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ABSTRACT 

We report a large meta-analysis of depression using data from the Million Veteran 

Program (MVP), 23andMe Inc., UK Biobank, and FinnGen; including individuals of European 

ancestry (n=1,154,267; 340,591 cases) and African ancestry (n=59,600; 25,843 cases).  We 

identified 223 and 233 independent SNPs associated with depression in European ancestry and 

transancestral analysis, respectively.  Genetic correlations within the MVP cohort across 

electronic health records diagnosis, survey self-report of diagnosis, and a 2-item depression 

screen exceeded 0.81.  Using transcriptome-wide association study (TWAS) we found significant 

associations for gene expression in several brain regions, including hypothalamus (NEGR1, 

p=3.19x10-25) and nucleus accumbens (DRD2, p=1.87x10-20).  178 genomic risk loci were fine-

mapped to find likely causal variants.  We identified likely pathogenicity in these variants and 

overlapping gene expression for 17 genes from our TWAS, including TRAF3.  This study sheds 

light on the genetic architecture of depression and provides new insight into the 

interrelatedness of complex psychiatric traits. 
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INTRODUCTION 

Depression is the most common mental health condition, with lifetime prevalence in the 

U.S. of more than 20%1.  Over 300 million people, or 4.4% of the world’s population, are 

estimated to be affected by depression, which imposes substantial costs on individuals and on 

society at large.  Health expenditures exceeded $90 billion for treatment of depression and 

anxiety disorders in the U.S. in 2013.2  There also is a substantial personal cost to depression; 

for example, 60% of people who die by suicide have a diagnosed mood disorder.  Indeed, 

depression and mood disorders have been shown to have genetic overlap with suicidal 

behavior in several recent studies.3-6 

Only recently has substantial progress has been made in understanding the underlying 

genetic architecture of depression, led by the Psychiatric Genomics Consortium (PGC) and a 

large meta-analysis combining results from PGC,7 UKB,8 FinnGen 

(http://r2.finngen.fi/pheno/F5_MOOD) and 23andMe.9,10  In this article, we describe genome-

wide association analysis of ~310,000 participants from the U.S. Department of Veterans Affairs 

(VA) Million Veteran Program (MVP).  MVP is one of the largest and most diverse biobanks in 

the world with genetic and electronic health record data available.  When combined with the 

prior analysis from PGC, UK Biobank, and 23andMe,10  over one million participants were 

available for this study, the largest genetic analysis of depression to date.   

We identified 178 genetic risk loci and 223 independently significant SNPs.  We used the 

summary statistics from this analysis to investigate genetic correlations between depression, 
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and several cohorts with different phenotypic assessments as well as overlap with other related 

traits.  We used genomic SEM to examine shared genetic architecture and pleiotropy among 

complex traits.  We also investigated functional consequences through fine mapping analysis, 

transcriptomic enrichment with respect to multiple brain tissues, and functional annotation. 

The results provide a deep look into the genetic architecture of depression and the underlying 

complex biology. 
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Results 

Primary analysis. For the International Classification of Diseases (ICD) code definition of 

depression (hereafter, “ICD-Depression”) (see Online Methods for detailed diagnosis 

definitions), the phenotype with the most available data for the MVP cohort, we conducted a 

GWAS on 250,215 European individuals (83,810 cases).  These MVP data were then included in 

a meta-analysis in METAL using inverse variance weighting with available depression GWAS 

summary statistics from three large cohorts of European-ancestry subjects (Figure 1a, Table 1): 

the PGC and the UK Biobank,10 FinnGen (http://r2.finngen.fi/pheno/F5_MOOD), and 23andMe,9 

for a total of 1,154,267 subjects of European ancestry (330,173 cases).  We identified 223 

independent significant SNPs at 178 genomic risk loci in the primary analysis of European 

ancestry (Figure 1).  We also conducted a GWAS in the African American (AA) sample from MVP 

in 59,600 participants (25,843 cases).  There were no GWS findings from our primary analysis of 

ICD-Depression in African American ancestry, so examined overlap with the 223 GWS SNPs 

from our primary ICD-Depression meta-analysis of European American ancestry.  Of the 223 

GWS SNPs from the primary analysis, 206 were available following QC in the AA cohort.  61% 

(n=125) of the EUR SNPs had the same direction of effect in AAs, with 20 nominally significant 

(p<0.05) and 1 surviving Bonferroni correction (Figure 5).  Finally, we conducted a 

transancestral meta-analysis by combining the results from the primary GWAS from European 

and African ancestry.  This transancestral analysis of 366,434 cases and 847,433 controls 

identified 233 independent significant SNPs at 183 genomic risk loci (Figure 5).    

Secondary phenotype definitions.  A similar meta-analysis was conducted using self-reported 

(SR)-Depression (see Methods) from MVP, conducted on 210,331 individuals who completed 
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survey items on self-reported diagnosis of depression by a medical professional; the total meta-

analysis with the traits from PGC, UK Biobank and FinnGen included 1,114,383 subjects.  A third 

analysis considered depressive symptoms in the past two weeks from the Patient Health 

Questionniare-2 (PHQ-2),11 a 2-item scale which assesses depressive symptoms within the past 

two weeks (Table S3).  For this phenotype, data were only available from MVP and UK Biobank, 

with a total sample of 286,821 European participants. 

Linkage Disequilibrium Score Regression (LDSC).  LDSC was used in two ways:  1) to identify 

genetic correlations and SNP-based heritability within each of the depression cohorts and 

phenotypes; and 2) to identify genetic correlation with other traits based on the primary meta-

analysis (ICD-Depression).    Heritability in the primary ICD-Depression meta-analysis was 11.3% 

(z= 29.63, sample prevalence 28.6%, population prevalence 20%), while heritability in the 

secondary analyses of SR-depression and PHQ2 were 7.8% (z=28.74, sample prevalence 27.1%, 

population prevalence 20%) and 5.5% (z=14.0), respectively.  Genetic correlation between 

depression phenotypes ranged between 0.59 and 1.21, with lower rg identified between 

measures of depressive symptoms and case-control phenotypes (Figure 2a).  Some of the 

genetic correlations from the LD score regression were greater than 1; genetic correlation from 

ldsc does not bound to 1, and the instances with values higher than 1 occurred when testing in 

the same sample with similar phenotype (rg 1.07, SE=0.0343) between ICD-Depression and SR-

Depression within MVP), or between the somewhat smaller FinnGen sample and the large 

PGC/UKB broad depression (rg 1.21, SE=0.25) and 23andMe (rg=1.07, SE=0.21) samples.  LD-

intercept (1.03, SE 0.011) and attenuation ratio (0.0297, SE 0.011) of the LD score regression 

revealed minimal evidence for inflation or confounding. 
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Based on significant heritability estimates (h2 z>4), 1,457 traits from available GWAS 

summary statistics were sufficiently powered to assess genetic correlation with ICD-Depression. 

After multiple testing correction (p = 0.05/1,457 trait pairs = 3.43x10-5), 669 phenotypes were 

significantly genetically correlated with ICD-Depression (Figure 2b, Supplementary File 1). The 

most significant phenotypic correlations with ICD-Depression from each depressive trait 

category were: (i)  depressive symptoms (SSGAC) rg =0.943±0.029, p=1.76x10-228, (ii)  depression 

medications (FinnGen) rg =0.890±0.063, p=6.22x10-45, (iii)  major depressive disorder 

(Psychiatry) rg =1.02±0.017, p<1.39x10-300 (note that LD score regression does not bound 

genetic correlation to 1),12 and (iv)  frequency of tiredness/lethargy in last 2 weeks (UKB Field ID 

2080) rg =0.684±0.018, p<1.39x10-300. No brain imaging phenotype met corrected significance 

criteria for genetic correlation with ICD-Depression; the most significantly genetically correlated 

brain imaging phenotype, using data provided from the Oxford Brain Imaging Genetics (BIG) 

project,13 relative to ICD-Depression was left subcallosal cortex grey matter volume (BIG Field 

ID 0078) rg =0.205±0.061, p=9.00x10-4. 

Transcriptome-Wide Association Study (TWAS).  Gene-based association analysis was 

performed by integrating GWAS association statistics and eQTL data of all brain and whole-

blood tissues from GTEx v8. To prioritize target genes further, joint effects of gene expression 

correlation across tissues was leveraged using S-MultiXcan.14  153 genes and their best 

representative tissues were below the Bonferroni corrected significance threshold (1.79e-7) for 

predicted gene expression in 14 tissues (Figure 3A; Supplementary file 2).  Top genes for each 

tissue tested were: Amygdala (ZKSCAN4, p=1.65x10-12), anterior cingulate cortex (L3MBTL2, 

p=1.09x10-14), caudate (ZNF184, p=1.85x10-9), cerebellar hemisphere (PGBD1, p=1.67x10-13), 
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cerebellum (ZSCAN9, p=8.4x10-17), cortex (TMEM161B, p=1.84x10-12), frontal cortex (FAM120A, 

p=3.25x10-10), hippocampus (ZSCAN12, p=1.14x10-18), hypothalamus (NEGR1, p=3.19x10-25), 

nucleus accumbens (DRD2, p=1.87x10-20), putamen (LIN28B-AS1, p=2.13x10-12), spinal cord c-1 

(HIST1H1B, p=2.90x10-18), substantia nigra (RP11-318C24.2, p=2.41x10-12), and whole blood 

(ZNF165, p=4.01x10-11). 

Variant Prioritization. All 178 risk loci were fine-mapped (Figure 3B; bottom panel); 1620 SNPs 

in the causal set out of 14,016 GWS hits have higher posterior probability for causal relation 

with ICD-Depression (Figure 3B; middle panel).  The SNPs with casual posterior probability ≥ 

30% were annotated with Combined Annotation Dependent Depletion (CADD) score.15  There 

were 19 SNPs with CADD scores >10, representing the top 1% of pathogenic variants across the 

human genome (Figure 3B; top panel).  These SNPs were annotated to genes positioned within 

±100kb. We found 17 genes overlapping with significant genes identified from cross-tissue 

TWAS analysis. Each gene-tissue pair was tested for colocalization of the region for eQTL and 

GWAS. The coloc
16 method tests probability of four hypotheses (H0-4).  Of these, H4 tests the 

hypothesis that the same locus is shared between GWAS and tissue-specific eQTL.  Loci that 

were found to have 80% or higher probability for H4 were compared, to understand the LD 

structure and most prominent variant being shared by GWAS and eQTL.  These gene-tissue 

pairs were CCDC71-Amygdala (H4-PP: 93.1%), FADS1-Cerebellar hemisphere (H4-PP: 96.6%), 

SPPL3-Frontal Cortex (H4-PP: 83.9%), TRAF3-Hypothalamus (H4-PP: 95.2%) and LAMB2-whole 

blood (H4-PP: 79.9%) (Supplementary file 2). 

Tissue expression analysis and genome-wide gene-based association study (GWGAS).  GWGAS 

conducted in MAGMA using the ICD-Depression GWAS meta-analysis identified 426 significant 
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genes after Bonferroni correction for 16,038 protein coding genes.  MAGMA tissue expression 

analysis identified enrichment across all brain tissues and pituitary using data from GTEX v8, 

with the strongest findings for Brodmann area 9 (p=7.31x10-16), and no enrichment in non-

neuronal tissue (Figure S1).   

Gene Ontology.  Gene ontology analysis conducted in ShinyGO17 identified 219  biological 

processes with FDR < 0.05, with top findings involved in nervous system development 

(q=1.20x10-10), synapse assembly (q=9.75x10-9), and organization (q=9.75x10-9) (Table S1).   

Drug mapping.  The Manually Annotated Targets and Drugs Online Resource (MATADOR)18 

database was tested for enrichment for 426 significant genes from the MAGMA analysis.  This 

analysis identified 10 drug annotations with FDR < 0.05 including; diethylstilbestrol, Implanon, 

tamoxifen, raloxifene, nicotine, cocaine, cyclothiazide, felbamate, and riluzole.   

 

Latent Causal Variable.  After filtering for suitable traits pairs with LCV-estimated h2 z-scores≥4, 

1,667 phenotypes were powered to evaluate causal estimates relative to ICD-Depression; no 

statistically significant putatively causal genetic causality proportions (gĉps) were detected. 

Genomic structural equation modeling (SEM) was used to evaluate how the ICD-Depression 

phenotype relates to 15 previously published large-scale GWAS of mental health and 

psychiatric phenotypes (See Online Methods and Discussion).  Exploratory factor analysis (EFA) 

was conducted simultaneously on all traits and supported three- (cumulative variance = 0.605) 

and four- factor models (cumulative variance = 0.624) where each factor contributed over 10% 

to the cumulative explained variance.  Anorexia nervosa did not load onto any factor during EFA 
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and was therefore excluded from confirmatory factor analyses (CFA).  CFA did not converge on 

a four-factor model due to high correlation between two factors.  CFA of the three-factor 

model produced modest fit (comparative fit index = 0.884; Figure 4, Supplementary File 3).  

Factor 1 generally represented internalizing phenotypes with major contributions from 

depressive symptoms(loading = 0.95 ± 0.03), anxiety symptoms (loading = 0.92 ± 0.03), and 

posttraumatic stress disorder (loading = 0.92 ± 0.04).  Factor 2 represented externalizing 

phenotypes with major contributions from risky behavior (loading = 0.85 ± 0.03) and cannabis 

use disorder (loading = 0.77 ± 0.04). Factor 3 represented educational attainment (loading = 

0.99 ± 0.03) and cognitive performance (loading = 0.68 ± 0.03). ICD-Depression (DEP, Figure 4, 

Supplementary File 3) loaded onto factors 1 and, less strongly, on factor 2, independent of its 

covariance with all other phenotypes (DEP loading on Factor 1 = 0.77 ± 0.02; DEP loading on 

Factor 2 = 0.14 ± 0.02). 

Ethics statement: The Central VA Institutional Review Board (IRB) and site-specific IRBs 

approved the MVP study. All relevant ethical regulations for work with human subjects were 

followed in the conduct of the study, and written informed consent was obtained from all 

participants. 

Discussion 

We present the first genetic study of depression including more than a million 

informative participants, with new large analyses from the Million Veteran Program meta-

analyzed with prior results from the PGC + UK Biobank, 23andMe, and FinnGen, the largest 

analysis so far in what is a fast-moving field. We investigated genetic correlation between three 
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different definitions (ICD-Depression, SR-Depression, and PHQ2) of the depression phenotype 

within the MVP cohort.  We identified 223 independently significant SNPs in 178 genomic loci 

associated with the primary meta-analysis, using an ICD code derived definition of depression 

for the MVP sample and GWAS summary statistics from 23andMe, UKB, PGC, and FinnGen.  

This is an improvement of 77 loci over the largest previous study that investigated a 

comparable phenotype.10 As these cohorts used somewhat different definitions for depression 

(Table1, Figure 1a, Methods), we also used LDSC to examine genetic correlations between MVP 

depression phenotypes and these differentially defined depression phenotypes in other outside 

independent cohorts.  We investigated genetic correlation with 1,457 traits using available 

GWAS data, identifying 669 that were significantly correlated.  We also used genomic structural 

equation modeling to evaluate how depression relates to other mental health and psychiatric 

phenotypes.  

The MVP sample added substantially to our ability to discover new loci.  Two of the 

most powerful prior studies conducted to date7,8 had substantial contributions from the UK 

Biobank.  UK Biobank and MVP represent large and non-overlapping samples with consistent 

phenotypic assessments.  This consistency in collection reduces ascertainment heterogeneity 

within samples and likely increases power to detect new loci.  Adding another massive 

homogenously phenotyped sample here allowed us to discover 77 more loci than previously 

identified.  It also provides a novel large independent cohort for conducting post-GWAS 

analyses, leveraging the substantial resources already produced by others in the field to 

improve understanding. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.18.20100685doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.18.20100685


MVP is very informative for depression and related traits with several available 

measures, so we considered several different diagnosis definitions (Table 1), as follows. In the 

MVP, we considered (1) an ICD code-based algorithm to determine depression case status 

based upon diagnosis codes captured in the VA electronic health records (ICD-Depression), (2) 

self-reported diagnosis of depression as reported in the MVP Baseline Survey (SR-Depression), 

and (3) the 2 item PHQ scale of depressive symptoms in the past 2 weeks, included in the MVP 

Lifestyle Survey (depressive symptoms).  Genetic correlations between these traits were high (rg 

0.81-1.07).  We consider the first of these -- ICD-Depression -- to be our “primary” analysis 

based on the larger explained heritability and sample size. 

For meta-analyses of ICD-Depression and SR-Depression, we also used available GWAS 

summary statistics from 23andMe, UKB, PGC, and FinnGen (Table 1).  Genetic correlation was 

conducted between the phenotypes to be meta-analyzed together to quantify potential 

heterogeneity between the studies to be combined.  These studies used a variety of phenotype 

definitions, with some combining clinical diagnosis of depression based on structured interview 

and other broader methods,7 to self-reported treatment,7 to self-reported items on 

questionairres.9  This analysis is discussed in greater detail in the methods, but the genetic 

correlations between all traits ranged from 0.71-0.84. 

The lead SNP from our primary analysis, rs7531118, (MAF=0.48, p=8.9x10-29) maps close 

to the neuronal growth regulator 1 gene (NEGR1) and is a brain eQTL for NEGR1.  This SNP was 

at least nominally significant with concordant effect direction in all four studies included in this 

meta-analysis (MVP p=4.9x10-5, FinnGen p=0.04, PGC+UKB p=1.6x10-17, 23andMe p=2.8x10-8).  

The S-MultiXcan analysis prioritized hypothalamus as related to NEGR1.    Recent work in Negr -
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/- mice have shown irregularities in several brain regions, including reduced brain volume in the 

hippocampus.19  Negr -/- mice showed abnormalities in social behavior and non-social interest. 

19  Another study of Negr -/- mice identified a variety of depression-like and anxiety-like 

features in behavioral assays such as elevated plus maze and forced swim tests.20   

The D2 dopamine receptor (DRD2) was another top finding from the TWAS analysis 

(Figure 3a), with significant predicted decreased expression in the nucleus accumbens.  The 

mesolimbic dopamine reward circuit, of which nucleus accumbens is a critical part, has long 

been implicated in depression.21  A recent optogenetic study examining dopaminergic ventral 

tegmental area projections into nucleus accumbens found that dopamine receptors are 

required for the action of these neurons in depression-related escape behavior.22  Depression -

like behavior in animals might be related to depression in humans through links to the reward 

system and symptoms of anhedonia.  A recent randomized proof-of-mechanism trial23 

investigated κ-opioid antagonists (KOR) as treatment for anhedonia symptoms.  JNJ-67953964 

was found to increase VTA activation relative to placebo during reward anticipation, 

highlighting the potential therapeutic mechanism by which KOR is thought to release inhibition 

on dopaminergic projections.  The group receiving JNJ-67953964 showed reduced anhedonic 

symptoms relative to controls.23  That this gene and brain tissue emerged from hypothesis-free 

GWAS and TWAS tissue enrichment is a remarkable positive control with respect to known 

biology, and points to the potential value of other novel findings from this kind of research.   

The CUGBP Elav-Like Family Member 4 (CELF4) gene has been highlighted recently in 

another depression GWAS study,8 and was our top finding for convergence between functional 

variant prioritization and multi-tissue TWAS results (Figure 3B, Supplemental Data Table 4).  
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This gene is important in developmental disorders, with deletions of the 18q12.2 region which 

encompass the gene associated with autism spectrum disorder.24,25  Celf4 mutant mice show 

aberrations in sodium channel function, perhaps through increased NAv 1.6 in the axon initial 

segment of excitatory neurons, and increased susceptibility to seizures.26  We agree with the 

assertion made in previous studies, now with additional functional and expression evidence, 

that CELF4 should be a focus of future brain research in depression and depression-like 

behaviors to elucidate its mechanism.    

Genetic correlations with available GWAS summary statistics from 1,457 traits were 

conducted to assess overlap with other traits.  There was high genetic correlation between our 

ICD-Depression meta-analysis and depression medication prescription in FinnGen (rg=0.89).  

This could be of value in evaluating depression phenotypes from large cohorts with access to 

linked electronic health records; anti-depressant medication prescription may be a viable proxy 

phenotype for depression diagnosis. 

We used ShinyGO17 to identify overlap between top MAGMA genes and drugs of 

interest (Figure S2).  Riluzole, an NMDA antagonist currently used to treat amyotrophic lateral 

sclerosis, was one of our top findings.  This drug is currently in trials for combination therapy for 

treatment resistant depression.27  Another drug, cyclothiazide, is an allosteric modulator of 

AMPA (glutamatergic) receptors. Allosteric modulation of glutamatergic receptors has been 

considered a mechanistic treatment target for depression.28 This screen also identified an anti-

seizure medication, felbamate, which has side effects including increasing depressive 

symptoms, suicidal ideation, and attempts.  These enrichments, from hypothesis-free 
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association with depression, show converging independent evidence from genetics of existing 

pharmacological targets based on underlying biological mechanisms.   

Genomic SEM was used to investigate relationships between ICD-Depression and 15 

other mental health and psychiatric phenotypes (Figure 4, Supplementary File 3).  All traits 

tested except anorexia nervosa loaded onto at least one factor during exploratory analysis.  

Trait summary statistics come from the largest studies available. We identified three factors, 

with ICD-Depression loading onto the first two independently of covariance with the other 

phenotypes.  Factor 1 may be thought to represent internalizing phenotypes, with major 

contributions from ICD-Depression, anxiety symptoms, and posttraumatic stress disorder.  ICD-

Depression also loaded (but less strongly) onto factor 2, which broadly represents externalizing 

phenotypes and psychosis, with the major contributions coming from risky behavior and 

cannabis use disorder.  ICD-Depression did not load onto factor 3, which was mostly 

contributed to by educational attainment and cognitive performance and thus may represent a 

cognitive domain.  Many of these GWAS studies, this one included, align themselves in ways 

consistent with existing theories of psychopathology, when clustered by genomic SEM.   

We prioritized variants using biologically and statistically informed annotations.  To 

prioritize genes and their target tissues we integrated both transcriptomics and CADD score 

prioritized variants.  This method aided in the identification of shared causal loci for phenotype 

and tissue-specific eQTLs as evidenced by the high probability for 5 of the 17 genes tested.  

SNPs at CCDC71 (“Coiled-Coil Domain Containing 71”) have been reported to be associated with 

depressive symptoms in a multivariate genome wide association meta-analysis, and our 

prioritized SNP is in strong LD with their lead SNP (current study rs7617480, r2=0.83, D’=1.0).
29  
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The FADS1 protein product, “Fatty Acid Desaturase 1” is involved in fatty-acid regulation and 

variants in this region have been reported to be associated with depression and substance use 

disorders.  Treatment with omega-3 fatty acid may be beneficial in treatment of depression;30 

though a role for omega-3 supplementation in treatment of depression is still controversial, and 

dietary omega-3 is probably insufficient to drive associations with (or treatment for) 

depression. There is nevertheless consistent evidence in the literature for an association with 

depleted omega-3 and increased depression risk.30  Variants in SPPL3, encoding “Signal Peptide 

Peptidase Like 3”, were reported to be associated with risk to major depression by Hyde and 

colleagues.9  The TRAF3 protein product, “TNF Receptor Associated Factor 3”,  controls type-1 

interferon response,31 and it has been reported that individuals treated with interferon are at 

high risk to develop depressive symptoms.32  LAMB2 is involved in neuropathic pain and 

influencing gene expression changes in brain pathways implicated in depression.33 

Because no GWS findings were identified in our primary analysis of African ancestry we 

performed cross ancestry lookups in the summary statistics of European ancestry.   Of 223 GWS 

SNPs from the European ancestry meta-analysis, 206 were available in African ancestry, 61% 

(n=125) had the same effect direction, 20 were nominally significant (p<0.05), and 1 SNP 

survived Bonferroni correction (Figure 5).  This SNP that survived multiple testing correction 

(rs1950829 EUR p=7.24Ex10-19, AFR p=9.34x10-6), is in an intron of the “Leucine rich repeat 

fibronectin type III domain containing 5” (LRFN5) gene.  This gene was previously detected in 

genome-wide gene- and pathway based analyses of depressive symptom burden conducted in 

three cohorts from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), the Health and 

Retirement Study (HRS), and the Indiana Memory and Aging Study (IMAS).34  As larger samples 
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are collected for more diverse ancestry groups  we expect to see more novel loci identified for 

non-European populations.  Finally, we conducted a transancestry meta-analysis by combining 

studies of African and European ancestries in 1,213,867 participants, thereby identifying 233 

independent SNPs and 183 risk loci.  For now, trans-ancestral analysis is a way to leverage 

results from understudied populations. 

We recognize limitations in our study.  Maximizing the power available for this analysis 

comes at the cost of accepting broader biobank phenotyping approaches, which may reduce 

specificity of findings for the core depression phenotype.35  Nonetheless, strong genetic 

correlations between the ICD derived depression with the broader definitions provide 

confidence in internal consistency, and future studies could look to further refine phenotyping.  

While all correlations were significant, there was substantial variance (95% CI= 0.72-1.7) in 

correlations with the FinnGen sample, probably due to power and heterogeneity in the broad 

phenotype we used from this sample.  Finally, other ancestries remain understudied in relation 

to Europeans.  Perhaps the initial results reported here for the MVP African ancestry sample 

can help advance the field by encouraging additional concerted research in African and other 

non-European ancestral groups.   

In summary, we identified substantially more loci than previous studies due to increased 

power, and several of these loci serve functions that should prioritize their further study in the 

pathology of major depression.  We examined genetic correlations between depression GWAS 

other external phenotypes, largely confirming and strengthening previous observations.  We 

showed substantial enrichments for several brain regions, such as hypothalamus and frontal 

cortex, known to be important for depression.  We found overlapping biology with novel 
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potential treatments using gene and drug-based enrichments.  We used genomic structural 

equation modeling to show how the genetic architecture of depression fits into the context of 

other large GWAS of mental disorders and cognition, identifying emergent overlap from 

hypothesis-free GWAS approaches with existing theories of psychopathology with regard to 

clusters of internalizing and externalizing disorders. 

Online Methods 

Participants.  The MVP cohort has been previously described.36-39  GWAS was conducted in each 

of two tranches of data separately by ancestry, depending upon when the data became 

available.  Ancestry was assigned using 10 principal components (PCs) and the 1000 genomes 

project phase 3 EUR and AFR reference within each tranche of data.  For the analysis of the 

quantitative phenotype we also performed a GWAS in the UK Biobank sample.  Finally, we 

conducted GWAS meta-analyses of traits related to depression using data from 4 large cohorts 

(Table 1, Figure 1a): the Million Veteran Program (MVP), 34, 40 the PGC/UK Biobank,10 FinnGen, 

and 23andMe.9  For the ICD definition of depression, the phenotype with the most available 

data for the MVP cohort, there were 1,154,267 total subjects for primary meta-analysis.  For 

the secondary case control meta-analysis, we performed a similar analysis except we replaced 

the ICD-Depression diagnosis from MVP with the SR-Depression GWAS for a total of 1,057,768 

participants.  For the secondary analysis of depressive symptoms by PHQ, we included 286,821 

total participants from UKB and MVP.  We also performed a GWAS in the MVP African 

American (AA) sample of 59,600 participants.  We included these participants in a trans-

ancestral meta-analysis with a total sample size of 1,213,867 participants.  Cohorts are detailed 

in Table 1. 
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Phenotypes.  Within MVP there were three depression phenotypes investigated across five 

different analyses.  We used 1) an ICD code-based algorithm to determine depression case 

status based upon investigation of the electronic health records (ICD-Depression, primary 

analysis), 2) self-reported physician diagnosis of depression as reported in the MVP lifestyle 

survey (SR-Depression), and 3) the 2-item PHQ scale of depressive symptoms in the past 2 

weeks, included in the MVP lifestyle survey (depressive symptoms).  Phenotypes in outside 

cohorts for UKB-PGC and 23andMe have been previously described.7-10  See Table 1 and Figure 

1 for summary.  For the ICD code-based algorithm in MVP, codes used to assess case status are 

presented in Table S2.  Cases included people with at least one inpatient diagnosis code or two 

outpatient diagnosis codes for Major Depressive Disorder (MDD).  Controls include only those 

without any inpatient or outpatient depression diagnosis codes for depression. 

GWASs and meta-analyses.  GWAS analysis was carried out in the MVP cohorts by logistic 

regression for ICD-Depression and SR-Depression and by linear regression for PHQ2 within each 

ancestry group and tranche using PLINK 2.0 on dosage data, covarying for age, sex, and the first 

10 PCs.  A similar GWAS was performed using linear regression in the UK Biobank samples, also 

using age, sex, and the first 10 PCs for PHQ2. 

In individuals of European ancestry for ICD-Depression and SR-Depression, meta-

analysis was performed using METAL with inverse variance weighting for: MVP tranche 1, MVP 

tranche 2, the PGC-UKB ICD-Depression meta-analysis,10 23andMe,9 and FinnGen Mood 

[affective] disorders ( http://r2.finngen.fi/pheno/F5_MOOD).  For the PHQ2 meta-analysis, the 

procedures were the same for the following samples: MVP tranche 1, MVP tranche 2, and UK 
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Biobank.   Meta-analysis in the African American participants was carried out only between 

tranche 1 and 2 of the MVP data due to absence of data in the other samples.   

The 23andMe phenotype was based on responses to 4 questions: “Have you ever been 

diagnosed by a doctor with any of the following psychiatric conditions?”, “Have you ever been 

diagnosed with clinical depression?”, “Have you ever been diagnosed with or treated for any of 

the following conditions? (Depression)”, and “In the last 2 years, have you been newly 

diagnosed with or started treatment for any of the following conditions? (Depression)”.  Cases 

were defined as having responded “Yes” to any of the above questions, and controls, when not 

a case and at least 1 “No” response to the above questions. 

The FinnGen diagnosis is defined by the F5 Mood category and was downloaded from 

Freeze 2 of the database (http://r2.finngen.fi/pheno/F5_MOOD).  This phenotype is broad and 

contains manic episodes, bipolar disorders, depression, persistent mood disorders, and other 

unspecified mood [affective] disorders.  Data from UKB8 is a broad depression phenotype based 

on affirmative responses to either of the questions: “Have you ever seen a general practitioner 

for nerves, anxiety, tension or depression?”, and “Have you ever seen a psychiatrist for nerves, 

anxiety, tension or depression?”.  PGC data also has been previously reported,7 and come from 

meta-analysis of 35 cohorts with a spectrum of depression phenotypes, including some with 

clinical diagnosis from structured interviews and others with broader definitions.  

Post-GWAS analysis  

Linkage Disequilibrium Score Regression.  For post-GWAS analysis, FinnGen was removed a 

priori due to potential for increased heterogeneity in the phenotype definition due to the broad 
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nature of inclusion in the F5 Mood phenotype.  Genetic correlation analyses were performed 

using LDSC to assess the degree of genetic overlap between phenotypes and across the cohorts 

included in the analysis.  Per-trait observed-scale SNP-based heritability estimates were 

calculated via LDSC using the 1000 Genomes Project European linkage disequilibrium reference 

panel.41,12  Heritability estimates were calculated for 1,468 phenotypes from FinnGen, 4,083 

phenotypes from UKB, 3,143 brain image derived phenotypes from the Oxford Brain Imaging 

Genetics (BIG) project, and phenotypes from the Psychiatric Genomics Consortium (PGC), the 

Social Science Genetic Association Consortium (SSGAC), and the Genetics of Personality 

Consortium (GPC).  Heritability z-scores were calculated by dividing the heritability estimate per 

phenotype by its associated standard error.  Phenotypes with heritability z-scores ≥ 4 were 

considered suitable for genetic correlation against ICD-Depression. 41,12 For continuous UKB 

phenotypes we restricted our analyses to use inverse-rank normalized phenotypes instead of 

untransformed phenotypes.  Genetic correlations are summarized by total phenotypes tested, 

nominally significant (p<0.05), and after application of 5% false discovery rate and Bonferroni 

thresholds (Figure 2b). 

Latent Causal Variable (LCV).  The LCV model was used to infer genetic causal relationships 

between trait pairs using the 1000 Genomes Project European linkage disequilibrium reference 

panel.  ICD-Depression was subjected to LCV with all traits described above for genetic 

correlation analysis.  Due to differences in heritability calculation method and the number of 

SNPs used by LCV versus LDSC, genetic correlation results were not used to inform LCV trait pair 

selection.  Genetic causality proportions (gĉp) were interpreted only when the heritability z-

score of both traits was ≥ 7, as determined by LCV, not LDSC.42  Fully causal relationships were 
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deduced for significant trait pairs with gĉp estimates ≥ 0.70; otherwise gĉp estimates were 

considered evidence for partial causality.42 

Genomic structural equation modeling (SEM). Genomic SEM was performed using GWAS 

summary statistics in the genomicSEM and lavaan R packages.43 Exploratory factor analyses 

(EFA) were performed on 16 traits simultaneously (ICD-Depression [the main phenotype of 

interest for this study], attention deficit hyperactivity disorder, anorexia nervosa, bipolar 

disorder, cannabis use disorder, cognitive performance, depressive symptoms, educational 

attainment, anxiety symptoms, neuroticism, posttraumatic stress disorder, problematic alcohol 

use, reexperiencing, risk tolerance, risky behavior, and schizophrenia). EFAs were performed for 

1 through N factors until the addition of factor N contributed less than 10% explained variance 

to the model. Confirmatory factor analysis was performed using the diagonally-weighted least 

squares estimator and a genetic covariance matrix of munged GWAS summary statistics for all 

16 phenotypes based on the 1000 Genome Project Phase 3 European linkage disequilibrium 

reference panel. 

Transcriptome-Wide Association Study (TWAS).  We performed transcriptome-wide association 

study using MetaXcan for 13 brain tissues and whole blood using GTEx v8.  The MetaXcan 

framework consists of two prediction models for GTEx v8; elastic net and MASHR-based model 

for deriving eQTL values.  The MASHR model is biologically informed, with Deterministic 

Approximation of Posteriors (DAP-G) based fine mapped variables and recommended by the 

developers.44  Since the eQTL effect is shared across several tissues, the joint effect of eQTL in 

14 tissues was tested using the S-MultiXcan, developed under the MetaXcan toolkit.14  We 
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applied Bonferroni correction (corrected p-value threshold = 1.79x10-7) for all gene-tissue pair 

tested.  

Variant prioritization.  Each of the risk loci, determined from FUMA (default LD = 0.6), were 

fine-mapped using CAVIAR.45  The set of causal SNPs were annotated with CADD15 scores  

followed by positional gene mapping within ±100kb.  The genes that overlapped with 

significant gene cross-tissue eQTL analysis were further tested for colocalization.  Coloc16 was 

used to test colocalization between specific gene eQTL tissue pairs (GTEx v8).  The 

LocusCompareR R package was used to generate regional plots of tissue-specific eQTL and 

GWAS p-values. 

Genome-wide gene-based association study (GWGAS) and Enrichment Analysis.  Summary 

statistics from the primary ICD-Depression meta-analysis were loaded into Functional Mapping 

and Annotation of Genome-Wide Association Studies (FUMA GWAS) to test for gene-level 

associations using Multi-Marker Analysis of GenoMic Annotation (MAGMA).46  Input SNPs were 

mapped to 17,927 protein coding genes.  The GWS threshold for the gene-based test was 

therefore determined to be p = 0.05/17,927 = 2.79×10-6.  Genes from MAGMA’s gene-based 

association were used for gene ontology and drug-set enrichment using the ShinyGO17 web 

tool. 
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FIGURES AND TABLES 

Table 1. Demographics 

Cohort Case Control Total 

MVP ICD-Depression 83,810 166,405 250,215 

MVP SR-Depression 55,228 155,103 210,331 

23andMe self-reported diagnosis of 

depression 
75,607 231,747 307,354 

UKB/PGC PGC + UKB Broad Depression 170,756 329,443 500,199 

FinnGen Mood [affective] disorders 10,418 86,081 96,499 

ICD-Depression Meta 

(MVP ICD-Depression + 23andMe + 

UKB/PGC + FinnGen) 

340,591 813,676 1,154,267 

SR-Depression Meta 

(MVP SR-Depression + 23andMe + 

UKB/PGC + FinnGen) 

312,009 802,374 1,114,383 

MVP PHQ2 175,553 

UKB PHQ2 111,268 

PHQ2 Meta 

(MVP PHQ2 + UKB PHQ2) 
286,821 
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Table 2.  Progress and History of Depression GWAS 

Study Cases GWS loci 

PGC MDD1 9,240 0 

Howard Broad Depression 127,552 14 

Hyde 23andMe 75,607 15 

PGC MDD2 135,458 44 

PGC Hyde Howard Meta 246,363 101 

FinnGen Mood Disorders 10,418 0 

MVP ICD-Depression 83,810 10 

MVP African ancestry ICD-Depression 25,843 0 

Current Meta (ICD-Depression) 340,591 178 
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Figure 1. Design of the study and circular Manhattan Plot. Left Panel: Design of the study (top).  

Three phenotypes were evaluated within MVP: ICD-Depression (innermost ring, right panel) 

which was derived from ICD codes, SR-Depression (middle ring, right panel) which was defined 

by self-reported diagnosis of depression in the MVP survey, and Depressive symptoms 

(outermost ring, right panel) which come from the PHQ2 2-item scale found in the MVP survey.  

ICD-Depression and SR-Depression were each meta-analyzed with depression results 

from:23andMe, PGC, and FinnGen.  MVP PHQ2 was meta-analyzed with results from the PHQ2 

2-item scale from UK biobank.  Right Panel:  Circular Manhattan Plot.  Significant results are 

highlighted in purple.  Lower left Panel: Accelerating pace of loci discovery in depression GWAS.  

Y axis indicates the number of discovered loci in a study, with the X axis showing the number of 

cases included in each study.  Red text and yellow markers indicate original analyses conducted 
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for this study using MVP data for EA, AA and the overall ICD-Depression meta-analysis of EAs. 
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Figure 2.  Genetic Correlation.  Upper Panel. Genetic correlations between depression 

phenotypes, with subjective well-being included as a negative correlation comparator.  

Heritability (z-score) is given along the left axis of the matrix for each depression phenotype.  

Values within the matrix represent rg.  Lower Panel. Summary of genetic correlation between 

ICD-Depression and 1,457 phenotypes from large-scale genetic studies of mental health and 

behavior. The Psychiatry category contains phenotypes from the Psychiatric Genomics 

Consortium, GWAS & Sequencing Consortium of Alcohol and Nicotine use, Million Veteran 

Program, and International Cannabis Consortium. The labels Tired and left subcallosal cortex 

grey matter volume represent UKB Field ID 2080 and BIG Field ID 0078, respectively. 
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A. 

 

B. 

  

Figure 3. A) Tissue-based gene association study (TWAS).  The genes were tested using 

MetaXcan for 13 brain tissues and whole blood from the GTEx-v8.  The genes were compared 
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across tissues to identify best representative tissues for each gene using SMultiXcan.  Genes are 

arranged in order from left to right by respective tissue specific p-value, with the lowest value 

on the left.  The color scale for the gene matrix is based on mean z-score.  The values are 

reported in Supplementary file 2.   B) SNP prioritization using fine Mapping and functional 

scoring.  Bottom panel: Manhattan plot showing each genomic risk locus in violet.  Middle 

panel: Each locus was fine mapped, and the causal posterior probability (CPP) on the y-axis is 

shown for SNPs from the causal set.  The SNPs which had CPP ≥0.3 (30%) were annotated using 

Combined Annotation Dependent Depletion (CADD) scores.  Top panel: The SNPs with CADD ≥ 

10 are highlighted in purple; these SNPs were positionally mapped to 107 genes within 100kb.  

Only positional genes overlapping with multi-tissue TWAS results (Supplementary Figure 1) are 

annotated with vertical lines. Details of the prioritized SNPs are reported in Supplementary file 

2. 
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Figure 4.  Genomic SEM.  Genomic structural equation modeling of ICD-Depression meta-

analysis (DEP) plus 14 additional traits. Exploratory factor analysis converged on a three-factor 

model. Arrows represent loading of each phenotype onto a connected factor with loading value 

and standard error provided for each. Multi-colored phenotypes indicate loading onto more 

than one factor while monochromatic phenotypes were unique to a single factor. Factors 1 

generally represents internalizing symptoms, Factor 2 externalizing behaviors, and Factor 3, 

education/cognition. The correlation between factors is shown. Phenotype acronyms are: 

attention deficit hyperactivity disorder (ADHD), MVP ICD-Depression (DEP), bipolar disorder 

(BIP), schizophrenia (SCZ), problematic alcohol use (PAU), cannabis use disorder (CUD), 
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generalized anxiety disorder (GAD), depressive symptoms (DSYM), reexperiencing (REXP), 

neuroticism (NEU), posttraumatic stress disorder (PTSD), risk tolerance (RTOL), risky behavior 

(RBEH), educational attainment (EA), and cognitive performance (CP). 

Figure 5. Transancestry Meta-analysis.  A. Manhattan plot for transancestry meta-analysis of 

ICD-Depression (n= 1,213,867).  B.  Scatter plot for 206 GWS SNPs (Spearman’s ρ=0.39) from 

the primary ICD-Depression GWAS of different ancestries, plotting z-score for European 

ancestry (only) GWAS on the y axis and African ancestry (only) GWAS on the x axis.  C.  Overlap 

of SNPs from European and African ancestry GWASs.  223 GWS SNPs from the primary analysis, 

of which 206 are available in the AA GWAS following QC.  125 (61%) of the remaining SNPs had 
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the same effect direction, 20 were nominally significant (p<0.05) and one was Bonferroni 

significant after correcting for 206 comparisons. 
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Figure S1. MAGMA Tissue Enrichment 
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Figure S2. Drug repurposing. 
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Table S1.  Top Eight Gene Ontology Biological Processes.  219 Biological processes had an FDR 

< 0.05.  The top eight processes with FDR < 1x10
-4

 are included here, the rest of the processes 

are reported in the supplemental data. 

Enrichment 

FDR 

Genes in 

list 

Total 

genes 
Functional Category 

1.20x10-10 96 2474 Nervous system development  

9.75x10-9 21 182 Synapse assembly  

9.75x10-9 32 434 Synapse organization  

2.74x10-8 25 282 Cell-cell adhesion via plasma-membrane adhesion molecules  

1.22x10-7 19 172 
Homophilic cell adhesion via plasma membrane adhesion 

molecules  

1.15x10-5 55 1412 Neuron differentiation  

6.51x10-5 57 1575 Generation of neurons  

8.89x10-5 35 762 Synaptic signaling  
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Table S2.  ICD codes for MVP case status.  Classification as a case required at least one 

inpatient code or two or more outpatient codes for Major Depressive Disorder (MDD). 

Classification as a control required neither no record of inpatient nor outpatient codes for 

MDD. Subjects with only one outpatient codes for MDD were excluded from all analyses. 

ICD9 ICD10 description 

2962 Major depressive disorder, single episode 

2963 Major depressive disorder, recurrent episode 

29620 F32.9 Major depressive disorder, single episode, unspecified 

29621 F32.0 Major depressive disorder, single episode, mild 

29622 F32.1 Major depressive disorder, single episode, moderate 

29623 F32.2 Major depressive disorder, single episode, severe without psychotic features

29624 F32.3 Major depressive disorder, single episode, severe with psychotic features 

29625 F32.4 Major depressive disorder, single episode, in partial remission 

29626 F32.5 Major depressive disorder, single episode, in full remission 

29630 F33.9 Major depressive disorder, recurrent, unspecified 

29630 F33.40 Major depressive disorder, recurrent, in remission, unspecified 

29631 F33.0 Major depressive disorder, recurrent, mild 

29632 F33.1 Major depressive disorder, recurrent, moderate 

29635 F33.41 Major depressive disorder, recurrent, in partial remission 

29636 F33.42 Major depressive disorder, recurrent, in full remission 

311 F32.9 Major depressive disorder, single episode, unspecified 

29633 F33.2 Major depressive disorder, recurrent severe without psychotic features 

29634 F33.3 Major depressive disorder, recurrent, severe with psychotic symptoms 

 

Table S3.  PHQ-2 Phenotype, adapted from the MVP Lifestyle Survey 
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