Flatten the Curve! Modeling SARS-CoV-2/COVID-19 Growth in Germany on the County Level

Thomas Wieland (thomas.wieland@kit.edu)

2020-05-13

Abstract

Since the emerging of the "novel coronavirus" SARS-CoV-2 and the corresponding respiratory disease COVID-19, the virus has spread all over the world. In Europe, Germany is currently one of the most affected countries. In March 2020, a "lockdown" was established to contain the virus spread, including the closure of schools and child care facilities as well as forced social distancing and bans of any public gathering. The present study attempts to analyze whether these governmental interventions had an impact on the declared aim of "flattening the curve", referring to the epidemic curve of new infections. This analysis is conducted from a regional perspective. On the level of the 412 German counties, logistic growth models were estimated based on reported cases of infections, aiming at determining the regional growth rate of infections and the point of inflection where infection rates begin to decrease and the curve flattens. All German counties exceeded the peak of new infections between the beginning of March and the middle of April. In a large majority of German counties, the epidemic curve has flattened before the social ban was established (March 23). In a minority of counties, the peak was already exceeded before school closures. The growth rates of infections vary spatially depending on the time the virus emerged. Counties belonging to states which established an additional curfew show no significant improvement with respect to growth rates and mortality. On the contrary, growth rates and mortality are significantly higher in Bavaria compared to whole Germany. The results raise the question whether social ban measures and curfews really contributed to the curve flattening. Furthermore, mortality varies strongly across German counties, which can be attributed to infections of people belonging to the "risk group", especially residents of retirement homes.

1 Background

The "novel coronavirus" SARS-CoV-2 ("Severe Acute Respiratory Syndrome Coronavirus 2") and the corresponding respiratory disease COVID-19 ("Coronavirus Disease 2019") caused by the virus initially appeared in December 2019 in Wuhan, China. Since its emergence, the virus has spread over nearly all countries across the world. On March 12, 2020, the World Health Organization (WHO) declared the SARS-CoV-2/COVID-19 outbreak a global pandemic (Lai et al. 2020, World Health Organization 2020). As of May 10, 2020, 3,986,119 cases and 278,814 deaths had been reported worldwide. In Europe, the most affected countries are Spain, Italy, United Kingdom and Germany (European Centre for Disease Prevention and Control 2020).

The virus is transmitted between humans via droplets or through direct contact (Lai et al. 2020). Most European countries have introduced measures against the spread of Coronavirus. These measures range from appeals to voluntary behaviour changes in Sweden to strict curfews, e.g. in France and Spain. The public health strategy to contain the virus spread is commonly known as "flattening the curve", which refers to the epidemic curve of the number of infections: "Flattening the curve involves reducing the number of new COVID-19 cases from one day to the next. This helps prevent healthcare systems from becoming overwhelmed. When a country has fewer new COVID-19 cases emerging..." (Johns Hopkins University 2020).
Table 1: Main governmental interventions with respect to COVID-19 pandemic in Germany

<table>
<thead>
<tr>
<th>Phase</th>
<th>Measure</th>
<th>Entry into force</th>
<th>Competence/level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First quarantines of infected persons and suspected cases</td>
<td>February 2020</td>
<td>nationwide</td>
</tr>
<tr>
<td>up to CW</td>
<td>Minister of health Spahn recommends cancellation of large events (≥ 1,000 participants)</td>
<td>(March 8, 2020)</td>
<td></td>
</tr>
<tr>
<td>10/11</td>
<td>Bundesliga games behind closed doors ("ghost games")</td>
<td>March 11, 2020</td>
<td>nationwide</td>
</tr>
<tr>
<td></td>
<td>Speeches of chancellor Merkel and president Steinmeier, recommendation to avoid social contacts and large events</td>
<td>(March 12, 2020)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Closure of schools, child day care centers and universities</td>
<td>March 16-18, 2020</td>
<td>states</td>
</tr>
<tr>
<td>CW 12</td>
<td>Closure of retail facilities (except for basic supply), bars and leisure facilities</td>
<td>March 17-19, 2020</td>
<td>states</td>
</tr>
<tr>
<td></td>
<td>Travel restrictions</td>
<td>March 17, 2020</td>
<td>nationwide</td>
</tr>
<tr>
<td>3</td>
<td>Curfew in Bavaria, Saarland and Saxony</td>
<td>March 21-23, 2020</td>
<td>states</td>
</tr>
<tr>
<td>CW 12</td>
<td>Forced social distancing (distance ≥ 1.5 m), ban of gatherings > 2 people (including political and religious gatherings), closure of gastronomy and other service providers (e.g. hairdressers)</td>
<td>March 23, 2020</td>
<td>nationwide</td>
</tr>
<tr>
<td>4</td>
<td>Reopening of several retail facilities and services</td>
<td>April 20, 2020</td>
<td>states</td>
</tr>
<tr>
<td>CW 17</td>
<td>Mandatory face masks in public transport and shops</td>
<td>April 22-29, 2020</td>
<td>states</td>
</tr>
<tr>
<td></td>
<td>Further liberalizations; implementation of an "emergency brake": lockdowns on the county level on condition of 50 new infections per 100,000 in one week</td>
<td>May 6, 2020</td>
<td>nationwide</td>
</tr>
</tbody>
</table>

Source: own compilation based on an der Heiden, Hamouda (2020), Deutsche Welle (2020a,b), Tagesschau.de (2020a,b).

In Germany, due to the federal political system, measures to "flatten the curve" were introduced on the national as well as the state level. As the German "lockdown" has no single date, we distinguish here between four phases, of which the main interventions were the closures of schools, child day care centers and most retail shops etc. in calendar week 12 (phase 2), and the nationwide establishment of a social ban (attributed to phase 3), including forced social distancing and a ban of gatherings of all types, on March 23, 2020 (see table 1). Occasionally, these governmental interventions were criticized because of the social, psychological and economic impacts of a "lockdown" and/or the lack of its necessity (Capital 2020, Süddeutsche Zeitung 2020a, Tagesspiegel 2020, Welt online 2020a). Apart from the economic impacts emerging from a worldwide recession (The Guardian 2020), the social consequences of movement restrictions and social isolation have also become apparent now, e.g. through a worldwide increase in domestic abuse (New York Times 2020), reported in Germany as well (Stuttgarter Zeitung 2020, Süddeutsche Zeitung 2020b).

It is therefore all the more important to know whether these restrictions really contributed to the flattening of the epidemic curve of Coronavirus in Germany (Robert Koch Institut 2020a). This question should be addressed from a regional perspective for two reasons. First, the competences for the measures in Germany have shifted from the national to the state and regional (county) level. In the future, counties with more than 50 new infections per 100,000 in one week are expected to implement regional measures (see table 1). Second, a spatial perspective allows the impact of the German measures of March 2020 to be identified. In his statistical study, the mathematician Ben-Israel (2020) compares the epidemic curves of Israel, the USA and several European countries. These curves demonstrate a decline of new infections, regardless of the national measures to contain the virus spread. Furthermore, the study reveals the trend that the peak of infections is typically reached in the sixth week after the first case report, while a decline of the curve starts in the eighth week. This occurs in all assessed countries on the national level, no matter whether a "lockdown" was established (e.g. Italy) or not (e.g. Sweden).

The focus in the present study is on the main interventions with respect to the SARS-CoV-2/COVID-19 pandemic in Germany, which means the concrete "lockdown" measures...
affecting the social and economic life of the whole society (distinguishing from measures taken in most cases of infectious diseases, such as quarantine of affected persons). In the terminology of the present study, these are the phase 2 and 3 measures, denoted in Table 1. Building upon the discrepancy outlined by Ben-Israel (2020), the present study addresses the following research questions:

- Pandemic or epidemic growth has a regional component due to regional infection hotspots or other behavioral or spatial factors. Thus, growth rates of infections may differ between regions in the same country (Chowell et al. 2014). In Germany, the prevalence of SARS-CoV-2/COVID-19 differs among the 16 German states and 412 counties, clearly showing "hotspots" in South German counties belonging to Baden-Wuerttemberg and Bavaria (Robert Koch Institut 2020a). Thus, the first question to be answered is: How does the growth rate of SARS-CoV-2/COVID-19 vary across the 412 German counties?

- The German measures to contain the pandemic entered into force nearly at the same time, especially in terms of closures of schools, childcare infrastructure and retailing (starting March 16/17, 2020) as well as the nationwide social ban (starting March 23, 2020). Ben-Israel (2020) found a decline of new infection cases on the national level regardless of the Corona measures. To examine the effect of the German measures, we need to estimate the time of the peak and the declining of the curves of infection cases, respectively: At which date(s) did the epidemic curves of SARS-CoV-2/COVID-19 in the 412 German counties flatten?

- Regional prevalence and growth, as well as the mortality of SARS-CoV-2/COVID-19, are attributed within media discussions to several spatial factors, including population density or demographic structure of the regions (Welt online 2020b). Furthermore, the German measures differ on the state level, as three states - Bavaria, Saarland and Saxony - established additional curfews supplementing the other measures (see Table 1). Focusing on growth rate and mortality, and addressing these regional differences, the third research question is: Which indicators explain the regional differences of SARS-CoV-2/COVID-19 growth rate and mortality on the level of the 412 German counties?

2 Methodology

2.1 Logistic growth model

Pandemic growth can be modeled by deterministic models such as the SIR (susceptible-infected-removed) model and its extensions, or stochastic, phenomenological models such as the exponential or the logistic growth model. The latter type of model is based on linear or nonlinear regression and only empirical data of infections and/or confirmed cases of disease (or death) is required for model estimation (Batista 2020a,b, Chowell et al. 2014, 2015, Ma 2020, Pell et al. 2018). Recently, there have already been several attempts to model the SARS-CoV-2 pandemic on the country (or even world) level, by using either the original or extended SIR model (Batista 2020b), the logistic growth model (Batista 2020a, Vasconcelos et al. 2020, Wu et al. 2020), or both (Zhou et al. 2020).

In the present case, we regard the spread of the Coronavirus primarily as an empirical phenomenon over space and time rather than its epidemiological characteristics. We therefore focus 1) the regional growth speed of the pandemic and 2) the time when exponential growth ends and the infection rate decreases again. Apart from that, only infection cases and some further information are available, but not additional epidemiological information. Thus, the method of choice is a phenomenological regression model. In an early phase of an epidemic, when the number of infected individuals grows exponentially, an exponential function could be utilized for the phenomenological analysis (Ma 2020). However, the growth of SARS-CoV-2 in Germany is demonstrably not of exponential nature anymore, as the number of infections and the corresponding reproduction number is decreasing (Robert Koch Institut 2020a). Thus, a logistic growth model is used for the analysis of SARS-CoV-2 growth in the German counties.
The following representations of the logistic growth model are adopted from Batista (2020a), Chowell et al. (2014) and Tsoularis (2002). Unlike exponential growth, logistic growth includes two stages, while assuming a saturation effect. The first stage is characterized by an exponential growth of infections due to an unregulated spreading of the disease. However, as more infections accumulate, the number of at-risk susceptible persons decreases because of immunization, death, or behavioral changes as well as public health interventions. After the inflection point of the infection curve, when the infection rate is at its maximum, the growth decreases and the cumulative number of infections approximate its theoretical maximum, which is the saturation value (see figure 1).

In the logistic growth model, the cumulative number of infected or diseased persons at time t, $C(t)$ is a function of time:

$$C(t) = \frac{C_0 S}{C_0 + (S - C_0) \exp(-rSt)}$$ \hspace{1cm} (1)

where C_0 is the initial value of C at time 0, r is the intrinsic growth rate, and S is the saturation value.

The infection rate is the first derivative:

$$\frac{dC}{dt} = rC \left(1 - \frac{C}{S}\right)$$ \hspace{1cm} (2)

The inflection point of the logistic curve indicates the maximal infection rate before the growth declines, which means a flattening of the cumulative infection curve. The inflection point, ip, is equal to:

$$ip = \frac{S}{2}$$ \hspace{1cm} (3)

at time

$$t_{ip} = \frac{c}{rS}$$ \hspace{1cm} (4)

where:

$$c = \ln \frac{C_0}{C - C_0}$$ \hspace{1cm} (5)

When empirical data (here: time series of cumulative infections) is available, the three model parameters r, S and C_0 can be estimated empirically.
In the present case, fitting the models is done in a three-step estimation procedure including both OLS (Ordinary Least Squares) and NLS (Nonlinear Least Squares) estimation. The former is used for creating start values for the iterative NLS estimation, while making use of the linearization and stepwise parametrization of the logistic function described in Engel (2010). If the saturation value is known, the nonlinear logistic model turns into an intrinsic linear model:

\[
\ln \left(\frac{1}{C(t)} - \frac{1}{S} \right) = \ln \left(\frac{S - C_0}{SC_0} \right) - rSt
\]

(6)

\[
y^*_i = \ln \left(\frac{1}{C(t)} - \frac{1}{S} \right)
\]

(7)

\[
y^* = \hat{b} + \hat{m}t
\]

(8)

In step 1, an approximation of the saturation value is estimated, which is necessary for the linear transformation of the model. Transforming the empirical values \(C(t)\) according to formula 7, we have a linear regression model (formula 8). By utilizing bisection (Kaw et al. 2011), the best value for \(S\) is searched minimizing the sum of squared residuals. The bisection procedure consists of 10 iterations, while the start values are set around the current maximal value of \(C(t)\) \(\text{max}(C(t)) + 1; \text{max}(C(t)) \ast 1.2\).

The resulting preliminary start value for saturation, \(\hat{S}_{\text{start}}\), is used in step 2. We transform the observed \(C(t)\) using formula (7) with the preliminary value of \(\hat{S}\) from step 1, \(\hat{S}_{\text{start}}\). Another OLS model is estimated (formula 8). The estimated coefficients are used for calculating the start values of \(\hat{r}\) and \(\hat{C}_0\) for the nonlinear estimation:

\[
\hat{r}_{\text{start}} = -\frac{\hat{m}}{\hat{S}_{\text{start}}}
\]

(9)

and

\[
\hat{C}_{0,\text{start}} = \frac{\hat{S}_{\text{start}}}{1 + \hat{S}_{\text{start}} \exp(\hat{b})}
\]

(10)

In step 3, the final model fitting is done using Nonlinear Least Squares (NLS), while inserting the values from steps 1 and 2, \(\hat{S}_{\text{start}}, \hat{C}_{0,\text{start}}\) and \(\hat{r}_{\text{start}}\), as start values for the iterative process. The NLS fitting uses default Gauss-Newton algorithm (Ritz, Streibig 2008) with a maximum of 500 iterations.

Using the estimated parameters \(\hat{r}, \hat{C}_0\) and \(\hat{S}\), the inflection point of each curve is calculated via formulae 3 to 5. The inflection point \(t_{ip}\) is of unit time (here: days) and assigned to the respective date \(t_{\text{ip, date}}\) (YYYY-MM-DD). Based on this date, the following day \(t_{\text{ip, date+1}}\) is the first day after the inflection point at which time the infection rate has decreased again. For graphical visualization, the infection rate is also computed using formula 2.

2.2 Estimating the dates of infection

In the present study, the daily updated data on confirmed SARS-CoV-2/COVID-19 cases, provided by federal authorities, the German Robert Koch Institute (RKI), is used (Robert Koch Institut 2020b). The dataset used here is from May 5, 2020 and includes 163,798 cases. This data includes information about age group, sex, the related place of residence (county) and the date of report (Variable Meldedatum). The reference date in the dataset (Variable Refdatum) is either the day the disease started, which means the onset of symptoms, or the date of report (an der Heiden, Hamouda 2020). The date of onset of symptoms is known in the majority of cases (108,875 resp. 66.47 %).

The date of infection, which is of interest here, is either unknown or not included in the official dataset. Thus, it is necessary to estimate the approximate date of infection dependent on two time periods: the time between the infection and the onset of symptoms (incubation period) and the delay between onset of symptoms and official report. Taking into account the 108,875 cases where the onset of symptoms is known, the mean delay between onset of symptoms and case report is equal to 6.84 days. In the estimation, an
incubation period equal to five days is assumed. This is a rather conservative assumption (which means a relatively short time period) referring to the current epidemiological estimates (see table 2). In their model-based scenario analysis towards the total number of diseases and deaths, the RKI also assumes an average incubation period of five days (an der Heiden, Buchholz 2020). Taking into account incubation period and reporting delay, there is an average all-over delay between infection and reporting of about 12 days (see figure 2).

But this is just one side of the coin, as an inspection of the case data reveals that this delay differs between case characteristics (age group, sex) and counties. In their current prognosis, the RKI estimates the dates of onset of symptoms by Bayesian nowcasting outgoing from the reporting date, but not taking into account the incubation time. The RKI nowcasting model incorporates delays of reporting depending on age group and sex, but not including spatial (county-specific) effects (an der Heiden, Hamouda 2020).

Exploring the dataset used here, we see obvious differences in the reporting delay with respect to age groups and sex. There seems to be a tendency of lower reporting delays for young children and older infected individuals (see table 3). Taking a look at the delays between onset of symptoms and reporting date on the level of the 412 counties (not shown in table), the values range between 2.39 days (Würzburg city) and 17.0 days (Würzburg county).

For the estimation of the dates of infection, it is necessary to distinguish between the cases in which the date of symptom onset is known or not. In the former case, no assumption must be made towards the delay between onset of symptoms and date report. The calculation is simply:

$$\hat{d}_i = d_{oi} - \text{incp}$$ \hspace{1cm} (11)

where \hat{d}_i is the estimated date of infection of case i, d_{oi} is the date of onset of symptoms reported in the RKI dataset and incp is the average incubation period equal to five (days).

For the 54,923 cases without information about onset of symptoms, we estimate this delay based on the 108,875 cases with known delays. As the reporting delay differs between age group, sex and county, the following dummy variable regression model is
Table 3: Delay between onset of symptoms and official report by age group and sex

<table>
<thead>
<tr>
<th>Age group</th>
<th>Sex</th>
<th>Delay between onset of symptoms and reporting date [days]</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A00-A04</td>
<td>female</td>
<td>5.82, 5.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A05-A14</td>
<td>female</td>
<td>6.09, 5.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A15-A34</td>
<td>female</td>
<td>6.82, 5.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A35-A59</td>
<td>female</td>
<td>7.00, 5.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A60-A79</td>
<td>female</td>
<td>7.08, 6.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A80+</td>
<td>female</td>
<td>5.10, 5.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td>female</td>
<td>8.71, 9.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A00-A04</td>
<td>male</td>
<td>5.93, 5.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A05-A14</td>
<td>male</td>
<td>6.04, 5.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A15-A34</td>
<td>male</td>
<td>6.78, 5.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A35-A59</td>
<td>male</td>
<td>7.18, 5.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A60-A79</td>
<td>male</td>
<td>7.20, 6.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A80+</td>
<td>male</td>
<td>5.70, 5.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td>male</td>
<td>9.86, 8.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A00-A04</td>
<td>unknown/diverse</td>
<td>3.50, 2.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A05-A14</td>
<td>unknown/diverse</td>
<td>4.00, 5.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A15-A34</td>
<td>unknown/diverse</td>
<td>4.44, 4.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A35-A59</td>
<td>unknown/diverse</td>
<td>6.95, 5.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A60-A79</td>
<td>unknown/diverse</td>
<td>7.36, 5.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A80+</td>
<td>unknown/diverse</td>
<td>6.50, 11.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td>unknown/diverse</td>
<td>9.60, 3.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>all-over</td>
<td></td>
<td>6.84, 5.90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: own calculation based on data from Robert Koch Institut (2020b).

Date of onset of symptoms is known for 108,875 (66.47 %) of 163,798 cases in the dataset.

estimated (stochastic disturbance term is not shown):

\[\hat{d}_{s_{asc}} = \alpha + \sum_{a}^{A-1} \beta_{a}D_{agegroup_{a}} + \sum_{s}^{S-1} \gamma_{s}D_{sex_{s}} + \sum_{c}^{C-1} \delta_{c}D_{county_{c}} \] (12)

where \(\hat{d}_{s_{asc}} \) is the estimated delay between onset of symptoms and report depending on age group \(a \), sex \(s \) and county \(c \), \(D_{agegroup_{a}} \) is a dummy variable indicating age group \(a \), \(D_{sex_{s}} \) is a dummy variable indicating sex \(s \), \(D_{county_{c}} \) is a dummy variable indicating county \(c \), \(A \) is the number of age groups, \(S \) is the number of sex classifications, \(C \) is the number of counties and \(\alpha, \beta, \gamma \) and \(\delta \) are the regression coefficients to be estimated.

Taking into account the delay estimation, if the onset of symptoms is unknown, the date of infection of case \(i \) is estimated via:

\[\hat{d}_{i} = d_{r_{i}} - \hat{d}_{s_{asc}} - incp \] (13)

where \(d_{r_{i}} \) is the date of report in the RKI dataset.

2.3 Models of regional growth rate and mortality

To test which variables predict the intrinsic growth rate and if the growth rate predicts the regional mortality of SARS-CoV-2 and COVID-19, respectively, five regression models were estimated (two for the intrinsic growth rate and three for mortality). In the first model with the intrinsic growth rate \(r \) as dependent variable, we include the following predictors:

- In the media coverage about regional differences with respect to COVID-19 cases in Germany, several experts argue that a lower population density and a higher share of older population reduce the spread of the virus, with the latter effect being due to a lower average mobility (Welt online 2020b). To test these effects in the model, the population density (\(popdens \)) as well as the share of population of at
least 65 years (pop_share65plus) of each county is included in the model. Both variables were calculated based on official population data for the most recent year 2018 (Statistisches Bundesamt 2020).

- Furthermore, apart from the fact that the aspects mentioned above are more present in East Germany, the lower prevalence in East Germany is also explained by 1) a different vaccination policy in the former German Democratic Republic and 2) a lower affinity towards “super-spreading events” in the context of carnival as well as 3) less travelling to ski resorts due to lower incomes (Welt online 2020b). Thus, a dummy variable (1/0) for East Germany is included in the model (East).

- Apart from any governmental interventions, when a disease spreads over time, also the susceptible population must decrease over time. As more and more individuals get infected (causing immunization or, in other cases, death), there are continually fewer healthy people to get infected. As the outbreak of SARS-CoV-2 differs within German counties (starting with “hotspots” like Heinsberg county), we have to assume that differences in growth are due to different periods of time the virus is present. Thus, two variables are included, the prevalence (PRV, see table 3) and the number of days since the first (estimated) infection (days_since_firstinfection).

- Finally, we test for the influence of governmental interventions by including dummy variables for the states (“Länder”) Bavaria (BV), Saarland (SL), Saxony (SX) and North Rhine Westphalia (NRW), as well as Baden-Wuerttemberg (BW). Unlike the other 13 German states, the first three states established a curfew additional to the other measures at the time of phase 3, as is identified in the present study. Like Bavaria, North Rhine Westphalia and Baden-Wuerttemberg belong to the "hotspots" in Germany, with the latter state having a prevalence similar to Bavaria. Saxony has a prevalence below the national average (Robert Koch Institut 2020a).

In the second model for the explanation of regional mortality (MRT, see table 3), all variables mentioned above are included. However, two more independent variables have to be tested:

- The question as to whether the regional pandemic growth influences mortality is one of the present research questions. Thus, the intrinsic growth rate r of each county is tested in the model.

- From the epidemiological point of view, the "risk group" of COVID-19 for severe courses (and even deaths) is defined as people of 60 years and older. The arithmetic mean of deceased attributed to COVID-19 is equal to 81 years (median: 82 years). Out of 6,831 reported deaths on May 05 2020, 6,524 were of age 60 or older (95.51 %). This is, inter alia, because of outbreaks in residential homes for the elderly (Robert Koch Institut 2020a). Thus, the raw data from the RKI (Robert Koch Institut 2020b) was used to calculate the share of confirmed infected individuals of age 60 or older in all infected persons for each county (infected_share60plus).

All kinds of analyses in this study, including the parametrization of all models, was executed in R (R Core Team 2019), version 3.6.2.

3 Results and discussion

3.1 Estimation of infection dates and national inflection point

Figure 3 shows the estimated dates of infection and dates of report of confirmed cases and deaths for Germany. The curves are not shifted exactly by the average delay period because of the different delay times with respect to case characteristics and county. The average time interval between estimated infection and case reporting is $\hat{\tau} = 11.92$ [days] ($SD = 5.21$). When applying the logistic growth model to the estimated dates of infection in Germany, the inflection point for whole Germany is at March 20, 2020.
Table 4: Epidemiological measures for the distribution of a disease

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Mathematical notation</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence</td>
<td>$PRV = \frac{C}{pop} \times 100000$</td>
<td>Cases per 100000 pop</td>
</tr>
<tr>
<td>Mortality</td>
<td>$MRT = \frac{D}{pop} \times 100000$</td>
<td>Deaths per 100000 pop</td>
</tr>
<tr>
<td>Case fatality rate</td>
<td>$CFR = \frac{D}{C} \times 100$</td>
<td>%</td>
</tr>
<tr>
<td>Infection fatality rate</td>
<td>$IFR = \frac{D}{I} \times 100$</td>
<td>%</td>
</tr>
</tbody>
</table>

Note: C is the number of reported/confirmed disease cases, D is the number of reported/confirmed disease deaths, I is the number of all infected individuals (including non-reported/asymptomatic cases) and pop is the population of the regarded region or county.

Source: own compilation based on Porta (2008) and Nishiura et al. (2020).

Source: own illustration. Data source: own calculations based on Robert Koch Institut (2020b)
Before switching to the regional level, we take into account the statistical uncertainty with respect to the estimation of the infection dates. About one third of the delay values for the time between onset of symptoms and case reporting was estimated by a stochastic model. Furthermore, the estimates of COVID-19 incubation period differ from study to study. This is why in the present case a conservative - which means a small - value of five days was assumed. Thus, we compare the results when including 1) the 95% confidence intervals of the response from the model in formula 12, and 2) the 95% confidence intervals of the incubation period as estimated by Linton et al. (2020). Figure 4 shows three different modeling scenarios, the mean estimation and the lower and upper bound of incubation period and delay time, respectively. The lower bound variant incorporates the lower bound of both incubation period and delay time, resulting in smaller delay between infection and case reporting and, thus, a later inflection point. The upper bound shows the counterpart. On condition of the upper bound, the inflection point is already on March 19. Using the higher values of incubation period estimated by Backer et al. (2020), the upper bound results in an inflection point at March 17, while the lower bound variant leads to the turn on March 20 (see table 5). Considering confidence intervals of incubation period and delay time, the inflection point for the whole of Germany can be determined as occurring between March 17 and March 20, 2020.

Table 5: Date of inflection point depending on assumed incubation period

<table>
<thead>
<tr>
<th>Study</th>
<th>Median of incubation time (CI-95)</th>
<th>Date of inflection point</th>
<th>Lower</th>
<th>Median</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linton et al. (2020)</td>
<td>5.0 (4.4, 5.6)</td>
<td>2020-03-20</td>
<td>2020-03-20</td>
<td>2020-03-19</td>
<td></td>
</tr>
<tr>
<td>Backer et al. (2020)</td>
<td>6.4 (5.6, 7.7)</td>
<td>2020-03-20</td>
<td>2020-03-19</td>
<td>2020-03-17</td>
<td></td>
</tr>
</tbody>
</table>

Source: own calculation based on data from Robert Koch Institut (2020b).
Table 6: German counties by first day after inflection point

<table>
<thead>
<tr>
<th>First day after inflection point</th>
<th>Counties [no.]</th>
<th>Counties [%]</th>
<th>Population [no.]</th>
<th>Population [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before March 13</td>
<td>6</td>
<td>1.46</td>
<td>0.98</td>
<td>1.17</td>
</tr>
<tr>
<td>March 13 to March 16</td>
<td>45</td>
<td>10.92</td>
<td>8.27</td>
<td>9.95</td>
</tr>
<tr>
<td>March 17 to March 20</td>
<td>138</td>
<td>33.50</td>
<td>31.03</td>
<td>37.33</td>
</tr>
<tr>
<td>March 21 to March 22</td>
<td>66</td>
<td>16.02</td>
<td>14.30</td>
<td>17.20</td>
</tr>
<tr>
<td>March 23 to April 19</td>
<td>157</td>
<td>38.11</td>
<td>28.54</td>
<td>34.34</td>
</tr>
<tr>
<td>Sum</td>
<td>412</td>
<td>100</td>
<td>83.13</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: own illustration. Data source: own calculations based on Robert Koch Institut (2020b)

3.2 Estimation of growth rates and inflection points on the county level

Figure 5 shows the estimated intrinsic growth rates (r) for the 412 counties. Figure 6 provides six examples of the logistic growth curves with respect to four counties identified as "hotspots" (Tirschenreuth, Heinsberg, Greiz and Rosenheim) and two counties with a low prevalence (Flensburg and Uckermark).

There are obviously differences in the growth rates, following a spatial trend: The highest growth rates can be found in counties in North Germany (especially Lower Saxony and Schleswig-Holstein) and East Germany (especially Mecklenburg-Western Pomerania, Thuringia and Saxony). To the contrary, the growth rates in Baden-Württemberg and North Rhine Westphalia appear to be quite low. Taking a look at the time the disease is present in the German counties, outgoing from the first estimated infection date (see figure 7), the growth rates tend be much smaller the longer the time since the disease appeared in the county.

The regional inflection points indicate the day with the local maximum of infection rate. Outgoing from this day, the exponential disease growth turns into degressive growth. In figure 8, the dates of the first day after the regional inflection point are displayed, while categorizing the dates according to the coming into force of relevant governmental interventions (see table 1). Table 6 summarizes the number of counties and the corresponding population shares by these categories. Figure 9 shows the intrinsic growth rate (y axis) and the day after the inflection point (colored points) against time (x axis).

In 255 of 412 counties (61.89 %) with 54.58 million inhabitants (65.66 % of the national population), the SARS-CoV-2/COVID-19 infections had already decreased before forced social distancing etc. (phase 3 of measures) came into force (March 23, 2020). In a minority of counties (51, 12.38 %), the curve already flattened before the closing of schools and child day care centers (March 16-18, 2020), six of them exceeded the peak of new infections even before March 13 (This category refers to the appeals of chancellor Merkel and president Steinmeier on March 12). In 157 counties (38.11 %) with a population of 28.54 million people (34.34 % of the national population), the decrease of infections took place within the time of strict regulations towards social distancing and ban of gatherings. Thus, whole Germany as well as the majority of German counties have experienced a decline of the infection rate - a flattening of the infection curve - before the main social-related measures came into force.

The average time interval between the first estimated infection and the respective inflection point of the county is $\bar{x} = 30.32$ [days] ($SD = 11.92$). However, the time until inflection point is characterized by a large variance, but this may be explained partially by the (de facto unknown) variance in the incubation period and the variance in the delay between onset of symptoms and reporting date.

In all counties, the inflection points lie within March 6 and April 18, 2020, which means a time period of 43 days between the first and the last flattening of a county. The first decrease can be determined in Heinsberg county (North Rhine Westphalia; 254,322 inhabitants), which was one of the first Corona "hotspots" in Germany. The estimated inflection point here took place at March 06, 2020, leading to a date of the first day after the inflection point of March 07. The latest estimated inflection point (April 18, 2020)
Figure 5: Intrinsic growth rate by county
Figure 6: Logistic growth of SARS-CoV-2/COVID-19 infections in six German counties
Source: own illustration. Data source: own calculations based on Robert Koch Institut (2020b)
Figure 7: Time since first infection by county

Source: own illustration.
Figure 8: First day after inflection point by county

Source: own illustration.
Figure 9: Growth rate and first day after inflection point vs. time

Source: own illustration. Data source: own calculations based on Robert Koch Institut (2020b)

took place in Steinburg county (Schleswig-Holstein; 131,347 inhabitants).

As figure 9 shows, the intrinsic growth rates, which indicate an average growth level over time, and inflection points of the logistic models are linked to each other. Growth speed declines over time (see also the maps in figures 5 and ??), more precisely, it declines in line with the time the disease is present in the regarded county (Pearson correlation coefficient of -0.47, \(p < 0.001 \)). The longer the time between inflection point and now, the lower the growth speed, and vice versa. This process takes place over all German counties with a time delay depending on the first occurrence of the disease.

3.3 Regression models for intrinsic growth rates and mortality

The additional regional variables used within the models are displayed in the maps in figures 10 (prevalence), 11 (mortality) and 12 (share of infected individuals of age \(\geq 60 \)). Additionally, figure 13 shows the current case fatality rate on the county level. Tables 7 and 8 show the estimation results for the models explaining the intrinsic growth rates and the mortality, respectively. Note that all of the variables deviating from a normal distribution were transformed via natural logarithm in the regression analysis. This leads to an interpretation of the regression coefficients in terms of elasticities and semi-elasticities (Greene 2012). The minimum significance level was set to \(p \leq 0.1 \). All models were tested with respect to multicollinearity using variance inflation factors (VIF). No variable exceeded the critical value of \(VIF \geq 5 \).

For the prediction of the intrinsic growth rate (\(r \)), two models were estimated with and without the state dummy variables (table 7). From the aspect of explained variance, the second model provides a better fit (\(Adj.R^2 = 0.710 \)) compared to the first (\(Adj.R^2 = 0.636 \)).

Different than expected, population density (\(popdens \)) does not increase growth rate. In contrary to the assumptions, a 1% increase of population density decreases the growth rate by 0.074%. Also the demographic indicator (\(pop_share65plus \)) has an impact on growth that is opposite to the assumed: An increase of one percentage point in the share
Figure 10: Prevalence by county

Source: own illustration.
Figure 11: Mortality by county

Source: own illustration.
Figure 12: Share of reported infected individuals of age 60 and older by county

Source: own illustration.
Figure 13: CFR by county

Source: own illustration.
of inhabitants of age ≥ 65 increases the growth rate by 6.1 %. Thus, there is also no dampening effect of virus spread by an older population on the county level.

However, the current prevalence (PRV) and time (days since first infection) decelerate the growth of infections significantly. The former has a nearly proportional impact: An increase of prevalence equal to 1% decreases the intrinsic growth rate by 1.03%. For each day SARS-CoV-2/COVID-19 is present in the county, the growth speed declines on average by 1.5%. Both results indicate a decline of susceptible individuals at risk of infection.

On average, the intrinsic growth rate is significantly higher in Bavarian counties (dummy variable BV), while it is significantly lower in Saxony and North Rhine-Westphalian counties (SL and SX, respectively). For Baden-Wuerttemberg (BW) and Saarland (SL), no significant effect is found. Thus, the spread in Bavaria is above the average, regardless of the curfew starting March 20, 2020. The East dummy is significant in the first but not in the second model.

Table 7: Estimation results for the growth rate model

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>log(r)</th>
<th>log(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>log(popdens)</td>
<td>−0.154***</td>
<td>−0.074***</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.026)</td>
</tr>
<tr>
<td>pop_share65plus</td>
<td>0.039***</td>
<td>0.061***</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>log(PRV)</td>
<td>−0.891***</td>
<td>−1.032***</td>
</tr>
<tr>
<td></td>
<td>(0.052)</td>
<td>(0.057)</td>
</tr>
<tr>
<td>East</td>
<td>−0.218**</td>
<td>−0.149</td>
</tr>
<tr>
<td></td>
<td>(0.096)</td>
<td>(0.091)</td>
</tr>
<tr>
<td>days_since_firstinfection</td>
<td>−0.022***</td>
<td>−0.015***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>BV</td>
<td>0.529***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.092)</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td></td>
<td>0.118</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.236)</td>
</tr>
<tr>
<td>SX</td>
<td>−0.663***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.172)</td>
<td></td>
</tr>
<tr>
<td>NRW</td>
<td>−0.464***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.096)</td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>−0.037</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.111)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>−1.456***</td>
<td>−2.207***</td>
</tr>
<tr>
<td></td>
<td>(0.552)</td>
<td>(0.522)</td>
</tr>
</tbody>
</table>

Observations: 411
R²: 0.641
Adjusted R²: 0.636
Residual Std. Error: 0.618 (df = 405)
F Statistic: 144.520*** (df = 5; 405)

Note: *p<0.1; **p<0.05; ***p<0.01

For the prediction of mortality (MRT), the growth rate (r) and the state dummy variables (BV, SL, SX and NRW) are entered into the model analysis successively, resulting in three models (table 8). When comparing models 1 and 2, adding the growth rate as independent variable increases the explained variance substantially ($\text{Adj.} R^2 = 0.266$...
and 0.410, respectively). The third model provides the best fit, adjusted for the number of explanatory variables (Adj. $R^2 = 0.420$).

While the spatial and demographic variables are not significant, the share of infected people of age ≥ 60 (Infected_share60plus) significantly increases the regional mortality: An increase of one percentage point in the share of people of the "risk group" in all infected increases the mortality by 9.8%. The regional peaks of the risk group share and the mortality could be explained by outbreaks in residential homes for the elderly. The intrinsic growth rate is negatively correlated with the mortality. Thus, a faster speed of infection has not led to higher mortality rates on the regional level.

The only significant state-specific effect can be identified with respect to Bavaria: The mortality in Bavaria is higher than in the counties belonging to other states. A two-sample t-test reveals that Bavarian counties have a significantly higher share of infected belonging to the risk group ($\bar{x} = 31.11\%$) compared to the remaining states ($\bar{x} = 29.28\%$), with a difference of 1.83 percentage points ($p = 0.054$).

Table 8: Estimation results for the mortality model

<table>
<thead>
<tr>
<th>Dependent variable: log(MRT + 0.0001)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(popdens)</td>
<td>0.040</td>
<td>−0.156</td>
<td>−0.070</td>
</tr>
<tr>
<td>(0.115)</td>
<td>(0.105)</td>
<td>(0.109)</td>
<td></td>
</tr>
<tr>
<td>pop_share65plus</td>
<td>−0.241***</td>
<td>−0.069</td>
<td>−0.028</td>
</tr>
<tr>
<td>(0.057)</td>
<td>(0.054)</td>
<td>(0.057)</td>
<td></td>
</tr>
<tr>
<td>Infected_share60plus</td>
<td>0.142***</td>
<td>0.102***</td>
<td>0.098***</td>
</tr>
<tr>
<td>(0.015)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td></td>
</tr>
<tr>
<td>East</td>
<td>−0.655*</td>
<td>−0.489</td>
<td>−0.207</td>
</tr>
<tr>
<td>(0.381)</td>
<td>(0.342)</td>
<td>(0.369)</td>
<td></td>
</tr>
<tr>
<td>days_since_firstinfection</td>
<td>0.034***</td>
<td>−0.009</td>
<td>−0.006</td>
</tr>
<tr>
<td>(0.012)</td>
<td>(0.011)</td>
<td>(0.011)</td>
<td></td>
</tr>
<tr>
<td>log(r)</td>
<td>−1.436***</td>
<td>−1.441***</td>
<td>(0.157)</td>
</tr>
<tr>
<td>(0.144)</td>
<td>(0.144)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV</td>
<td>0.968***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.316)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>0.817</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.946)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SX</td>
<td>−0.432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.709)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRW</td>
<td>−0.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.402)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>0.170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.428)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>−0.324</td>
<td>−9.657***</td>
<td>−11.484***</td>
</tr>
<tr>
<td>(1.862)</td>
<td>(1.913)</td>
<td>(2.100)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>411</td>
<td>411</td>
<td>411</td>
</tr>
<tr>
<td>R^2</td>
<td>0.275</td>
<td>0.418</td>
<td>0.436</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.266</td>
<td>0.410</td>
<td>0.420</td>
</tr>
<tr>
<td>Residual Std. Error</td>
<td>2.519 (df = 405)</td>
<td>2.258 (df = 404)</td>
<td>2.238 (df = 399)</td>
</tr>
<tr>
<td>F Statistic</td>
<td>30.686*** (df = 5; 405)</td>
<td>48.440*** (df = 6; 404)</td>
<td>28.017*** (df = 11; 399)</td>
</tr>
</tbody>
</table>

Note: *p<0.1; **p<0.05; ***p<0.01
4 Conclusions and limitations

In the present study, regional SARS-CoV-2/COVID-19 growth was analyzed as an empirical phenomenon from a spatiotemporal perspective. The first conclusion with respect to the national level is that the flattening of the epidemic curve in Germany occurred between three to six days before forced social distancing and ban of gatherings, which are attributed to phase 3 of measures in this study, came into force. Due to this temporal mismatch, the decline of infections can not be causally linked to the contact ban of March 23.

Note that the results for whole Germany, estimating the inflection point between March 17 and March 20, are rather conservative even when compared with the RKI estimations. In the RKI nowcasting study, the peak of onset of symptoms (not infection time, which is not considered in the mentioned study) is found at March 18 and a stabilization of the reproduction number equal to $R = 1$ at March 22 (an der Heiden, Hamouda 2020). The former RKI study (an der Heiden, Buchholz 2020) estimated the peaks between June and July, depending on the parameters of the scenarios.

The main focus of this analysis is the regional level, which reveals a more differentiated picture. The second conclusion is that in all German counties the curves of infections clearly flattened within a time period of about six weeks from the first to the last county. On average, it took one month from the first infection to the inflection point of the curve. However, the regional decline of infections is not in line with the governmental interventions to contain the virus spread. In nearly two thirds of the German counties which account for two thirds of the German population, the flattening of the infection curve occured before the social ban with forced social distancing etc. came into force (March 23, phase 3). One in eight counties experienced a decline of infections even before the closure of schools, child day care facilities and retail facilities, which is attributed to phase 2 of interventions in this study. Consequently, the third conclusion is that in a majority of counties, the regional decline of infections can not be attributed to the contact ban. In a minority of counties, also closures of educational and retail facilities cannot have caused the decline. While keeping in mind that SARS-CoV-2 emerged at different times across the counties, the fourth conclusion is that it is at least questionable whether these measures primarily caused the flattening of the infection curve in the other counties.

Furthermore, the regional disparities of growth speed are not consistent with measures established nationwide at the same time, especially when incorporating statistical controlling for the effects of time and current prevalence. Instead, the regional growth of infections appears as a function of time, reaching the peak of infection rates on average one month after the first infection. Consequently, the fifth conclusion is that both growth rates and points of inflection indicate a decline of susceptible individuals at risk of infection over time.

With respect to the other determinants of growth speed and mortality, few clear statements can be made. The assumptions towards a slower disease spread and lower severe effects due to spatial and demographic factors could not be confirmed. Obviously, the variance of regional mortality reflects the regional variance of infected individuals belonging to the "risk group", especially people of 60 years and above. Although no regional data is available for cases and deaths in retirement homes, a large share should be attributed to these facilities. Nationwide, people accommodated in facilities for the care of elderly make up at least 2,473 of 6,831 deaths (36.20 %) as of May 5, 2020 (Robert Koch Institut 2020a). The relevance of retirement homes can be underlined with examples based on information available in local media which depicts the regional situation:

- In the city of Wolfsburg (Lower Saxony), the current mortality (MRT) is equal to 41.08 deaths per 100,000 inhabitants, while the current case fatality rate (CFR) is the highest in all German counties (17.89 %). Both values are calculated on the data used here (of date May 5, 2020). As of May 11, there have been 51 deaths attributed to COVID-19 in Wolfsburg, with 44 of these deaths (86.27 %) stemming from residents of one retirement home (Wolfsburger Nachrichten 2020).

- In the Hessian Odenwaldkreis with MRT = 54.75 and CFR = 14.60 %, 29 people who tested positive to SARS-CoV-2/COVID-19 died until April 14, 2020, 21 of them (72.41 %) were living in retirement homes in this county (Echo online 2020).
In the city of Würzburg (Bavaria) with MRT = 38.32 and CFR = 10.75 %, there have been 44 COVID-19 positive deceased in two retirement homes until April 24, 2020, leading to investigations by the public prosecution authorities (BR24 2020). Up to April 23, 2020, in the whole administrative district Unterfranken, 64 % of all people who died from or with Corona were residents of retirement homes for elderly people (Mainpost 2020).

This share of residents of retirement homes in all COVID-19-related deaths is equal to 51% in France and 33% in Denmark, ranging internationally from 11% in Singapore to 62% in Canada (Comas-Herrera et al. 2020). Obviously, neither strict measures in Germany nor other countries were able to prevent these location-specific outbreaks. Outgoing from this, the sixth conclusion is that the severity of SARS-CoV-2/COVID-19 depends on the local/regional ability to protect the “risk group”, especially older people in care facilities.

With respect to state-specific effects, we must conclude that there is a clear significant impact regarding Bavaria: Although the measures in Bavaria, based on the Austrian model, were probably the strictest of all German states, both regional growth rates and mortality are significantly higher than in the other states. This effect is isolated, as other effects (time, population density etc.) were controlled. In addition, the share of individuals belonging to the “risk group” is slightly higher in Bavaria. In the other states with curfews, Saarland and Saxony, no clear effects could be identified, especially with respect to mortality which does not differ significantly from other states. This leads to the seventh conclusion that the state-specific curfews did not contribute to a more positive outcome with respect to growth speed and mortality.

On the one hand, these findings pose the question as to whether ”lockdowns” and curfews are appropriate measures for containing the virus spread, especially when weighing the effects against the social and economic consequences as well as the curtailment of civil rights. Whether the interventions may have supported that trend or earlier targeted measures (e.g. quarantine) had an impact on the growth of infections, is outside the scope of this analysis. One the other hand, when looking at regional mortality and case fatality rate, the protection of “risk groups”, especially older people in retirement homes, is obviously of limited success.

The results presented here tend to support the conclusions in the study by Ben-Israel (2020) that curve flattening occurs with or without a strict ”lockdown”. However, the mentioned study does not provide explicit epidemiological, virological or other kinds of clarifications for this phenomenon, neither the present study does. The further interpretation must be limited to a collection of explanation attempts, which are non-mutually exclusive:

- First, it must be pointed out that the focus of this study is on regional pandemic growth in the context of the ”lockdown” starting in mid March 2020. Some actions against virus spread were already established in the first half of March, e.g. the cancellation of some large events or ”ghost games” in soccer. These early measures could have contributed to curve flattening. Also, the domestic quarantine of infected persons (which is the default procedure in the case of infectious diseases) has helped to decrease new infections. In Heinsberg county, about 1,000 people were in domestic quarantine at the end of February 2020, which could explain the early curve flattening in this Corona ”hotspot”.

- Second, also media reports as well as appeals and recommendations from the government could have influenced people to change their behavior on a voluntary basis, e.g. with respect to thorough hand washing or physical distancing to strangers.

- Third, there might have been a decline due to weather changes in early spring: Several virologists expressed cautious optimism towards the sensitivity of the SARS-CoV-2 virus to increasing temperature and ultraviolet radiation (Focus 2020). Model-based analyses from biogeography show that temperate warm and cold climates facilitate the virus spread, while arid and tropical climates are less favorable (Araujo, Naimi 2020).
Fourth, we have to keep in mind that all data related to infections/diseases used here underestimate the real amount of infected individuals in Germany as well as in nearly all countries in which the Coronavirus emerged. Typically, suspected cases with COVID-19 symptoms are tested, leading to a heavy underestimation of infected people without symptoms. In other words, the tests are targeted at the disease (COVID-19), not the virus (SARS-CoV-2). Several recent studies have tried to estimate the real prevalence of virus and/or the infection fatality rate (IFR), including all infected cases rather than the confirmed (see table 9). Estimated rates of underascertainment (estimate PRV/reported PRV) lie between 5 (Gangelt, Germany) and 50-85 (Santa Clara County, USA). Obviously, when estimated CFR values exceed the estimated IFR values by ten times or more, there must be a large amount of unreported cases. The logical consequence is that the absolute number of susceptible individuals at-risk of infection decreases because of many infected persons not knowing that they have been infected (and probably immunized) in the past. Quantifying the "dark figure" of SARS-CoV-2 infections by using representative sample-based tests on current infection as well as seroprevalence will be a challenge in the near future.

Fifth, there is another possible epidemiological reason for curve flattening with or without a "lockdown". Although the SARS-CoV-2 virus is highly infective, the "Heinsberg study" by Streeck et al. (2020) found a relatively low secondary infection risk ("secondary attack rate", SAR). Infected persons did not even infect other household members in the majority of cases. The authors conjecture that this could be due to a present immunity (T helper cell immunity) not detected as positive in the test procedure. In a current virological study, 34% of test persons who have not been infected with SARS-CoV-2 had relevant helper cells because of earlier infections with other harmless Coronaviruses causing common colds (Braun et al. 2020). If this explanation proves correct, the absolute number of susceptible individuals at-risk of infection would have been substantially lower already at the beginning of the pandemic. Cross protection due to related virus strains has been determined e.g. with respect to influenza viruses (Broberg et al. 2020).

Finally, it is necessary to take a look at the informative value of the data on reported cases of SARS-CoV-2/COVID-19 used here. While several statistical uncertainties have been addressed by estimating the dates of infection in the present study, the method of data collection has not been made a subject of discussion. The confirmed cases of infections reported from regional health departments to the RKI result from SARS-CoV-2 tests conducted in the case of specific symptoms and/or on spec. When aggregating the reported cases to time series and analyzing their temporal evolvement, it is implicitly assumed that the amount of tests remains the same over time. However, the number of tests was increased enormously during the pandemic - which is to be welcomed from the point of view of public health. From a statistic perspective, it might cause a bias because an increase in testing must result in an increase of reported infections, as a larger share of infections are revealed. In his statistical study, Kuhbandner (2020) argues that the detected SARS-CoV-2 pandemic growth is mainly due to increased testing, leading to the conclusion that "the scenario of a pandemic spread of the Coronavirus in based on a statistical fallacy". To confirm or deny this conclusion is not subject of the present study. However, taking a look at the conducted tests per calendar week (see figure 14) reveals weekly differences in the amount of tests. From calendar week 11 to 12, there has been an increase of conducted tests from 127,457 (5.9 % positive) to 348,619 (6.8 % positive), which means a raise by factor 2.7. The maximum of tests was conducted in CW 14 (408,348 with 9.0 % positive results), decreasing beyond that time, rising again in CW 17. The absolute number of positive tests is reflected plausibly in the number of reported cases (green line), as the confirmed cases result from the tests. The most estimated infections occurred in CW 11 and 12, showing again the delay between infection and case confirmation. Apart from the fact that excessive testing is probably the best strategy to control the spread of a virus, the resulting statistical data may suffer from underestimation and overestimation, dependent on which time period is regarded.
Table 9: Studies on underascertainment and/or IFR of SARS-CoV-2/COVID-19

<table>
<thead>
<tr>
<th>Study</th>
<th>Study area</th>
<th>n</th>
<th>Time of data collection</th>
<th>Est. PRV [%] (CI95)</th>
<th>Est. asymptomatic cases [%]</th>
<th>Est. PRV reported</th>
<th>Est. IFR [%] (CI95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bendavid et al. (2020)</td>
<td>Santa Clara county (USA)</td>
<td>3,324</td>
<td>04/2020</td>
<td>2.8 (2.2, 3.4)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Bennett, Steyers (2020)</td>
<td>Santa Clara county (USA)</td>
<td>3,324</td>
<td>04/2020</td>
<td>0.27-3.21</td>
<td>NA</td>
<td>5-65</td>
<td>NA</td>
</tr>
<tr>
<td>Gudbjartsson et al. (2020)</td>
<td>Iceland</td>
<td>177</td>
<td>01-03/2020</td>
<td>9.2</td>
<td>13.6</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Population screening 1</td>
<td></td>
<td>10,797</td>
<td>03/2020</td>
<td>0.8</td>
<td>41.4</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Targeted testing 2</td>
<td></td>
<td>7,275</td>
<td>03/2020</td>
<td>14.4</td>
<td>5.7</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Population screening 2 (Random sample)</td>
<td></td>
<td>2,283</td>
<td>04/2020</td>
<td>0.6</td>
<td>53.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>LAPH (2020)</td>
<td>Los Angeles county (USA)</td>
<td>551</td>
<td>04/2020</td>
<td>62.5</td>
<td>5-20</td>
<td>0.3-0.6</td>
<td></td>
</tr>
<tr>
<td>Lavezzo et al. (2020)</td>
<td>Vo (Italy)</td>
<td>2,812</td>
<td>02/2020</td>
<td>2.6 (2.1, 3.3)</td>
<td>41.1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Second survey</td>
<td></td>
<td>2,343</td>
<td>03/2020</td>
<td>1.2 (0.8, 11.8)</td>
<td>44.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Nishiura et al. (2020)</td>
<td>Wuhan (China)</td>
<td>3,711</td>
<td>02/2020</td>
<td>17</td>
<td>51.4</td>
<td>NA</td>
<td>1.3 (0.38, 3.6)</td>
</tr>
<tr>
<td>Russell et al. (2020)</td>
<td>Diamond Princess cruise ship</td>
<td>551</td>
<td>04/2020</td>
<td>33 (28, 39)</td>
<td>NA</td>
<td>0.08-0.12</td>
<td></td>
</tr>
<tr>
<td>Shakiba et al. (2020)</td>
<td>Guilan province (Iran)</td>
<td>919</td>
<td>03/2020</td>
<td>15.5 (12.3, 19.0)</td>
<td>22.2</td>
<td>5</td>
<td>0.36 (0.29, 0.45)</td>
</tr>
<tr>
<td>Streeck et al. (2020)</td>
<td>Gangelt (Germany)</td>
<td>5</td>
<td>04/2020</td>
<td>NA</td>
<td>NA</td>
<td>0.36</td>
<td></td>
</tr>
</tbody>
</table>

Source: own compilation.

Notes: 1 full survey or nearly full survey, 2 only active infections (not including seroprevalence), 3 Japanese citizens evacuated from Wuhan (China), 4 adjusted for test performance.
Figure 14: Estimated infections, reported cases and conducted tests by calendar week
Source: own illustration. Data source: own calculations based on Robert Koch Institut (2020b,c)

References

R Core Team (2019) R: A language and environment for statistical computing. Software., Vienna, Austria

Robert Koch Institut (2020b) Tabelle mit den aktuellen Covid-19 Infektionen pro Tag (Zeitreihe). Dataset: https://npgeo-corona-npgeo-de.hub.arcgis.com/datasets/dd4580c810204019a7b8eb3e0b329dd6_0/data (accessed May 05, 2020), dl-de/by-2-0

Welt online (2020b) Warum Ostdeutschland weniger von Corona betroffen ist. Online article of may 4, 2020:

