1 Title: Forecasting COVID-19 pandemic Severity in Asia

- 2 Running Title: Forecasting COVID-19 evolution in Asia
- 3 Authors: Elinor Aviv-Sharon^{*} and Asaph Aharoni
- 4 Affiliations: Department of Plant and Environmental Sciences, Weizmann Institute of
- 5 Science, Rehovot, 7610001, Israel
- 6 ^{*} Corresponding author
- 7 Address for correspondence: Elinor Aviv-Sharon, Department of Plant and
- 8 Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel;
- 9 phone number: +972-8-934-2161; email: <u>elinor.aviv@weizmann.ac.il</u>

10

11 Abstract

- 12 Four months into the ongoing novel coronavirus disease 2019 (COVID-19) pandemic,
- 13 this work provides a simple and direct projection of the outbreak spreading potential
- 14 and the pandemic cessation dates in China, Iran, the Philippines and Taiwan, using the
- 15 generalized logistic model (GLM). The short-term predicted number of cumulative
- 16 COVID-19 cases matched the confirmed reports of those who were infected across
- 17 the four countries, suggesting GLM as a valuable tool for characterizing the
- 18 transmission dynamics process and the trajectory of COVID-19 pandemic along with
- 19 the impact of interventions.

20

21 Keywords: COVID-19; SARS-CoV-2; emerging infectious diseases; forecasting;

22 prediction; generalized logistic model; Richards model; epidemic modeling

23

24

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 25

26 Introduction

27	Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory
28	syndrome coronavirus 2 (SARS-CoV-2) was identified in China, in November 2019,
29	declared to be a public health emergency of international concern in two months, and
30	recognized as a pandemic on 11 th March 2020. As of 10 th April 2020, approximately
31	1.7 million cases of COVID-19 have been reported in 210 countries and territories,
32	resulting in approximately 95,800 deaths. Emerging infectious diseases (EID), which
33	appear for the first time, or that may have existed previously but is rapidly spreading,
34	are possibly the deadliest and continue to challenge human health.
35	As the world races to find a vaccine or a treatment to combat the pandemic, many
36	concerns arise about the outbreak severity, particularly the potential number of
37	infected people. Hence, it is of a great importance to estimate the outbreak evolution
38	using epidemiology models. Here, the epidemiological dataset of confirmed cases
39	with COVID-19 in China, Iran, the Philippines and Taiwan, as of 10th April 2020, was
40	analyzed, using the generalized logistic model (GLM), also known as Richards'
41	model. This empirical function has made many remarkable coincidences with real
42	SARS, Zika and Ebola epidemic data for real-time prediction of outbreak
43	development (1-4). Early assessment of the severity of infection and transmissibility
44	can help quantify COVID-19 pandemic potential and anticipate the likely number of
45	infected people by the end of the epidemics.
46	Data and methods
47	Specific countries were selected as denoting different COVID-19 incidence scales.

China and Iran, the two major centers of COVID-19 outbreak in eastern and southern
Asia, respectively with tens of thousands of cases; the Philippines, a representative of
an archipelagic country with thousands of cases, and Taiwan, with only hundreds of

cases. For each country, the officially reported data on COVID-19 daily cases from the onset of the outbreak to April 10th, 2020 were collected from governmental or health authorities' websites (Appendix Table, Figure). To allow outbreak projection, the data from the early phase of the outbreak (35-40 days) were fitted with the GLM as described previously (1,5). Briefly, this approach enables the evaluation of the cumulative number of COVID-19 cases, represented by Y(t). The dynamics of *Y*, in period *t*, can be expressed as:

58
$$Y(t) = \frac{K}{(1 + e^{-r(t - t_m)})^{\frac{1}{\alpha}}}$$

59 Where *K* is the upper asymptote, or the maximum cumulative case incidence, *r* is the 60 intrinsic growth rate and t_m is the turning point, the time where maximum number of 61 cases per day occur. The model predicts that cumulative COVID-19 case incidence 62 follows an S-shaped curve and gradually reaches *K*. Not a single new COVID-19 case 63 emerging within 3 consecutive months defines the end of the epidemic (1).

The basic reproduction number of COVID-19, R₀, the expected number of secondary cases produced by a single infection was estimated as $R_0 = e^{rT}$, where T is the mean serial interval; the time that elapses between onset of symptoms in the primary case and onset of symptoms of the secondary case.

The model should conform to several assumptions: first, as the number of tests conducted affects the reported number of daily cases, similar number of individuals are tested daily. Secondly, cases are not imported from outside the country. Thirdly, the model does not consider human behavior and is conditional on the assumption that public gatherings are highly limited, allowing the epidemic to follow its natural course. Likewise, implementation of intervention measures, such as enhanced hygiene, isolation, contact tracing, restrictions on social contacts and migration by airor train, are maintained continuously.

76 **Results and Discussion**

77 Corresponding to the basic premise of GLM, the cumulative COVID-19 cases curve

of each country consists of a single peak of high incidence, resulting in a sigmoid

79 curve with a single turning point (Figure). For all localities, high correlations between

80 observed and predicted incidence were found (R^2 >0.99, p value<2.2e⁻¹⁶).

81 To evaluate the forecasting performance of the model, the total number of cases on

82 April 10th were estimated based on the observed incidence during the initial stage of

the pandemic. A subset data of 35 days was used for China (January 21st to February

84 24th 2020), Iran (February 26th to March 31st 2020) and the Philippines (February 19th

to March 24th 2020). In Taiwan, due to a smaller scale of cases, dataset of 40 days

86 (February 25^{th} to April 4^{th} 2020) was required for optimal fit to the model.

Forecasting the total number of cases on April 10th 2020 (Figure), was done 46, 10, 17

and 6 consecutive days ahead for China, Iran, the Philippines and Taiwan,

89 respectively. In all cases, the predicted cumulative number of cases was similar to the

90 one officially reported (Table). The predicted number was 81797 for China, 68225 for

91 Iran, 4430 for the Philippines and 425 for Taiwan, while the observed total number of

92 cases was 81953, 68192, 4195 and 382, respectively. The maximum predicted

cumulative incidence, *K*, was estimated to be 81797 for China, 97576 for Iran, 6300

for the Philippines, and 479 for Taiwan [see Table for 95% confidence interval (CI)].

95 The earliest time for the current COVID-19 pandemic to cease, was evaluated to

96 occur after 73 days (April 2nd) in China, 147 days (July 21st) in Iran, 122 days (June

97 19th) in the Philippines, and 80 days (May 14th) in Taiwan. A mean serial interval of

98 5.8 days (6) was used to calculate R₀, the basic reproduction number of COVID-19

99	infections. R_0 estimates were 3.59, 1.86, 2.99 and 2.26 in China, Iran, the Philippines
100	and Taiwan, respectively, similar to those published previously (7) and to that of
101	SARS (8). These early stages R_0 are likely to decrease with control measurements
102	policies continuation. Indeed, predicting COVID-19 dynamics based on its initial
103	growth phase, revealed that the turning point of each country has occurred closer to
104	the lower limit of the 95% CI and even earlier than expected, due to the control
105	measurements effectiveness. The turning point was estimated as day 19.4 \pm 0.27 in
106	China, 37.1±3.6 in Iran, 47.4±11.6 in the Philippines and 31.2±1.5 in Taiwan,
107	whereas the observed highest number of daily cases in China (14108), Iran (3186), the
108	Philippines (538) and Taiwan (27) has occurred on day 23, 34, 42, and 23,
109	respectively (Table).
110	Forecasting COVID-19 pandemic is challenging in the context of an outbreak caused
111	by novel pathogen for which its natural history and modes of transmission are
112	unknown. Since the GLM is trained on the existing data and is designed to fit the
113	development of epidemic curves, rather than EID estimation only, it could provide a
114	good fit to the limited available COVID-19 epidemiological data to characterize the
115	transmission dynamics process and the trajectory of COVID-19 pandemic along with
116	the impact of interventions (9) . This prediction is conditional to intervention measures
117	continuation. Changes of the current policies or human behavior may affect the actual
118	contact rate and the subsequent development of the epidemic. Additionally, testing
119	kits deficiency can lead to poor diagnosis and incomplete data, which may implicate
120	the model robustness. Even so, forecasting epidemic size and peak time may help
121	clarify what the future holds, and could be useful to make long-term strategic
122	decisions regarding the distribution of testing and treatment facilities that may be

123	required, and m	ay be helpful to	assess the extent of protective an	d medical equipment
-----	-----------------	------------------	------------------------------------	---------------------

124 needed for the near future.

125 Acknowledgments

- 126 We thank the Adelis Foundation, Leona M. and Harry B. Helmsley Charitable Trust,
- 127 Jeanne and Joseph Nissim Foundation for Life Sciences, Tom and Sondra Rykoff
- 128 Family Foundation Research and the Raymond Burton Plant Genome Research Fund
- 129 for supporting the AA lab activity. A.A. is the incumbent of the Peter J. Cohn
- 130 Professorial Chair. The authors report no funding related to this research and no
- 131 competing interests.

132 **References**

- I. Zhou G, Yan G. Severe Acute Respiratory Syndrome Epidemic in Asia. Emerg
 Infect Dis. 2003;9(12):1608–10.
- 135 2. Heisey DM. SARS Epidemiology Modeling. Emerg Infect Dis.
- 136 2004;10(6):1165–8.
- Smirnova A, Simonsen L, Viboud C. Using Phenomenological Models to
 Characterize Transmissibility and Forecast Patterns and Final Burden of Zika
- 139 Epidemics. PLOS Curr. 2016;8:1–9.
- 4. Chowell G, Viboud C, Simonsen L, Merler S, Vespignani A. Perspectives on
 model forecasts of the 2014 2015 Ebola epidemic in West Africa : lessons
 and the way forward. BMC Med. 2017;1–8.
- 143 5. Hsieh Y. Richards Model : A Simple Procedure for Real-time Prediction of
 144 Outbreak Severity. Model Dyn Infect Dis. 2009;(May):216–136.
- He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in
 viral shedding and transmissibility of COVID-19. Nat Med. 2020;

147	7.	Zhao S, Lin Q, Ran J, Musa SS, Yang G. Preliminary estimation of the basic					
148		reproduction number of novel coronavirus (2019-nCoV) in China, from 2019					
149		to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect					
150		Dis. 2020;92:214–7.					
151	8.	Liu Y, Gayle AA, Wilder-smith A, Rocklöv J. The reproductive number of					
152		COVID-19 is higher compared to SARS coronavirus. J Travel Med.					
153		2020;27(2):1–4.					
154	9.	Wang X, Wu J, Yang Y. Richards model revisited : Validation by and					
155		application to infection dynamics. J Theor Biol. 2012;313:12–9.					
156							
157	Figur	re Legend. The generalized logistic growth model-predicted size of the COVID-					
158	19 pa	ndemic in China, Iran, the Philippines and Taiwan. On the left: the daily number					
159	of nev	w confirmed COVID-19 cases. On the right: the observed (black circles) and the					
160	mode	l-fitted and predicted cumulative cases (grey solid line) over time. The grey					
161	circle	denotes the predicted number of cumulative cases as of 10 April 2020.					
162							
163							
164							
165	165						
166							
167							
168							

Country	R ^{2*}	r	R ₀	t _m projected	<i>t_m</i> observed	Maximum No. of cases (95% CI ⁺)	Pandemic cessation date	10 April projected No. of cases	10 April observed No. of cases
China	0.997	0.22	3.59	19.4±0.27	Day 23 (February 12 th)	81797±1445	Day 73 (April 2 nd)	81797	81953
Iran	0.995	0.1	1.86	37.1±3.6	Day 34 (March 30 th)	97576±22098	Day 147 (July 21 st)	68225	68192
The Philippines	0.995	0.18	2.99	47.4±11.6	Day 42 (March 31 st)	6300±11630	day 122 (June 19 th)	4430	4195
Taiwan	0.99	0.14	2.26	31.2±1.5	Day 23 (March 20 th)	479±44	day 80 (May 14 th)	425	382

Table. The generalized logistic growth model estimates of COVID-19 pandemic

169 170

70 r, the intrinsic growth rate during the exponential phase; R_0 , the basic reproduction number; t_m the turning point of the model, the

171 date in the brackets indicates the actual day where the maximum number of cases has occurred.

172 *. Pearson's correlation goodness-of-fit of the model, p value<2.2e⁻¹⁶

173 ⁺.CI, confidence interval

174

Appendix Table. Daily number of new reported COVID-19 cases in China, Iran, the Philippines and Taiwan.

Date (yyyy-mm-dd)	China	Iran	The Philippines	Taiwan
2020-21-01	440			
2020-22-01	131			
2020-23-01	259			
2020-24-01	457			
2020-25-01	688			
2020-26-01	769			
2020-27-01	1771			
2020-28-01	1459			
2020-29-01	1737			
2020-30-01	1981			
2020-31-01	2099			
2020-01-02	2589			
2020-02-02	2825			
2020-03-02	3235			
2020-04-02	3884			
2020-05-02	3694			
2020-06-02	3143			
2020-07-02	3385			
2020-08-02	2652			
2020-09-02	2973			
2020-10-02	2467			
2020-11-02	2015			
2020-12-02	14108			
2020-13-02	5090			
2020-14-02	2641			
2020-15-02	2008		3	18
2020-16-02	2048			2
2020-17-02	1888			2
2020-18-02	1749			
2020-19-02	382	2		1
2020-20-02	898	3		1
2020-21-02	823	13		2
2020-22-02	648	11		
2020-23-02	214	14		2

2020-24-02	508	18		2
2020-25-02	406	34		1
2020-26-02	433	44		1
2020-27-02	327	106		
2020-28-02	427	143		2
2020-29-02	573	205		5
2020-01-03	202	385		1
2020-02-03	125	523		1
2020-03-03	119	835		1
2020-04-03	139	586		
2020-05-03	143	591		2
2020-06-03	99	1234	2	1
2020-07-03	44	1076	1	
2020-08-03	40	743	4	
2020-09-03	19	595	14	
2020-10-03	24	881	9	2
2020-11-03	15	958	16	1
2020-12-03	20	1075	3	1
2020-13-03	11	1289	12	1
2020-14-03	20	1365	47	3
2020-15-03	16	1209	29	6
2020-16-03	21	1053	2	8
2020-17-03	13	1178	45	10
2020-18-03	34	1192	15	23
2020-19-03	39	1046	15	8
2020-20-03	41	1237	13	27
2020-21-03	46	966	77	8
2020-22-03	39	1028	73	26
2020-23-03	78	1411	82	26
2020-24-03	47	1762	90	21
2020-25-03	67	2206	84	19
2020-26-03	55	2389	71	17
2020-27-03	54	2926	96	15
2020-28-03	45	3076	272	16
2020-29-03	0	2901	343	15
2020-30-03	79	3186	128	8
2020-31-03	36	3110	538	16
2020-01-04	35	2988	227	7
2020-02-04	31	2875	322	10
2020-03-04	19	2715	385	9
2020-04-04	30	2560	76	7
2020-05-04	39	2483	152	8
2020-06-04	32	2274	414	10
2020-07-04	62	2089	104	3
2020-08-04	63	1997	106	3
2020-09-04	42	1634	206	1
2020-10-04	46	1972	119	2

175

Day