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ABSTRACT 

Objectives 

To develop and validate an artificial neural network for the detection of definite radiographic 

sacroiliitis as a manifestation of axial spondyloarthritis. 

Methods 

Conventional radiographs of sacroiliac joints from two independent cohorts of patients with axial 

spondyloarthritis (axSpA) were used. The first cohort consisted of 1669 radiographs and was used for 

training and validation of a neural network. The second cohort consisted of 525 radiographs, of which 

100 radiographs were randomly selected for the test dataset. In both cohorts all radiographs 

underwent central reading; the final decision on the presence or absence of definite radiographic 

sacroiliitis was used as a reference. For performance evaluation of the neural network, areas under 

the receiver operating characteristic curves (AUROC) were calculated. Sensitivity and specificity for the 

prediction cut-offs were calculated. Cohen’s Kappa and the absolute agreement were used to assess 

the agreement between the neural network and the human readers.  

Results 

The neural network achieved an excellent performance in recognition of definite radiographic 

sacroiliitis with AUROC of 0.97 and 0.96 for the validation and test datasets, respectively. Sensitivity 

and specificity for the cut-off weighting both measurements equally were 0.90 and 0.93 for the 

validation and 0.87 and 0.97 for the test set. The Cohen’s kappa between the neural network and the 

reference judgements were 0.80 for both validation and test sets, and the absolute agreement on the 

classification yielded 91% and 90%, respectively. 

Conclusions 

Artificial neural networks enable the accurate detection of definite radiographic sacroiliitis relevant for 

the diagnosis and classification of axSpA.   
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INTRODUCTION 

Axial spondyloarthritis (axSpA) is a chronic inflammatory disorder primarily affecting axial skeleton – 

sacroiliac joints and spine. Detection of radiographic sacroiliitis has been for many years the only 

possibility to establish a definite diagnosis of the disease prior to development of structural damage in 

the spine. The presence of definite radiographic sacroiliitis (defined as sacroiliitis of at least grade 2 

bilaterally or at least grade 3 unilaterally) is also an obligatory criterion in the modified New York 

criteria for ankylosing spondylitis (AS).[1] Although magnetic resonance imaging (MRI) of sacroiliac 

joints nowadays allows to diagnose axSpA earlier, definite radiographic sacroiliitis can be detected at 

the time-point of the diagnosis already in about 33% of the patients with symptom duration of up to 

one year and about 50% of the patients with symptom duration of 2 to 3 years.[2] Conventional 

radiography of the sacroiliac joints is still recommended as the first imaging method if axSpA is 

suspected.[3] Furthermore, radiographic sacroiliitis is included – together with sacroiliitis on MRI – in 

the Assessment of Spondyloarthritis International Society (ASAS) classification criteria for axSpA.[4] 

Depending on the presence or absence of definite radiographic sacroiliitis, axSpA can be classified 

either as radiographic axSpA (r-axSpA, synonymous to AS) or non-radiographic axSpA (nr-axSpA).[5] 

Such a classification might be relevant for both clinical practice (currently, labels for biological disease 

modifying antirheumatic drugs – bDMARDs are different for AS and nr-axSpA) and for research (i.e., 

stratification or selection of patients in a clinical trial). 

Although conventional radiography of sacroiliac joints still plays an important role in clinical practice 

and for clinical trials, the reliability of radiographic sacroiliitis assessment has been reported in a 

number of studies as mostly poor, even if performed by expert readers.[6-10] Furthermore, it was 

shown that untrained local readers perform worse than expert readers specialised in SpA.[10] One 

possible solution to achieve a comparable high accuracy as an expert on detection of radiographic 

sacroiliitis, even in non-specialised clinics, could be development of an artificial intelligence-based 

model for analysis of radiographs.   
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Artificial intelligence-based or deep learning models have already accomplished remarkable results in 

the classification of medical and non-medical data. For example, neural networks have been trained 

to detect breast cancer in mammographs, to classify skin cancer or to label chest radiographs.[11-13] 

Common to all these studies was that they did not develop a de novo model, but rather applied a 

transfer learning approach using a pre-trained network. This allows knowledge of pre-trained models 

from non-medical fields to be used for a new visual task, effectively reducing the amount of data 

required for training while increasing the accuracy of the models. 

In the present study, we therefore aimed to develop and to validate a deep learning artificial neural 

network for the detection of definite radiographic sacroiliitis using centrally scored images from two 

observational cohort studies.  
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METHODS 

Cohort description 

In this project, we used imaging data from two independent sources: 1) Patients With Axial 

Spondyloarthritis: Multicountry Registry of Clinical Characteristics (PROOF), and 2) German 

Spondyloarthritis Inception Cohort (GESPIC). 

PROOF is an ongoing study conducted in clinical practices in 29 countries that includes 2170 adult 

patients diagnosed with axSpA (non-radiographic or radiographic) ≤12 months before study 

enrollment and fulfilling the ASAS classification criteria for axSpA. In 1669 patients, radiographs of 

sacroiliac joints were available for central reading.  

GESPIC is a multicenter inception cohort study conducted in Germany that includes 646 patients with 

SpA.[14] In 525 patients, radiographs of sacroiliac joints were available for central reading. 

 

Assessment of radiographic sacroiliitis 

Baseline radiographs of sacroiliac joints were collected, digitized if necessary, anonymized and 

subsequently centrally scored by trained and calibrated readers according to the grading system of the 

modified New York criteria:[1] 

Grade 0  normal; 

Grade 1  suspicious changes; 

Grade 2  minimal abnormality: small localized areas with erosion or sclerosis, without alteration 

in the joint width; 

Grade 3  unequivocal abnormality: moderate or advanced sacroiliitis with erosions, evidence of 

sclerosis, widening, narrowing, or partial ankylosis; 

Grade 4  severe abnormality: total ankylosis. 

In the PROOF study, images were first assessed by the local readers, then by the central reader 1 (DP) 

who was blinded for the local assessment. In case of a disagreement on the presence of definite 
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radiographic sacroiliitis (grade ≥2 bilaterally or grade ≥3 unilaterally) between the local and central 

reader 1, the radiograph was evaluated by central reader 2 (HH) who was blinded to the previous 

assessments. The final decision on the presence of definite radiographic sacroiliitis and, therefore, on 

classification as nr-axSpA or r-axSpA was made based on the decision of two of the three readers. 

In GESPIC, no local reading of radiographs was demanded; all collected images were scored 

independently by two trained and calibrated central readers (VRR and MT).  

 

Image selection and pre-processing 

The PROOF dataset consisted of 1669 radiographs of sacroiliac joints in DICOM (Digital Imaging and 

Communications in Medicine) format, varying in size, resolution and quality. 18 images were excluded 

due to very poor image quality (Figure 1). The Horos Project DICOM Viewer (version 4.0.0,  

www.horosproject.org) was used to manually adjust the greyscale-levels of all images and to convert 

them afterwards to the Tagged Image File Format (TIFF).  If other body parts such as the thoracic spine 

were included in the image, it was manually cropped to the pelvis. The final data set for building the 

model consisted out of 1651 individual patient images and was split randomly into a training (85% - 

1404 radiographs) and validation data set (15% - 247 radiographs).  

For testing the generalisability across data sets, 100 radiographs of sacroiliac joints with agreement of 

both readers on the presence or absence of definite radiographic sacroiliitis were randomly selected 

from the 525 baseline radiographs of GESPIC and then pre-processed exactly as the training and 

validation data sets.   

 

Model Training 

Model training was performed on a dedicated Ubuntu 18.04 Workstation with two Nvidia GeForce RTX 

2080ti Graphic cards as well as on a GPU node of the Berlin institute of health (BIH) high performance 

computing cluster using four Nvidia Tesla V100 Graphic Cards. All model training was mainly performed 
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using Python (version 3.7), with the fastAI application programming interface which is built on top of 

PyTorch.[15, 16] 

As base model, a convolutional neural network (ResNet-50 architecture), pre-trained on the image net 

data set, consisting of over 14 million images, was used.[17] The images were augmented prior to 

training through various transformations consisting of flipping, rotation of up to 10°, magnification of 

up to 1.1, lighting variations and warping. We further utilised the mix-up method during training, 

originally introduced by Zhang et al,[18] in which images of different classes (nr-axSpA and r-axSpA) 

are combined during training to reduce memorisation of noisy labels and increase overall model 

robustness. As a loss function, we utilised cross entropy label smoothing, which reduced high-

confidence predictions of the models, thus supporting regularisation and avoiding overfitting with 

subsequent better generalisation of the models on new data (e.g. test-data set).  Model training was 

performed with discriminative learning rates and a progressive resizing approach, starting with 

images-sizes of 224x224 pixels (which is the default input-size for the ImageNet pretrained ResNet-50) 

and then increasing the resolution to 512x512 pixels and 768x768 pixels.[19] During training, first only 

the last two classification layers of the model were trained, with the weights of the other network-

layers remaining frozen. A total of 100 epochs were trained, monitoring the area under the receiver-

operating characteristics curve (AUROC) on the validation data set, saving the models weights on every 

improvement. After 100 epochs, the weights of the model with the highest AUROC value were re-

loaded, the model was unfrozen and again trained for 100 epochs, while monitoring the AUROC and 

saving the weights at every improvement. This approach was repeated for all image resolutions. The 

size of the mini batches was 64 for 224x224 pixels, 32 for 512x512 pixels and 84 for 768x768 pixels. 

The training for lower resolutions could be performed at our local Workstation, while for 768x768 

pixels the BIH high performance cluster was used. Overall, model training took approximately 24 hours 

on our local machine and about an additional 6 hours on the cluster. After training, activation maps 

were created to verify that the model used the sacroiliac joints to determine whether definite 

radiographic sacroiliitis was present. 
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Statistical analysis  

Statistical analysis was performed using the R statistical environment (version 3.6), the “tidyverse”, 

“ROCR” and “irr” libraries.[20-23] 

Raw predictions of the model on the validation data set as well as on the test data set using an image 

resolution of 768x768 pixels were exported from the python environment as comma separated values 

and imported into “R”. ROC-curves and precision recall curves were plotted and the area under the 

curve was calculated. A ROC analysis was then performed to identify different prediction cut-offs. 

Sensitivity and specificity of the cut-offs favoring sensitivity, favoring specificity or balancing both were 

calculated. Confusion matrices were constructed using the prior defined cut-offs. Cohen’s kappa and 

the percentage absolute agreement was used to assess the agreement between human and machine. 

95% confidence intervals for calculated kappa values were estimated using bootstrapping with 1000 

repetitions. A p-value of < 0.05 was considered statistically significant. 

 

Patient and Public Involvement 

This study as well as both parental cohorts were done without any formal patient/patient organization 

involvement in study design, development of patient relevant outcomes, interpretation of results, or 

the writing or editing of the manuscript. 

 

Ethics approval 

Both PROOF and GESPIC cohorts were approved by the local ethics committees of each study center 

in accordance with the local laws and regulations and is being conducted in accordance with the 

Declaration of Helsinki and Good Clinical Practice. GESPIC was additionally approved by a central ethics 

committee of the coordinating center. Written informed consent was obtained from all patients.  
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RESULTS 

Definite radiographic sacroiliitis was present in 911 (64.9%) patients of the training set (PROOF, 

n=1404), in 160 (64.8%) patients of the validation set (PROOF, n=247) and in 54 (54%) patients of the 

independent test set (GESPIC, n=100). In a total of 392 (27.9%) and 67 (27.1%) patients in the training 

and validation sets, there was a discrepancy between the local and the central reader 1 that 

automatically resulted in the involvement of the central reader 2. A total of 160 (11.4%) and 39 (15.8%) 

patients in the training and validation sets were re-classified after the central reading, meaning the 

rating from both central readers differed from the rating of the local reader. 

 

Model performance in the validation data set 

On the validation data set, the model achieved an excellent performance. The ROC analysis showed an 

area under the curve (AUROC) of 0.971. For the precision-recall curve a value of 0.989 could be 

calculated. Both the local and central expert readers remained below the ROC and PR curves and were 

therefore outperformed by the accuracy of the model. We propose three cut-offs to convert the 

floating-point predictions into integer values, where a 1 represents the presence of definite 

radiographic sacroiliitis and 0 the absence. Cut-offs weighted sensitivity over specificity and specificity 

over sensitivity, aiming to find the optimal balance between both measurements (defined as maximal 

sum between sensitivity and specificity). The first cut-off value, which favours sensitivity over 

specificity, was calculated to be 0.606, resulting in a sensitivity of 0.994 and a specificity of 0.667 for 

the detection of radiographic SpA. The second cut-off, which favoured specificity over sensitivity, 

was 0.814, resulting in a sensitivity of 0.656 and a specificity of 1. The third cut-off was 0.706, resulting 

in a sensitivity of 0.9 and a specificity of 0.931. The human local reader had a sensitivity of 0.844 and 

a specificity of 0.839. The expert central reader had a higher sensitivity than the local reader with 

0.975, but at the cost of a lower specificity of 0.724. The performance of the model is also shown in 

Figure 2 in the form of ROC curves and precision recall curves and Table 1 as confusion matrices with 

kappa-values and values of absolute agreement. 
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With the cut-off with balanced sensitivity and specificity, the neural network achieved a kappa of 0.80 

(95% CI 0.73 to 0.88) and an absolute agreement of 91% on the final classification. This was superior 

to the agreement between the local reader judgement and the final classification (Cohen’s kappa = 

0.66, 95%CI 0.57 to 0.76; absolute agreement 84%) and even better than the agreement between the 

central reader judgement and the final classification (Cohen’s kappa = 0.74, 95%CI 0.65 to 0.83 

absolute agreement 89%). 

 

Model performance in the independent data set 

In the test data set, the model performance was slightly worse than on the validation data set with an 

AUROC-value of 0.961 and an area under the precision recall curve (AUPRC) value of 0.979.  Again, we 

propose three cut-offs: The first cut-off, which weighs sensitivity over specificity, was 0.58, yielding a 

sensitivity of 1 and a specificity of 0.478. The second cut-off, which weighs specificity over sensitivity, 

was 0.834, based on which a specificity of 1 and a sensitivity of 0.574 could be achieved. The optimal 

performance for both performance measurements could be achieved with a cut-off of 0.791, resulting 

in a sensitivity of 0.87 and specificity of 0.966. Figure 3 shows the ROC- and precision-recall curves for 

the model performance on the test-data set. Figure 4 demonstrates the different values for sensitivity 

and specificity defined for different cut-offs on the test and validation data set. Table 2 provides 

confusion matrices for the three proposed cut-offs on the test data set alongside evaluation of 

agreement in the form of Cohen’s kappa and percentage agreement. Importantly, in this independent 

test set, almost the same performance of the model with balanced sensitivity and specificity could be 

achieved as in the validation data set:  Cohen’s kappa = 0.80, absolute agreement of 90%. 

Figure 5 shows activation maps of the neural network for correct and incorrect predictions on the test- 

and validation data sets.  
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DISCUSSION 

In this study, we successfully developed and tested an artificial intelligence model for the detection of 

radiographic sacroiliitis on conventional radiographs. With the developed model, we could even 

achieve a super-human accuracy on the validation data. Furthermore, we were able to demonstrate 

the generalisability of our model on a test data set of novel data, achieving a performance at least 

comparable to that of two human experts.  

Detection of definite radiographic sacroiliitis is still important for both diagnosis and classification of 

axSpA. At the same time, a poor reliability of sacroiliitis detection by conventional radiographs is well 

known.[6-10]  In the present study we used a large and unique dataset to train, to validate, and to test 

the model. The resulting performance was at least as good as (but most likely better than) the 

performance of an experienced reader with expertise in radiographic sacroiliitis assessment. The 

neural network could achieve almost the same level of performance in both validation and training 

sets indicating high level of reliability and robustness of the model. The developed model can be 

applied, therefore, as an additional diagnostic aid in clinical practice and as a classification tool in 

research projects involving patients with axSpA.   

Neural networks have already been applied to a variety of medical imaging data, including radiographs 

but, to our knowledge, not for the detection of spondyloarthritis.[11-13, 24] However, a low 

generalisability, i.e. poor performance of the models on new data, is an important challenge in training 

neural networks. A new meta-analysis on ‘deep learning performance against healthcare 

professionals’ by Kim et al. revealed methodological shortcomings that are present in many published 

studies on deep learning in medicine.[25] They criticized that many studies either did not compare the 

performance of their model to that of a human domain expert, or evaluated the performance of their 

model on a dataset different from the dataset used to evaluate human performance, so that they 

achieve incorrectly high accuracies, mainly due to over-adaptation, and consequently have a low 

generalisability.[25] Similar observations were made by Yao et al., who showed that although 155 

studies on deep learning in medicine have been published, they often lack external validation data.[26] 
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However, the use of external validation data is an important measure to proof generalisability. It has 

been shown that medical computer vision models adapt poorly to the use of different scanners or 

imaging protocols, and the lack of external validation is likely to result in poor generalisability of the 

model to new data.[27] In a recent study, McKinney et al evaluated the performance of a neural 

network for the detection of breast cancer in mammographs, surpassing human performance.[11] 

They used different data sets from different studies to train and test their developed models and were 

thus able to demonstrate sufficient generalisability of their developed models. 

Similar to their approach, we also used a heterogeneous training data set with radiographs from 

different imaging sites and achieved a good generalisability of the developed model, with the 

performance being only slightly inferior on the test data, which was independent in terms of patients 

and readers, as compared to the validation data.[18, 28, 29] While the heterogeneity of our training 

data set already reduced the risk of overfitting on systematic image noise, e.g. to device specific image 

features, we further increased generalisability by applying progressive resizing and the integration of 

mixup as well label-smoothing into model-training. 

Our study has some limitations. First, the reference for the training of the model was the judgement 

of a limited number (2 or, in the case of discrepancy, 2 out of 3) of human readers. Although both 

central readers in the PROOF study had many years of experience in reading of radiographs of sacroiliac 

joints, the complex anatomy of sacroiliac joints and heterogeneity of radiographic techniques and 

quality have brought an inevitable portion of uncertainty in the final classification used as a reference. 

In the independent dataset, we selected only cases where both readers agreed to be the reference 

standard for the evaluation of the model. This approach was chosen because we believe that these 

cases are most likely true positive or true negative ones. Other approaches, such as evaluating all cases, 

in which the readers disagreed, to be negative, were discarded as we saw a risk of biasing the test data 

set and thereby distorting the evaluation of the model performance. Remarkably, despite all the 

uncertainty related to the assessment of radiographic sacroiliitis, a high level of agreement between 
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the neural network’s judgement and the consensus judgement by human could be achieved in both 

validation and test sets. 

In conclusion, convolutional neural networks can reliably detect definite radiographic sacroiliitis with 

a performance similar or even superior to that of a human expert reader.   
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FIGURES AND TABLES 

Figure 1 – Flowchart for data collection 

 

Figure 1 shows a flowchart for selection of cases from the PROOF (training and validation set) 

and GESPIC (test set) studies. Overall, 18 radiographs had to be excluded from the PROOF 

study, mostly because of low image resolution or atypical pelvic projections of the 

radiographs, which were not in accordance to standardised pelvic radiographs. For the test 

data set, 100 images with the agreement on the presence or absence of definite radiographic 

sacroiliitis were randomly selected and subsequently used for the final model evaluation.  
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Figure 2 – Receiver operating characteristic and precision recall curves for the validation data set 

 

Figure 2 shows the receiver operation characteristics curve and the precision recall curve for the model performance in detection of definite radiographic 

sacroiliitis (classification as non-radiographic or radiographic axSpA) on the validation data set as well as the corresponding area under the curve (AUC). Individual 

values for both expert readers are displayed as a triangle or period.  
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Figure 3 - Receiver operating characteristic and precision recall curves for the test data set 

 

Figure 3 shows the receiver operation characteristics curve and the precision recall curve for the model performance performance in detection of definite 

radiographic sacroiliitis (classification as non-radiographic or radiographic axSpA) on the test data set alongside respective area under the curve (AUC). Since the 

reference standard here was the agreement of two independent readers, a presentation of the accuracy of these readers was not performed.   
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Figure 4 – Sensitivity and specificity on varying prediction-cut-off values  

 
Figure 4 shows the sensitivity and specificity on the test and validation data set with varying cut-off values for the model predictions on the presence of 

radiographic sacroiliitis (classification as non-radiographic or radiographic axSpA). We analyzed three cut-off values, indicated by vertical dashed lines. Cut-off 1 

weights sensitivity over specificity, cut-off 2 weights specificity over sensitivity and cut-off 3 aims to be the optimal balance between the two performance 

measurements.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.19.20105304doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.19.20105304


   
 

   
 

25 

Figure 5 – Example activation maps of the neural network 

 

Figure 5 shows activation maps of the model on example images taken from the validation and test 

data sets. It can be seen, that the sacroiliac joints are the most decisive for the model’s predictions, 

but the lumbo-sacral joint and the hip joints also appear to be partially relevant for some predictions.

 

 

ACTIVATION MAPS 
actual class/predicted class/probability 

Validation dataset 
 

Test dataset 
 

 
True positive 

r-axSpA/r-axSpA/0.885

 

r-axSpA/r-axSpA/0.890

 

 r-axSpA/r-axSpA/0.842

 

r-axSpA/r-axSpA/0.880 

 

r-axSpA/r-axSpA/0.899

 

r-axSpA/r-axSpA/0.895

 
 

 r-axSpA/r-axSpA/0.859

 

r-axSpA/r-axSpA/0.864

 

 
True negative 

nr-axSpA/nr-axSpA/0.332

 

nr-axSpA/nr-axSpA/0.369

 
 

 nr-axSpA/nr-axSpA/0.396

 

nr-axSpA/nr-axSpA/0.362

 

 
False  

r-axSpA/nr-axSpA/0.680

 

nr-axSpA/r-axSpA/0.717

 

 r-axSpA/nr-axSpA/0.674

 

nr-axSpA/r-axSpA/0.735
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Table 1 – Confusion matrices on the presence or absence of definite radiographic 

sacroiliitis for the validation data set 

Cut-off 1, favouring sensitivity over specificity 

 Reference negative Reference positive  

Model negative 58 2 60 

Model positive 29 158 187 

 87 160 247 

Cohen’s Kappa:  0.704 (95% CI 0.611 to 0.794) Absolute agreement: n=216 (87.4%) 

    

Cut-off 2, favouring specificity over sensitivity 

 Reference negative Reference positive  

Model negative 87 56 143 

Model positive 0 104 104 

 87 160 247 

Cohen’s Kappa:  0.567 (95% CI 0.475 to 0.657) Absolute agreement n=191 (77.3%) 

    

Cut-off 3, optimal relationship between sensitivity and specificity 

 Reference negative Reference positive  

Model negative 81 17 98 

Model positive 6 143 149 

 87 160 247 

Cohen’s Kappa:  0.802 (95% CI 0.731 to 0.875) Absolute agreement: n=224 (90.7%) 

 

Table 1 provides confusion matrices for the three proposed cut-offs for the model-predictions for the 

presence of definite radiographic sacroiliitis on the validation data set alongside the agreement 

between ratings measured by Cohen’s Kappa and the absolute percentage agreement. Cut-off 1 

weights sensitivity more than specificity, while cut-off 2 weights specificity more than sensitivity and 

cut-off 3 aims to be the optimal trade-off between sensitivity and specificity. 

The reference was the presence of definite radiographic sacroiliitis according to the majority decision 

of three readers in the PROOF cohort.   
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Table 2 – Confusion matrices on the presence or absence of definite radiographic 

sacroiliitis for the independent test data set  

Cut-off 1, favouring sensitivity over specificity 

 Reference negative Reference positive  

Model negative 24 1 25 

Model positive 22 53 75 

 46 54 100 

Cohens Kappa:  0.521 (95% CI 0.372-0.672) Absolute agreement n= 77 (77%) 
    

Cut-off 2, favouring specificity over sensitivity 

 Reference negative Reference positive  

Model negative 46 24 70 

Model positive 0 30 30 

 46 54 100 

Cohens Kappa:  0.535 (95% CI 0.389-0.680) Absolute agreement: n=76 (76%) 
    

Cut-off 3, optimal relationship between sensitivity and specificity 

 Reference negative Reference positive  

Model negative 44 8 52 

Model positive 2 46 48 

 46 54 100 

Cohens Kappa:  0.801 (95% CI 0.688-0.919) Absolute agreement: n=90 (90%) 

 

Table 2 provides confusion matrices for the three proposed cut-offs for the raw model-predictions for 

the presence of definite radiographic sacroiliitis on the test data set alongside the agreement between 

ratings measured by Cohens Kappa and the absolute percentage agreement. Cut-off 1 weights 

sensitivity more than specificity, while cut-off 2 weights specificity more than sensitivity and cut-off 3 

aims to be the optimal trade-off between sensitivity and specificity. The reference was the agreement 

of two central readers on the presence of definite radiographic sacroiliitis in the GESPIC cohort.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.19.20105304doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.19.20105304


   
 

   
 

28 

KEY MESSAGES 

What is already known about this subject?  

• Radiographs of the sacroiliac joints are commonly used for the diagnosis and classification of axial 

spondyloarthritis, but the reliability of the definite radiographic sacroiliitis detection is usually low. 

What does this study add? 

• Convolutional neural networks can detect radiographic sacroiliitis on pelvic radiographs with at 

least the same level of accuracy as a human expert. 

How might this impact on clinical practice or future developments? 

• Training of the proposed computer vision model could thus enable highly accurate detection of 

definite radiographic sacroiliitis, even in non-specialised sites.   
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