India (4th March to 15th May) 

Table 7: AIC and CAIC for ARIMA models for Covid-19 cases, India 

Model AIC CAIC 
 

ARIMA (5,2,5) 1026.64 1036.511 
ARIMA (0,2,0) 1044.66 1054.531 
ARIMA (1,2,0) 1025.987 1035.858 
ARIMA (0,2,1) 1027.324 1037.195 
ARIMA (2,2,0) 1025.721 1035.592 
ARIMA (3,2,0) 1027.706 1037.577 
ARIMA (2,2,1) 1027.716 1037.587 
ARIMA (1,2,1) 1026.28 1036.151 
ARIMA (5,1,1) 1045.42 1055.291 
ARIMA (3,1,2) 1050.32 1060.191 
ARIMA (3,1,1) 1049.24 1059.111 
ARIMA (1,1,2) 1051.54 1061.411 
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ARIMA (2,1,2) 1049.44 1059.311 
ARIMA (2,1,2) 1052.41 1062.281 

 

Table 8: Estimates of ARIMA (2,2,0) parameters and MAPE. 

Coefficients Estimate S.E. MAPE Accuracy 
AR 1 -0.5886 0.1160 

3.87 % 96.13% 
AR 2 -0.1751 0.1153 

 

Estimates of the Holt-Winters exponential smoothing and exponential smoothing models are 
given in Table 9. According to the MAPE and accuracy measures, the ARIMA (2, 2, 0) is a 
better model than the Holt-Winters exponential smoothing and usual exponential smoothing 
models. From this, we can conclude that the ARIMA model is the best fit for the cases of Covid-
19, followed by Holt-Winters model. The forecasting values along with 95% confidence 
intervals are shown in Table 10 and Figure 4. We observe that the ARIMA model captures the 
trend well but it underestimates the actual Covid-19 cases. We therefore suggest to update the 
ARIMA model or to use some generalized versions of the ARIMA models in future studies. 

Table 9: Estimates and MAPE of exponential smoothing models. 

Model Parameter  Estimate MAPE Accuracy 

Holt-Winters Exponential 
Smoothing 

α 0.7431282 

3.93% 96.073% 
β 0.8285607 
a 85779.225 
b 3850.438 

Exponential Smoothing 
α 0.9999527 

10.33% 89.672% 
a 85783.82 

 

Table 10: Forecast using ARIMA and Holt-Winters models for 10 days 

 

Day ARIMA Holt-Winters 
Actual 

Estimate Lower Upper Estimate Lower Upper 
16 May 89631 89000 90262 89630 89034 90226 90648 
17 May 93470 92379 94561 93480 92474 94486 95698 
18 May 97303 95638 98968 97331 95782 98879 100328 
19 May 101141 98813 103468 101181 98994 103368 106480 
20 May 104977 101923 108030 105031 102127 107936 112000 
21 May 108813 104968 112658 108882 105191 112573 118224 
22 May 112649 107955 117344 112732 108191 117273 

 
23 May 116486 110886 122085 116583 111133 122032 

 
24 May 120322 113767 126877 120433 114021 126845 

 
25 May 124158 116598 131719 124284 116857 131710 
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Figure 4. Fitted ARIMA (2, 2, 0) and exponential smoothing models and forecasting from 
ARIMA for Covid-19 cases in India (stars show the actual observations). 
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4. Conclusions 

From the regression analysis, we conclude that the spread of Covid-19 disease grew 
exponentially from March 3rd to April 5th. Further, from April 6th to May 2nd, the cases followed 
a quadratic regression. From May 3rd to May 15th, we see a linear growth of the virus with 
average daily cases of 3584.  

Verma et al. [22] showed the four stages of the epidemic, S1: exponential, S2: power law, S3: 
linear and S4: flat. Therefore, Covid-19 pandemic in India has entered in stage S3 of linear 
growth. In the days to come, it is highly likely that the total cases may start to follow a square 
root equation, i.e. ����~√�. And this may lead to reduction in the daily number of cases (as 
�V���~1/√�, ) leading to flattening of the curve. 

In time series analysis, we conclude that the ARIMA (2, 2, 0) is the best fitting model for the 
cases of Covid-19 with an accuracy of 96.13%. The basic exponential smoothing is not very 
accurate for our case but we see that the Holt-Winters model is around 96.073% accurate. Both 
ARIMA (2, 2, 0) and Holt-Winters models suggest a rise in the number of cases in the coming 
days. We also observed that the ARIMA model underestimates the actual observations. 
Therefore, we suggest updating the ARIMA model time to time or using some generalized 
ARIMA models in future studies. 

We may also conclude that the cases of Covid-19 will rise in the coming days and but slowly, we 
may head towards the reduction in the daily number of cases. But this should be accompanied by 
following of proper safety measures and following the guidelines of the government of India. 
With the gradual relaxation of lockdown measures, if proper precautions are not taken, we may 
see an increase in the daily cases. We must learn to lead our lives by following all the 
precautions once the lockdown measures are relaxed. 
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