Abstract
This paper develops an algorithm to predict the number of Covid-19 patients who will start to use ventilators tomorrow. This algorithm is intended to be utilized by a large hospital or a group of coordinated hospitals at the end of each day (e.g. 8pm) when the current number of non-ventilated Covid-19 patients and the predicated number of Covid-19 admissions for tomorrow are available. The predicted number of new admissions can be replaced by the numbers of Covid-19 admissions in the previous d days (including today) for some integer d ≥ 1 when such data is available. In our simulation model that is calibrated with New York City’s Covid-19 data, our predictions have consistently provided reliable estimates of the number of the ventilatorstarts next day. This algorithm has been implemented through a web interface at covidvent.github.io, which is available for public usage.
Utilizing this algorithm, our paper also suggests a ventilator ordering and returning policy. The policy will dictate at the end of each day how many ventilators should be ordered tonight from a central stockpile so that they will arrive by tomorrow morning and how many ventilators should be returned tomorrow morning to the central stockpile. In 100 runs of operating our ventilator order and return policy, no patients were denied of ventilation and there was no excessive inventory of ventilators kept at hospitals.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No external funding was received
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
--
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
* We thank David Shmoys for coordinating Cornell ORIE Covid-19 projects including this one. We thank Shane Henderson and Gloria Shen for improving the exposition of this paper.
Data Availability
The data is available through a web interface at covidvent.github.io