
Reproducing SARS-CoV-2 epidemics by

region-specific variables and modeling contact

tracing app containment

Alberto Ferrari1, Enrico Santus2, Davide Cirillo3,4, Miguel
Ponce-de-Leon3, Nicola Marino5, Maria Teresa Ferretti4, Antonella
Santuccion Chadha4, Nikolaos Mavridis4,6, and Alfonso Valencia3,7

1FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy.
2Bayer, Decision Science & Advanced Analytics for MA, PV & RA Division.

3Barcelona Supercomputing Center (BSC), C/ Jordi Girona 29, 08034, Barcelona,
Spain.

4Women’s Brain Project (WBP), Gunterhausen, Switzerland.
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Abstract

Targeted contact-tracing through mobile phone apps has been pro-
posed as an instrument to help contain the spread of COVID-19 and
manage the lifting of nation-wide lockdowns currently in place in USA
and Europe. However, there is an ongoing debate on its potential efficacy,
especially in the light of region-specific demographics.

We built an expanded SIR model of COVID-19 epidemics that ac-
counts for region-specific population densities, and we used it to test the
impact of a contact-tracing app in a number of scenarios. Using demo-
graphic and mobility data from Italy and Spain, we used the model to
simulate scenarios that vary in baseline contact rates, population densi-
ties and fraction of app users in the population.

Our results show that, in support of efficient isolation of symptomatic
cases, app-mediated contact-tracing can improve containment and achieve
successful epidemic mitigation even with relatively small fraction of the
population using it, and, with increasing penetrance of its adoption, sup-
pression. However, when regional differences in population density are
taken into consideration, the epidemic can be significantly harder to con-
tain in higher density areas, highlighting potential limitations of this in-
tervention in specific contexts.

This work corroborates previous results in favor of app-mediated contact-
tracing as mitigation measure for COVID-19, and draw attention on the
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importance of region-specific demographic and mobility factors to achieve
maximum efficacy in containment policies.

1 Introduction

The spread of COVID-19 has raised new challenges for healthcare systems all
over the world, hitting with particular strength Europe and USA, after China.
According to the available data, Italy currently has among the highest number
of contagions and dead toll from COVID-19, with over 200,000 confirmed cases
and more that 30,000 deceased as of May 14th 2020. However, the spread
of COVID-19 has been quite heterogeneous in speed, reach, and lethality, not
only from country to country, but also in different regions of the same country.
The main possible explanation is given by the delay between the onset of the
epidemic, the first diagnosis and the kick-off of containment measures. Other
reasons may be due to region-specific variables, such as population density and
mean age, societal structure and behaviors. A third factor depends also on the
adopted policies for containment and testing, in particular for what concerns the
fraction of infectious individuals that do not display symptoms (asymptomatic).

Most countries dealing with the epidemics have resorted to nation-wide lock-
downs and social distancing to slow down the outbreak; however, managing the
epidemics in the long term will likely require the use of information technology to
help implement measures of containment and mitigation. In particular, precise
identification of cases and contact tracing and isolation can hardly be performed
with traditional methods, and the use of targeted phone apps could highly
improve the efficiency of these processes, as shown by the experience of multiple
Asian countries - such as South Korea.

Different infrastructures and working interfaces for such an instrument have
been proposed, and its potential impact on the virus’s reproductive rate has
been studied[2, 9, 8]. Tracing apps seem to have a key role in ensuring that the
epidemic remains sustainable on the healthcare systems, not exceeding their
capabilities, which would otherwise lead to excess mortality.

In this proof-of-concept study we built a comprehensive framework to model
the COVID-19 epidemic, taking into account population density, the different
contributions of symptomatic, pre-symptomatic and asymptomatic contagions,
and we used it to test the efficacy of targeted intervention such as the afore-
mentioned contact tracing app. In contrast to previous work [9, 8] aimed at
modeling the two-way dynamic between individual behaviors and containment
policies, we chose to build a global compartmental modeling framework that
can account for region-specific factors, such as the effect of population density
on contact rate or the role of expected compliance to containment procedures.

Our research builds a model that allows testing the effect of both case iso-
lation and app-mediated interventions in a region-specific fashion.
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2 Materials and Methods

We built an improved Susceptible-Infectious-Recovered (SIR) model with the
aims of a) faithfully reproducing the dynamics of the SARS-CoV-2 epidemics,
including the respective roles of asymptomatic infection and population density;
b) test the effects of specific interventions, and specifically the use of phone apps
for contact tracing. As Italy was the first western country affected by the SARS-
CoV-2 and for which region-specific and intervention-related data was readily
available, our analysis was focused on the Italian case. This has allowed us to
study how the virus spreads at a very different pace in different Italian districts.

Figure 1: Model outline

The typical SIR model assumes that some degree of immunity, at least
temporary, is acquired after SARS-CoV-2 infection; therefore, it is assumed that
subjects move from the S (Susceptible) compartment to the I (Infectious)
compartment, and from there, with a daily rate equal to the invers of recovery
time, to the R (Recovered) compartment, until the relative densities of S and
I become too low for the epidemic to continue. In order to simulate the behavior
of asymptomatic and pre-symptomatic individuals, an A (Asymptomatic) and
P (Pre-symptomatic) compartment were added to the model.

To simulate the effect of targeted quarantine measures, we introduced a series
of Q∗ compartments indicating the number of subjects that are quarantined and
their status regarding the disease. There are, to model the reversible transition
from the different compartment into the state specific quarantine compartments,
four different Q compartments: QS, QI, QA and QP . Whenever they are
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infected, individuals are supposed to move from the S compartment to the A
or P compartments, with respective probabilities pa and pi = 1 − pa. Subjects
in the P compartments then transfer to the I compartment with a daily rate of
1/τi, where τi is the incubation period. We also assume that asymptomatic and
pre-symptomatic patients are less infectious than symptomatic individuals by a
factor f . However, there is evidence that pre-sympromatic individual are highly
infectious already about τd = 2 days before symptom onset [3], and the focus
of our model is transmission dynamics, rather than symptoms manifestations.
Under this profile, a P subject is already akin to a I τd days before symptom
onset. Therefore, we let P subjects move into I compartment after a incubation
period that is τd = 2 days shorter, while at the same time increasing recovery
time by the same amount.

Our model assumes the use of a phone app that keeps track of contacts and,
once a symptomatic case is identified, notifies the event to everyone who had
contacts with them in the pre-symptomatic period, so that they can enter a
voluntary quarantine. Such an application is heavily reliant, on one hand, on
effectiveness of case isolation on part of the authorities, and on the other hand
on compliance and widespread use of the system by the population. Thus, we
assume, for our model, that a J fraction of symptomatic cases is identified and
undergoes perfect quarantine with zero contacts. We call j the fraction of the
population using the app and we assume that once in quarantine, they reduce
the contact rate by a factor q. Therefore, j2 is the fraction of contacts that
happen between individuals using the app. Quarantined subjects that develop
the infection undergo the entire course of the disease, whereas those that were
not infected in the contact eventually exit quarantine after the quarantine period
τq (15 days) and become Susceptible again. In the classic SIR model, the rate
of transfer between the S and I compartments depends on transmission rate β,
that is, the product of number of contacts per subject, C, and probability of
transmission during a single contact µ [7].

To estimate contact rate as a function of population density we built on pre-
vious results by Rhodes and Anderson [11] who derived a formula for estimation
of daily contact rate of a subject in a population with density ρ moving with
velocity v̄ as

C =
8Rv̄ρ

π
(1)

Where R is the minimum distance within which two individuals can be said to
have a “contact”; for COVID-19, and other air-borne diseases transmitted by
droplets expelled from nose or mouth, it is commonly estimated as 1m [14].

In our model we assume that Susceptible subjects move to the P com-
partment with a rate proportional to the probability of meeting an A, I or P
subject, assuming that at least one of the two does not use the tracing app
and/or the case is not successfully identified. This is modeled by making the
rate dependent on 1−Jj2. The remaining Jj2 fraction of the contacts between
S and I individuals leads to a transfer from S to one of the three QP , QA and
QS compartments, each with probability equal to pi, pa or 1 − pi − pa, i.e. the
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probability of the contact leading to symptomatic infection, asymptomatic in-
fection or no infection. Individuals in the QP compartment eventually transfer
to the QI compartment after incubation, whereas QA and QS transfer to R
and to S respectively, with rates equal to 1/τi and 1/τq.

The structure of the model is shown in Figure 1 and is described by the
following set of differential equations. By defining α = Jj2 as the proportion of
contacts that are successfully contained, we have:

dS

dt
= −µCS (1 − α) (fP + I) + fq (QP +QA)

N
µ− CS

fA

N

− 1

τd
αCS

I

N
+
QS

τq

(2)

dI

dt
=
P

τi
− I

τh
− JI

τd
(3)

dP

dt
= piµCS

(1 − α) (fP + I) + fA+ fq (QP +QA)

N
− 1

τd
αCP

I

N
− P

τi
(4)

dA

dt
= paµCS

(1 − α) (fP + I) + fA+ fq (QP +QA)

N
− 1

τd
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I

N
− A

τh
(5)

dR

dt
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I

τh
+
A

τh
+
QI

τh
+
QA
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(6)

dQS

dt
=

1

τd
αC (1 − pi − pa)S

I

N
− QS

τq
(7)

dQP

dt
=

1

τd
αC (piS + P )

I

N
− QP

τi
(8)

dQA

dt
=

1

τd
αC (paS +A)

I

N
− QA

τh
(9)

dQI

dt
=
JI

τd
+
QP

τi
− QI

τq
(10)

The model is governed by a set of stochastic differential equations (2-10)
that depends on a set of different parameters. For several parameters, values
were estimated from the bibliographic references (see table 1), whereas for those
parameters where no reference value were found, we set plausible values based
on other models.

For COVID-19 attack rate µ we adopted data from the epidemic in Shenzen,
where secondary attack rate was estimated between 0.10 and 0.15 [1]. According
to Ferretti et al. the most likely estimates for f and pa are 0.1 and 0.4. The 0.4
estimate for the asymptomatic fraction is corroborated by a recent epidemio-
logical study on COVID-19 prevalence in Veneto [5]. In simulation we included
some basic vital dynamics by including a D (Deceased) compartment (not
shown), for which we assumed an overall mortality of 1% in symptomatics .
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Parameter Description Value Source

µ
Probability of transmission in a
single contact

0.10 [2]

pa
Probability of infection being
asymptomatic

0.40 [2, 5]

f
Relative infectiousness of a- and
pre-symptomatic compared to
symptomatic

0.10 [2]

τh
Time from symptom onset to re-
covery (days)

10 [6]

τi Incubation period (days) 5.1 [4]

τq Quarantine duration (days) 15 [10]

C Daily contact rate 14.8 [12]

R
Maximum distance to qualify a
“contact” (meters)

1 [13]

Table 1: Model parameter values and sources

Mortality estimates for COVID-19 are actually still quite uncertain, but In-
fectious removal by mortality is not expected to significantly affect epidemic
trends.

The simulations were run using R package SimInf , a system for stochastic
simulation of data from compartmental models of epidemics [15].

3 Experiments

For our experiments we assumed that J = 75% of symptomatic cases are iden-
tified and perfectly quarantined at symptom onset, i.e., two days after their
infectiousness increases. On the other hand, contacts undergoing voluntary
self-quarantine are supposed to reduce their contact rate ten-fold (q = 0.1).

We simulated 12 scenarios with varying contact rate C and, most impor-
tantly, assuming a different proportion j of app users in the population (0.25,
0.5, 0.75 and no users). Each simulation was run on 110 nodes representing
Italian districts (with data on area and resident population updated to 2016),
and was repeated 50 times, with globally 5,500 simulations per scenario.

For a first set of simulations we assumed a constant population density for
all the nodes; this equals the assumption of a unique transmission rate and,
therefore, a unique R0 for the entire set, so that the only region-specific fac-
tor affecting the outcome was relative population. Transmissibility has been
previously estimated, based on data from the Diamond Princess outbreak, at
1.48 [12]; accordingly, assuming 0.10 attack rate, in this scenario we set a con-
tact rate equal to 14.8. However, this was calculated in a particular scenario
where contact rate was supposedly higher than in normal conditions, thus we
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simulated two more scenarios with lower contact rates, 10 and 7.5.
A second set of simulations accounted for different population densities

across the 110 districts. Here, contact rate was allowed to vary following popu-
lation density under an assumed average daily distance traveled by the subjects,
according to Eq.1. Mobility data from two sample european cities (Berga and
Barcelona) show an average daily distance traveled per person varying between
1.2 and 5.2 km (personal communication); starting from these figures we sim-
ulated scenarios in which subjects travel, on average, 1.5, 2.5 and 5 km per
day.

An interactive R Shiny web application, enabling the exploration of sim-
ulation scenarios, is available at https://davidecirillo.shinyapps.io/ct_

app/.

4 Results

Results of the simulations are summarized in Figures 2 and 3, showing the
time curves of the sum of the I and QI compartments and expected mortality.
Clearly the epidemic peak is expected to vary with increasing contact rate,
assuming that transmissibility and recovery rate are constant. As expected,
in all simulated scenarios, app-aided contact tracing significantly decreased the
effective reprotuctive number Rt and height of the epidemic peak.

4.1 Constant contact rate

In scenarios with constant contact rate equal to 7.5, symptomatic cases isola-
tion was per se very effective in slowing the epidemic, so much so that app-
mediated contact tracing managed to achieve suppression even with only 75%
(Fig 3, upper right panel) of the population using the app and complying to
self-quarantine, whereas with 50% peak height was reduced more than 2-fold
(Fig 2, upper right panel). This shows that, in scenarios with lower baseline
contact rate and efficient isolation of cases, app-mediated contact tracing can
achieve epidemic suppression.

On the other hand, nation-wide suppression was not achieved in the less
optimistic scenarios with 10 and 14.8 contact rate; however, the app induced a
very effective mitigation, with peak number of infectious reduced roughly 4-fold
in the worst-case scenario and with 75% of the population using the app (Fig. 3,
right middle and lower panels). These results highlight the benefit of introducing
contact-tracing as a measure of pandemic prevention and control as well as the
positive impact that this would have especially upon critical circumstances.

4.2 Density-dependent contact rate

In scenarios where contact rate was allowed to vary with population density the
epidemic trend was, as expected, significantly different from region to region.
In Figure 2, left panels, the curves of symptomatic infections over time are
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Figure 2: Total symptomatic population (I + QI compartments) in red and
simulated mortality (black) in the 48 scenarios (fixed contact rate in the right
panels, density-dependent contact rate in the left panels); summed over 110
districts and averaged over 50 replicates per district. Solid line is no app users;
dashed, dotted and dashed-dotted lines show increasing fractions of the popu-
lation using the app (25, 50, 75%).

shown; compared to simulations with constant contact rate, it is evident the
presence of two more or less distinct epidemic peaks, reflecting groups of districts
with different population densities. However, the distinction tends to disappear
with increasing proportions of app users. In particular, in all the scenarios
where 75% of the population used the app (dashed-dotted lines), suppression
was indeed achieved in most regions, but the epidemics did not die out, being
almost entirely sustained by the districts with the highest population density
(Milan, Monza, Neaples; Fig. 4). This results is, clearly, achieved by using
the app to augment an efficient tracking and isolation of new symptomatic
cases, and indicates that, as for all interventions, effectiveness of app-mediated
contact-tracing and voluntary quarantine should be evaluated in the light of
region-specific differences.

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.14.20101675doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.14.20101675
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 10 20 30 40 50

0
50

00
15

00
0

S
ub

je
ct

s

v = 1.5

0 10 20 30 40 50

0
50

00
15

00
0

S
ub

je
ct

s

v = 2.5

0 10 20 30 40 50

0
50

00
15

00
0

Time (days)

S
ub

je
ct

s

v = 5.2

0 10 20 30 40 50

0
50

00
15

00
0

C = 7.5

0 10 20 30 40 50

0
50

00
15

00
0

C = 10

0 10 20 30 40 50

0
50

00
15

00
0

Time (days)

C = 14.8

Figure 3: Detail of Figure 2 showing successful/unsuccessful suppression in the
first 50 days. Suppression is achieved in the most optimistic scenario (contact
rate 7.5, app users 75%) in the scenarios with fixed contact rate (right panels,
upper), whereas its success varies from district to district in scenarios with
density-dependent contact rate (left panels).

4.3 Quarantine measures impact

The model allows to also keep track of the number of I subjects successfully
quarantined (“true positives”) and of the subjects that underwent quarantine
without actually being infected (“false positives”), by tracing the population
in the QI (Quarantined-Infectious, subjects that were rightfully quarantined)
and QS (Quarantined-Susceptible, subjects that were quarantined but did not
contract infection) compartments. The maximum number of subjects in each
compartment at the same times in scenarios with 75% of app users is summa-
rized in Table 2.

Both false positives and true positives are naturally dependent on the suc-
cess or failure of epidemics suppression, and will be very low when suppression
is achieved. In density-dependent scenarios the maximum number of Suscep-
tible subjects quarantined at the same time ranged from 200,000 to 2,000,000,
whereas in scenarios with fixed density the variation was much higher, mainly
due to the fact that with contact rate C = 7.5 and 75% app users suppression
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Figure 4: Epidemic curve for individual nodes (districts) in the scenario with
average velocity v̄ = 1.5 and fraction of app users j = 75%. The epidemic
outbreak is entirely sustained by the three highest-density districts, whereas in
the others the effective reproductive number is below 1.

is achieved.

5 Discussion

5.1 Modeling framework

The use of targeted app for contact tracing has been proposed as a means to
control the COVID-19 epidemics when lockdown measures are lifted. It has
been shown that, given certain combinations of efficacy in case identifications
and compliant use of such an instrument, the approach can contribute to the
effective reproductive number Rt of the disease below 1 [2]. Here we aimed to
model the effect of app-mediated contact tracing taking into account population
density and transportation, at the same time making it possible to monitor
the number of patients that are quarantined and their status concerning the
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Peak QI and QS per scenario
v̄ = 1.5 C = 7.5
QI = 58,791.4 QI = 13,639.94
QS = 227,277.26 QS = 51,768.96
v̄ = 2.5 C = 10
QI = 282,200.52 QI = 960,177.86
QS = 1,096,092.2 QS = 3,703,523.2
v̄ = 5.2 C = 14.8
QI = 702,748.88 QI = 2,977,727.44
QS = 2,656,114.82 QS = 11,519,918.38

Table 2: Average maximum ”true positives” (QI) and ”false positives” (QS) in
the scenarios with 75% app users.

infection.
This is a much needed approach if we wish to implement precise and timely

specific intervention making the infections and contagion sustainable for health
care systems.

The model uses a series of Q∗ compartments to model the behavior and
status of subjects that are quarantined for symptomatic infection or based on
contact tracing. To our knowledge, this is the first model that allows simulation
and prediction of the outcomes of the epidemic both accounting for differential
population density and quarantine measures. This is particularly important
since it allows to visualize the effect of contact-tracing apps along the entire du-
ration of the epidemics, and also because the management of the infection has
to take into account the specific characteristics of a given region and implement
measures accordingly. In fact, the application of containment policies disre-
garding region-specific conditions can result in measures which are not needed
or too drastic. As a consequence, rather than providing support, such policies
might result in a burden for the psychological well-being of people as well as
detrimental for the economy.

Despite the many parameters considered in our model, our work still falls
into a classic compartmental epidemiologic framework; this is a net advantage
in terms of interpretability of results and generalizability. To our knowledge,
this is also the first model that allows keeping track of subjects that undergo
voluntary quarantine.

5.2 Contact tracing effectiveness

According to our model, case isolation is per se a very effective containment
measure that, as long as cases are identified and isolated with a very high suc-
cess rate, can achieve suppression of the epidemics in a series of theoretical
scenarios. However, coupling case isolation with immediate app-mediated con-
tact tracing has a remarkable impact on the success of the strategy, achieving
in all scenarios a very effective mitigation of contagion and, in some scenarios,
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full suppression. Feasibility of epidemic control by app-mediated contact trac-
ing has been suggested already by Ferretti et al.; by decomposing contributions
to R0 from symptomatic, pre-symptomatic, asymptomatic and environmental
sources, they show that Rt < 1 can be attained for certain combinations of
efficiency in case isolation and compliance in contact tracing. Our model al-
lows to directly simulate such scenarios while at the same time keeping track
of the trends in isolated and quarantined cases. This is particularly relevant
as it allows to quantify the effect of interventions on specific compartments,
e.g. it is possible to trace the number of individuals that are quarantined at a
specific time-point, a piece of data that is potentially very helpful in designing
cost-effectiveness analyses of containment measures.

5.3 Density and traveling

Another important result comes from our simulations with a density-dependent
contact rate. In our simulation different Italian districts behaved very differ-
ently, and in all scenarios suppression was easily attained in the less densely
populated regions, whereas it failed in the others (Fig. 4). This is consistent
with the different epidemic trends that have been observed to date in Italian
districts; however, it must be pointed out that differences between districts
may as well be justified by different approaches in dealing with the epidemics,
time to first diagnosed case versus numbers of people already infected in the
population and not yet recognized and, most importantly, is influenced by the
nation-wide/region-wide lockdown put in place by the central government.

It is also of note that by making contact rate dependent on both density and
daily distance traveled, our model takes into account the potential effectiveness
of policies aimed at optimizing and regulating transportation, especially in high
density regions. According to the model, effective suppression of the epidemics
in such areas is strongly dependent on such measures.

5.4 Limitations and future research

The main limitation of our work is the uncertainty in the parameters that have
to be plugged-in the simulations. We adopted some credible figures for the
asymptomatic/symptomatic infections ratio and for relative decrease in infec-
tiousness in asymptomatic subjects, as well as for probability of infection per
contact; however the greatest uncertainty is precisely in estimation of contact
rate, as this is a variable that is influenced by specific environmental and cultural
factors, e.g. individual mobility, social interactions, transportation systems, as
well as general social distancing measures that have been implemented wherever
the epidemics took place. Our first choice estimate for contact rate came from
the experience of the Diamond Princess, based on which we estimated it at a
very impressive figure of 14.8, a condition that would hardly allow for suppres-
sion in a nation-wide context. However, it is evident that the situation in a
closed environment favors a higher contact rate, thus this number is likely to
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be significantly overestimated. This makes the scenario a worst-case one, sug-
gesting that, in real world experience, case isolation and contact tracing may
be more effective than predicted.

In scenarios where we modeled contact rate as a function of population
density, the most relevant scaling factor is v̄, i.e. the theoretical average daily
distance traveled by individuals. This is a measure that is not readily estimable,
which is why in the present work we showed results for a series of credible
scenarios; however, using mobility data from European cities we managed to
obtain credible figures to plug-in the model. Our model does take into account
interpersonal distance in the form of R parameter; a potential expansion of this
framework is to account for time spent within the 1m interpersonal distance,
as well as distinguishing between high-risk (e.g. taxis, buses) and low-risk (e.g.
walking, personal car) means of transportation.

However, this work proves the feasibility of including population density
and transportation in an expanded SIR model, and suggests that, even if travel
between districts is forbidden, the epidemics may still be significantly harder to
contain in areas with very high population density (for example, in Italy, the
districts of Milano, Monza and Napoli). The model can be further improved
and expanded by adding age-specific compartments, sex and gender factors, and
risk classes, by refining the implementation of vital dynamics, and by modeling
different methods for contact tracing with varying degree of compliance.

5.5 Conclusions

We approached the model with a simulation based approach; this is compu-
tationally intensive but still manageable by most software and hardware and
less demanding than stochastic models based on individual data, and allows
for a high degree of customizability by fine-tuning its parameters on specific
interventions.

The model constitutes a viable framework to monitor epidemic trends and
assess the effect of interventions. Our results show that (1) voluntary self-
quarantine based on contact-tracing apps, together with efficient case isolation,
can give a relevant, and in some scenarios decisive, contribution to epidemics
mitigation/suppression; (2) at the same time, the success of this strategy can
depend heavily on population density and transportation.
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