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Objectives 

The UK Biobank (UKB) is making primary care Electronic Health Records (EHR) for 500,000 participants 

available for COVID-19-related research. Data are extracted from four sources, recorded using five clinical 

terminologies and stored in different schemas. The aims of our research were to: a) develop a semi-supervised 

approach for bootstrapping EHR phenotyping algorithms in UKB EHR, and b) to evaluate our approach by 

implementing and evaluating phenotypes for 31 common biomarkers. 

 

Materials and Methods 

We describe an algorithmic approach to phenotyping biomarkers in primary care EHR involving a) 

bootstrapping definitions using existing phenotypes, b) excluding generic, rare or semantically distant terms, c) 

forward-mapping terminology terms, d) expert review, and e) data extraction. We evaluated the phenotypes by 

assessing the ability to reproduce known epidemiological associations with all-cause mortality using Cox 

proportional hazards models. 

 

Results 

We created and evaluated phenotyping algorithms for 31 biomarkers many of which are directly related to 

COVID-19 complications e.g. diabetes, cardiovascular disease, respiratory disease. Our algorithm identified 

1651 Read v2 and Clinical Terms Version 3 terms and automatically excluded 1228 terms. Clinical review 

excluded 103 terms and included 44 terms, resulting in 364 terms for data extraction (sensitivity 0.89, 

specificity 0.92). We extracted 38,190,682 events and identified 220,978 participants with at least one 

biomarker measured. 

 

Discussion and conclusion 

Bootstrapping phenotyping algorithms from similar EHR can potentially address pre-existing methodological 

concerns that undermine the outputs of biomarker discovery pipelines and provide research-quality 

phenotyping algorithms. 
 

Keywords: electronic health records, phenotyping, medical informatics, UK Biobank 
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UK Biobank (UKB) is the largest longitudinal research study in the UK (~500,000 participants), and one of the 

largest globally [1]. To further enrich this cohort’s data, UKB has begun to link the wealth of information already 

collected from each individual to their primary care electronic health record (EHR) [1]. In the UK, the first point 

of contact with the health service for individuals with a new (non-emergency) medical problem or a chronic 

condition is their local general practitioner (GP). These GPs also receive information from the specialist health 

services that they refer their patients to, resulting in a closed loop communication system which should result in 

a complete (time-stamped) summary of their patients’ medical conditions, investigations, regular (prescribed) 

medications, etc. Introducing primary care EHR information will enable UKB researchers and policy makers to 

assess the course and outcomes of a plethora of different diseases and risk-factors at scale, whilst allowing 

them to simultaneously explore the genetic factors associated with each.  

 

Prior to being able to interrogate the data for the approximately 220,000 UKB participants that have already 

had their data linked, there is the non-trivial task of processing it such that it can meaningfully be interpreted. 

The primary care data that has been linked to the UKB are derived from the three different countries that 

compose the UK (England, Scotland and Wales). A total of four data sources (two in England, one in Scotland 

and one in Wales) using four different controlled clinical terminologies (containing more than 500,000 terms to 

record information) and different data schemas are used. As a result, researchers with no previous experience 

working with primary care EHR would need to dedicate a significant amount of time and effort to create 

phenotyping algorithms for important biomarkers e.g. blood pressure or haematological laboratory markers. 

This is further complicated by several recent meta-research reports that have identified significant 

methodological issues with biomarker development research [2], which has resulted in large amounts of 

research waste [3]. Specifically, these reviews suggest that biomarker discovery pipelines and processes are 

often plagued by poor methodology [2]; the end result of which is poor replicability of results, as was recently 

demonstrated by the inability to replicate sample sizes and modelling outcomes in several studies using a large 

critical care database [4]. Preventing research waste in EHR-based biomarker discovery requires robust 

clinical validation of phenotypes. However, relying on individual clinical-academics to manually review and 

refine all of the phenotyping algorithms under development is not easily scalable. As such, an automated but 

more robust approach for creating and evaluating EHR phenotyping algorithms for biomarkers in primary care 

data is necessary to address the aforementioned methodological concerns. 

 

One of the primary audiences of this research are US investigators since two-thirds of registered UKB 

investigators are from US-based institutions. Additionally, the controlled clinical terminologies used in UK EHR 

data are applicable to US data sources given that CTV3 is a subset of SNOMED-CT. Finally, these challenges 

are likely not unique to the UK Biobank nor to UK data but exist in other large-scale data resources, e.g. U.S. 

initiatives such as Electronic Medical Records and Genomics (eMERGE) [5], BioVU [6], Million Veteran 
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Program [7], and All Of Us [8], where primary care EHR data is or will be ingested from multiple disparate data 

sources and requires significant amount of effort and pre-processing prior to statistical analysis. 

 

The issues of scalability and methodological robustness have become even more relevant in light of UKB 

announcing that they will be making available the results of COVID-19 tests for participants through Public 

Health England (PHE), as well as a host of other relevant information, including intensive care data for those 

who test positive [9]. It is likely that many non-EHR-specialists will be working UKB data for the foreseeable 

future, and given that the pandemic has already had significant and widespread societal, economic, medical 

and health service impacts globally [8], there is an impetus to ensure rapid access of these critical data to 

researchers during this public health emergency, whilst ensuring that this does not come at the cost of 

research quality [10] . The biomarkers we selected to examine and phenotype in this manuscript are all directly 

related to modifiable and non-modifiable risk factors for COVID-19 such as diabetes, blood 

pressure/hypertension, Body Mass Index (BMI) and chronic obstructive pulmonary disease [11–15]. 

 

Aims 

The aims of the research presented in this paper are two-fold:  

a) To describe a semi-supervised algorithm for rapidly bootstrapping EHR phenotyping algorithms for 

primary care data by UKB participants; 

b) To provide phenotyping algorithms, metadata, implementation details and validation evidence for 31 

common biomarkers.  

 

 

Methods 

 

Data sources 

UK Biobank 

Biomarker data for phenotyping were extracted from the UKB, a research study of ~500,000 adults with 

extensive phenotypic and genotypic information. Currently, ~44% of the cohort (n=221,446) have data from 

primary care EHR linked and made available for researchers (Table 1). Data are collected from English, 

Scottish and Welsh GP practices that make use of the EMIS (https://www.emishealth.com/), Vision 

(https://www.visionhealth.co.uk/) or TPP (https://www.tpp-uk.com/) primary care information systems. Data is 

recorded using four different controlled clinical terminologies: 1) Read version 2 (Read v2); 2) Clinical Terms 

Version 3 (CTV3); 3) British National Formulary (BNF); and, 4) the Dictionary of Medicines and Devices 

(DM+D). Both Read v2 and CTV3 are part of the Systematized Nomenclature of Medicine Clinical Terms 
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(SNOMED-CT) [16] and primary care practices in the UK are migrating to using SNOMED-CT terms 

exclusively.  

 

Table 1: Primary care electronic health record data made available on UK Biobank participants. EMIS = 

Egton Medical Information Systems, TPP = The Phoenix Partners, DM+D = Dictionary of Medicines and 

Devices, BNF = British National Formulary, CTV3 = Clinical Terms Version 3. The number of patients reported 

was extracted from the registrations table and includes patients with more or one unique registration periods. 

 

Data 

Source 

Country Controlled 

Clinical 

terminologies: 

clinical 

observations 

Controlled 

clinical 

terminologies: 

prescriptions 

Patients 

(n) 

Clinical 

events (n) 

Prescription 

events (n) 

Data 

fields 

Vision England Read v2 Read v2 

DM+D 

17,860 11,973,249 6,350,259 2 

EMIS, 

Vision 

Scotland Read v2 BNF 26,269 11,365,300 4,301,151 3 

TPP England CTV3 BNF 158,894 87,493,722 39,515,266 1 

EMIS, 

Vision 

Wales Read v2 Read v2 20,463 12,837,100 7,533,324 2 

 
CALIBER 

To bootstrap phenotype definitions for the biomarkers of interest we used data from the CALIBER EHR 

resource. The platform has been described in detail elsewhere [3] but briefly comprises three national EHR 

data sources: a) longitudinal primary care data from the Clinical Practice Research Datalink (CPRD), b) 

admitted patient care information on diagnoses and procedures from the Hospital Episode Statistics dataset, 

and c) cause specific mortality and socioeconomic deprivation information made available from the Office for 

National Statistics (ONS).  

 

The CALIBER primary care data sourced from the general practices that submit data to the CPRD use the 

aforementioned Vision software (known as CPRD GOLD), and data are recorded using the Read version 2 

clinical terminology system (containing 101,953 terms). In Vision EHR systems, the definition of the data 

columns is specified by the category of data in the record or the information archetype, which is called an 

‘entity type’. For example, the blood pressure entity type specifies that value 1 is the diastolic and value 2 the 
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systolic blood pressure. The associated Read v2 term may contain more details about the subtype of the 

measurement, e.g. ‘Standing blood pressure reading’.  

 

Biomarker Data and Unit Recording 

In the UKB, measurements from clinical observations (e.g. blood pressure) or laboratory tests (e.g. HbA1c) are 

recorded with a Read v2 or CTV3 term and up to three structured data columns (value1, value2 and value3). 

Each data provider uses a varying number of fields to capture information. For example, TPP in England uses 

a single value, with no explicit or implicit recording of units. Whereas, Scottish data sources are based on three 

fields, where the second data column (value 2) contains the units as free text. Vision-based systems are again 

different, as the units for recorded values are provided by a separate lookup file and are identified by a unique 

numeric code. To collate this information, the semi-supervised approach described below captures the relevant 

unit information across these different structures and processes them into consistent expressions utilizing 

mapping files to translate inconsistencies to the preferred unit type e.g. 'x10^9/l',  '10^9/L',  'x10^9/L' map to 

'10^9/L'. Finally, these results were mapped to the Units of Measurement ontology 

[17](https://www.ebi.ac.uk/ols/ontologies/uo) using a Python script and manually reviewed such that any 

mismatches could be corrected.  
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Figure 1. Description of main steps involved in the semi-supervised approach for rapidly creating

electronic health record phenotyping algorithms for biomarkers in the UK Biobank. The main step

involved in the semi-supervised phenotyping process are: 1) seeding the algorithm definitions using exis

phenotype algorithms from the CALIBER resource, 2) excluding generic, rare or semantically distant term

map Read version 2 terms to Clinical Terms Version 3 terms using the maps provided by the National H

Service (NHS) terminology service (TRUD), 4) expert review and manual inclusion/exclusion of terms, 5

translation to SQL code and data extraction. 

 

 

 

7 

ing 

teps 

xisting 

erms, 3) 

l Health 

, 5) 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.14.20101626doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.14.20101626


 

8 

Semi-supervised phenotyping algorithm bootstrapping 

We identified 31 biomarkers spanning blood counts, clinical biochemistry results and physical measurements 

based on their presumed importance with regards to modelling outcomes for COVID-19 [18], as well as other 

more generic pathologies such as cardiovascular disease [19], and their availability (recorded at least once 

during the baseline assessment) (Table 2). In Vision EHR data, groups of similar clinical measurement types or 

laboratory tests have the same entity type. We used the entity type to identify candidate Read v2 terms which 

might identify equivalent data items in other data sources. For each biomarker, we performed the following 

process (Figure 1): 

1. We manually mapped UKB fields to Vision entity type identifiers e.g. for lymphocyte counts, the UKB 

field id is 30210 and the Vision entity type is 208. We extracted from the UKB showcase information on 

the units, minimum and maximum value range and mean and identified any relevant unit conversions 

required. 

2. For each Vision entity type, we generated a list of Read v2 terms used to record that biomarker and 

their frequency. We extracted the Read v2 term with the highest frequency (defined as the “accepted 

term”) e.g. for lymphocytes the term “42M..00 Lymphocyte count” was the term most used to record the 

lab values. 

3. We applied a series of automated consistency checks to reduce the number of terms requiring manual 

review by domain experts. Specifically: 

a. We excluded terms that were rarely used i.e. occurring less than 1,000 times and generic Read 

codes which did not specify the type of biomarker measured e.g. “4....00 Laboratory 

procedures” 

b. For lipid measurements, we excluded plasma-based measurements and retained serum derived 

values. We allowed pre-treatment terms (e.g. pre bronchodilation) but not post-treatment. 

c. We excluded terms that did not share the same parent term as the accepted term in the Read 

v2 hierarchy (compared using the first three characters of the Read v2 term) e.g. “662L.00 24 hr 

blood pressure monitoring” was excluded from the blood pressure phenotype where the 

accepted term was “246..00 O/E blood pressure reading”. 

4. Using terminology term mappings from the NHS Technology Reference data Update Distribution 

(TRUD) resource, we mapped non-excluded Read v2 terms to Clinical Terminology Version 3 (CTV3) 

terms. We only used mappings where the “IS_ASSURED” flag was set to true and included preferred 

and synonym terms (resulting in some cases to one-to-many maps). 

5. We translated the unified list of Read v2 and CTV3 terms into SQL and extracted measurements for all 

biomarkers across the four data providers iteratively (Supplementary Figure 1). 
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Table 2: Details on the 31 biomarkers used in this study spanning blood biochemistry, blood count and 
physical measures. For units, we provide the UnitOntology entry identifier. The UK Biobank field id column 
provides the field identifier for the respective biomarker measure, if available, derived from the research data 
collected at baseline. HDL = high-density lipoprotein, ALP = alkaline phosphatase level, ALP = alanine 
aminotransferase level, SBP = Systolic blood pressure, DBP = diastolic blood pressure, WBC = White Blood 
Cell, RBC = red blood cell, CRP = C-reactive protein, MCV = Mean corpuscular volume, MChb conc = Mean 
corpuscular haemoglobin concentration, FEV1 = Forced Expiratory Volume in 1 second, FVC = Full Vital 
Capacity 
 

Phenotype UK  Biobank  
field id 

Phenotype type units UnitOntology 

ALP 30610 blood biochemistry U/L UO_0000179 
ALT 30620 blood biochemistry U/L UO_0000179 
Albumin 30600 blood biochemistry g/L UO_0000175 
CRP 30710 blood biochemistry mg/L UO_0000273 
Calcium 30680 blood biochemistry mmol/L UO_0010003 
Cholesterol 30690 blood biochemistry mmol/L UO_0010003 
Creatinine 30700 blood biochemistry umol/L UO_0010003 
Glucose 30740 blood biochemistry mmol/L UO_0010003 
HDL 30760 blood biochemistry mmol/L UO_0010003 
HbA1c 30750 blood biochemistry mmol/mol 
Total bilirubin 30840 blood biochemistry umol/L UO_0010003 
Triglycerides 30870 blood biochemistry mmol/L UO_0010003 
Urea 30670 blood biochemistry mmol/L UO_0010003 
Basophills 30160 blood count 10^9/L UO_0000317 
Eosinophills 30150 blood count 10^9/L UO_0000317 
Haematocrit perc 30030 blood count % UO_0000187 
Haemoglobin conc 30020 blood count g/dL UO_0000208 
Lymphocytes 30120 blood count 10^9/L UO_0000317 
MCHb conc 30060 blood count g/dL UO_0000208 
MCV 30040 blood count fL UO_0000104 
Monocytes 30130 blood count 10^9/L UO_0000317 
Neutrophills 30140 blood count 10^9/L UO_0000317 
Platelets 30080 blood count 10^9/L UO_0000317 
RBC 30010 blood count 10^12/L UO_0000317 
WBC 30000 blood count 10^9/L UO_0000317 
DBP 94 physical measures mmHg UO_0000272 
FEV1 3063 physical measures L UO_0000099 
FVC 3062 physical measures L UO_0000099 
Height 50 physical measures cm UO_0000015 
SBP 93 physical measures mmHg UO_0000272 
Weight 21002 physical measures Kg UO_0000009 
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Statistical analyses 

We generated and reported descriptive statistics (mean, median, IQR) for extracted biomarker values stratified 

by provider and plotted the distribution of values using box plots. We compared the distribution of values 

between data providers for inconsistencies related to data recording. We compared the mean values in the 

extracted data with the mean biomarker values reported by the UKB baseline values. We calculated and 

reported sensitivity and specificity per phenotype by calculating Read terms included by the algorithm and 

subsequently removed upon clinical review, as well as those excluded by the algorithm but which were 

eventually included following clinical review.  

 

For each biomarker, we fitted a Cox proportional hazards model with all cause mortality as the outcome of 

interest, adjusted for sex and modelled using restricted cubic splines. We report hazard ratios from the sex 

adjusted model with 95% confidence intervals.  

 

All analyses were performed using Python v3.7 and the pandas data analysis library (v. 1.0.3, available at 

https://pandas.pydata.org/) . Units were processed using the quantulum3 Python library (v. 0.7.3 available at 

https://pypi.org/project/quantulum3/). 

 

Data availability 

Unit conversions and mappings, entity type to UKB field mappings, and lists of Read v2 and CTV3 are 

provided in the Appendix and online https://github.com/spiros/ukb-biomarker-phenotypes 

The Read v2 to CTV3 mapping file is available from the NHS TRUD service online 

https://isd.digital.nhs.uk/trud3/user/guest/group/0/home. UKB data can be obtained following approval by 

applying to the UKB Access Management Committee https://bbams.ndph.ox.ac.uk/ams/. Data in this project 

was analyzed under protocol ref. 9922 which has been approved by the UKB. 

 

Results 

Using the algorithm described previously, we initially identified 1651 Read v2 and CTV3 terms of which 1,228 

were automatically excluded. The majority of terms which are automatically excluded by the algorithm is due to 

them being marked as “semantically distant” i.e. they do not share a parent term with the most frequently used 

term for that particular phenotype. Clinical experts reviewed the lists of terms for the phenotypes and manually 

included terms which were incorrectly flagged for exclusion (false negatives) and conversely removed terms 

which were incorrectly marked for inclusion (false positives). Specifically, 44 terms were manually included and 

103 terms were excluded across all phenotypes. The overall sensitivity of our approach was 0.89 while the 

overall specificity was 0.92. We calculated sensitivity and specificity estimates for each phenotype and report 

these in Supplementary Table 2. 
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This resulted in a final set of 364 unique Read terms were used to extract data. (Figure 2).Using the fina

Read codes, we extracted 38,190,682 events from the GP clinical events table. Of those, 34,578,209 ev

had a valid measurement attached to them (i.e. not missing and within the valid range). Specifically, we 

extracted 3,616,003 measurements from England Vision (data provider 1), 1,975,448 measurements fro

Scotland (data provider 2),  25,233,653 measurements form England TPP (data provider 3) and 3,753,1

measurements from Wales (data provider 4).  Approximately 99.5% of the participants where primary ca

EHR data were available had at least one biomarker measurement (n=220,981, 52% female).  

 

Figure 2 Flow diagram showing the number of Read v2 and CTV3 terms identified by the algorith

subsequent inclusions and exclusions performed through expert review. CTV3 = Clinical Terms 

Version 3 

 

 
 
 

 

We processed 101 raw unit values recorded in the Scottish data and mapped them to 53 harmonized va

We additionally mapped Vision-specific lookup codes for units to standardized unit definitions (e.g. MEA
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maps to mmol). Units were not systematically recorded across the biomarkers with variable levels of 

missingness: systolic and diastolic blood pressure had units missing in 78% records while FEV1 had uni

missing in 49%. In contrast, basophils, lymphocytes, monocytes and eosinophils had units recorded for 9

measurements. 

 

 
 

Figure 3. Histogram plots showing the distribution of values extracted from primary care EHR for

clinical biomarkers defined in this study. The dashed red line represents the mean value of the biom

when measured at baseline (across any of the three waves) in study participants (value extracted from t
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Biobank Showcase). Minimum and maximum graph values have been aligned to those reported on the 

baseline measurements. HDL = high-density lipoprotein, ALP = alkaline phosphatase level, ALP = alanin

aminotransferase level, SBP = Systolic blood pressure, DBP = diastolic blood pressure, WBC = White B

Cell, RBC = red blood cell, CRP = C-reactive protein, MCV = Mean corpuscular volume, MChb conc = M

corpuscular haemoglobin concentration, FEV1 = Forced Expiratory Volume in 1 second, FVC = Full Vita

Capacity. 

 

Figure 4. Boxplot showing the distribution of values extracted from primary care EHR for the clin

biomarkers defined in this study. 1 = England Vision, 2 = Scotland EMIS and Vision, 3 = England TPP
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= Wales. Minimum and maximum graph values have been aligned to those reported on the baseline 

measurements. HDL = high-density lipoprotein, ALP = alkaline phosphatase level, ALP = alanine 

aminotransferase level, SBP = Systolic blood pressure, DBP = diastolic blood pressure, WBC = White Blood 

Cell, RBC = red blood cell, CRP = C-reactive protein, MCV = Mean corpuscular volume, MChb conc = Mean 

corpuscular haemoglobin concentration, FEV1 = Forced Expiratory Volume in 1 second, FVC = Full Vital 

Capacity. 

 

We plotted the distributions of each biomarker across all data sources (Figure 3) and for each data source 

individually in Figure 4. We calculated and reported descriptive statistics for each biomarker and observed 

broadly similar distribution values across all sources. Systolic and diastolic blood pressure were the most 

commonly recorded biomarkers with 3,824,851 and 4,002,384 measurements respectively. The least often 

recorded marker was Haematocrit percentage with 27,229 values recorded across all data sources. Figure 5. 

shows Cox proportional hazards regression models using restricted cubic splines and adjusted for sex and age 

for each biomarker.  
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Figure 5. Adjusted Cox proportional hazards regression restricted cubic spline models for all 

biomarkers and all-cause mortality. Analyses were adjusted for patient sex and age. In each panel, the 

blue line indicates the estimated HR and the grey shading denotes the 95% confidence limits. The horizontal 

dashed line corresponds to the normal reference hazard ratio of 1.0, values above are associated with 

increased mortality risk, and values below are associated with decreased mortality risk compared with the 

reference value. HDL = high-density lipoprotein, ALP = alkaline phosphatase level, ALP = alanine 

aminotransferase level, SBP = Systolic blood pressure, DBP = diastolic blood pressure, WBC = White Blood 

Cell, RBC = red blood cell, CRP = C-reactive protein, MCV = Mean corpuscular volume, MChb conc = Mean 

corpuscular haemoglobin concentration, FEV1 = Forced Expiratory Volume in 1 second, FVC = Full Vital 

Capacity 
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Table 3: Descriptive statistics (median and IQR) on the clinical biomarkers defined in this study covering blood counts, key biochemistry 
markers and physical measurements. Statistics were stratified by data provider: 1 = England Vision, 2 = Scotland EMIS and Vision, 3 = England 
TPP and 4 = Wales. HDL = high-density lipoprotein, ALP = alkaline phosphatase level, ALP = alanine aminotransferase level, SBP = Systolic blood 
pressure, DBP = diastolic blood pressure, WBC = White Blood Cell, RBC = red blood cell, CRP = C-reactive protein, MCV = Mean corpuscular 
volume, MChb conc = Mean corpuscular haemoglobin concentration, FEV1 = Forced Expiratory Volume in 1 second, FVC = Full Vital Capacity 
 
Phenotype Category UKB 

id 
Units Eng. Vision 

events 
Eng. Vision 
median 
(IQR) 

Scotland 
events 

Scotland 
median 
(IQR) 

Eng. TPP 
events 

Eng. TPP 
median 
(IQR) 

Wales 
events 

Wales 
median 
(IQR) 

ALP blood 
biochemistry 30610 U/L 147431 

73.00 
(27.00) 65017 

74.00 
(28.00) 907659 

74.00 
(31.00) 

169068 73.00 
(27.00) 

ALT blood 
biochemistry 30620 U/L 114591 

23.00 
(14.00) 54724 

20.00 
(12.00) 891694 

23.00 
(13.00) 

92361 22.00 
(13.00) 

Albumin blood 
biochemistry 30600 g/L 144475 42.00 (4.00) 33063 43.00 (5.00) 954748 42.00 (5.00) 

164884 42.00 
(5.00) 

CRP blood 
biochemistry 30710 mg/L 23549 2.00 (3.00) 2510 3.00 (4.00) 89406 4.00 (3.00) 

18104 4.00 
(3.30) 

Calcium blood 
biochemistry 30680 mmol/L 54796 2.34 (0.14) 7367 2.33 (0.14) 282652 2.35 (0.14) 

42470 2.35 
(0.14) 

Cholesterol blood 
biochemistry 30690 mmol/L 140222 5.20 (1.60) 75828 5.00 (1.70) 978057 5.10 (1.70) 

138801 5.10 
(1.60) 

Creatinine blood 
biochemistry 30700 umol/L 164360 

79.00 
(23.00) 102491 

75.00 
(22.00) 1147028 

81.00 
(23.00) 

204486 76.00 
(21.00) 

Glucose blood 
biochemistry 30740 mmol/L 41394 5.10 (0.90) 17603 5.10 (1.10) 282383 5.10 (1.00) 

28830 5.20 
(1.10) 

HDL blood 
biochemistry 30760 mmol/L 121635 1.40 (0.50) 46453 1.40 (0.57) 764837 1.40 (0.52) 

92854 1.30 
(0.50) 

HbA1c blood 
biochemistry 30750 mmol/mol 33799 40.00 (6.00) 5915 44.00 (8.00) 175995 40.00 (7.00) 

21659 41.00 
(9.00) 

Total bilirubin blood 
biochemistry 30840 umol/L 137775 9.00 (5.00) 64802 9.00 (5.00) 903641 10.00 (6.00) 

140003 9.00 
(5.00) 

Triglycerides blood 
biochemistry 30870 mmol/L 116308 1.30 (0.90) 40272 1.40 (0.93) 717562 1.37 (0.90) 

128464 1.36 
(0.90) 

Urea blood 
biochemistry 30670 mmol/L 148897 5.50 (1.80) 75630 5.60 (1.90) 1022366 5.50 (1.90) 

58332 5.30 
(1.80) 

Basophills 
blood count 30160 10^9/L 129939 0.02 (0.10) 53759 0.02 (0.05) 832814 0.02 (0.06) 

138889 0.03 
(0.10) 
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Eosinophills 
blood count 30150 10^9/L 130840 0.20 (0.10) 52681 0.15 (0.12) 828186 0.16 (0.12) 

142025 0.20 
(0.12) 

Haematocrit 
perc blood count 30030 % 4055 41.10 (5.10) 11 45.00 (5.45) 11971 41.70 (5.30) 

11192 41.20 
(5.00) 

Haemoglobin 
conc blood count 30020 g/dL 78815 13.70 (1.80) 21512 13.60 (1.90) 903286 13.70 (1.70) 

92144 13.70 
(1.80) 

Lymphocytes 
blood count 30120 10^9/L 133853 1.80 (0.80) 50032 1.79 (0.82) 842332 1.89 (0.80) 

142637 1.80 
(0.80) 

MCHb conc 
blood count 30060 g/dL 64138 33.50 (1.40) 28062 33.50 (1.70) 607386 33.40 (1.40) 

33023 33.60 
(1.30) 

MCV 
blood count 30040 fL 136768 91.00 (6.00) 54055 90.00 (6.30) 872756 90.90 (6.10) 

147161 91.00 
(6.00) 

Monocytes 
blood count 30130 10^9/L 133696 0.50 (0.20) 52727 0.50 (0.27) 839930 0.50 (0.21) 

141545 0.50 
(0.20) 

Neutrophills 
blood count 30140 10^9/L 133588 3.40 (1.65) 53374 3.57 (1.86) 845892 3.50 (1.79) 

143045 3.50 
(1.71) 

Platelets 
blood count 30080 10^9/L 137935 

244.00 
(84.00) 55317 

249.00 
(85.00) 879866 

250.00 
(84.00) 

145591 251.00 
(83.00) 

RBC 
blood count 30010 10^12/L 135140 4.50 (0.58) 54030 4.47 (0.63) 869832 4.55 (0.59) 

146016 4.52 
(0.58) 

WBC 
blood count 30000 10^9/L 140068 6.10 (2.25) 55830 6.20 (2.50) 892739 6.25 (2.30) 

147751 6.20 
(2.30) 

DBP physical 
measures 94 mmHg 357987 

80.00 
(14.00) 393765 

80.00 
(13.00) 2833375 

80.00 
(15.00) 

417257 80.00 
(14.00) 

FEV1 physical 
measures 3063 L 6238 2.08 (0.99) 1430 1.79 (0.95) 47847 2.03 (1.04) 

6214 2.00 
(1.04) 

FVC physical 
measures 3062 L 2792 2.95 (1.29) 233 2.96 (1.15) 32277 3.00 (1.31) 

3778 2.89 
(1.26) 

Height physical 
measures 50 cm 144 

168.00 
(13.12) 63262 

167.00 
(14.00) 1069 

166.00 
(15.00) 

27449 167.64 
(14.98) 

SBP physical 
measures 93 mmHg 358071 

136.00 
(22.00) 212521 

135.00 
(21.00) 2836175 

136.00 
(22.00) 

418084 137.00 
(23.00) 

Weight physical 
measures 21002 Kg 142704 

77.00 
(23.50) 181172 

77.90 
(23.32) 1137892 

78.00 
(23.50) 

148988 80.00 
(25.00) 
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Discussion 

In this study, we described a semi-supervised phenotyping approach and applied it on primary care 

EHR sourced from four different providers in three countries made available for UK Biobank 

participants. We applied our approach to produce 31 rule-based phenotyping algorithms for commonly 

used biomarkers. To our knowledge, this is the first study describing how phenotyping algorithms for 

common biomarkers can be implemented in primary care EHR for UK Biobank participants in a robust 

and semi-automated manner at scale. 

 

Creating phenotyping algorithms for primary care EHR from four different data sources can be a time-

consuming effort requiring a significant amount of effort and resources as they are more than 100,000 

potential terms which are inconsistently used to record information. Measurements with different 

protocols (e.g. BP standing or lying) may be recorded with different Read codes but will have the same 

entity type. The entity types were used here to give a starting point for Read terms that may be used to 

record a particular clinical measurement. Additionally, differences in data schemas mean that 

information is recorded in different ways: for example, data in Scotland can have the units specified as 

free text in addition to another two values while data from England (TPP) do not specify units and only 

cover a single value field. Entity types are easier to manipulate given that only a few hundred exist and 

the group of related Read terms can then be used to identify equivalent terms in CTV3 via the mapping 

and hence identify equivalent data in the different data sources. 

 

The approach we present here enables researchers to bootstrap algorithms in a robust manner with an 

overall sensitivity of 0.89 and specificity of 0.92. We observed the lowest sensitivity (0.6) i.e. the highest 

number of Read terms incorrectly excluded by the algorithm (false negatives) in the glucose phenotype. 

This was due to the fact that Read v2 terms used to record values did not share a common parent term 

and were distributed across different branches of the ontology e.g. “44g..00 Plasma glucose level” and 

“44TA.00 Plasma glucose”. We observed the lowest specificity estimate (false positives) (0.66) in the 

red blood cell phenotype where terms related to nucleated red blood cell measurements were included. 

A similar pattern in terms of specificity was also observed in the Forced Expiratory Volume in 1 second 

(FEV1) where the initial pool included terms for predicted/expected measurements, post 

bronchodilation values or terms related to other relevant but not exact measurements (e.g. Forced Vital 

Capacity FVC).  

 

In line with our phenotyping methodology [20], we evaluated the phenotyping algorithms created by our 

appoach by estimating hazard ratios adjusted for age and sex with all cause mortality and comparing 

our findings with known epidemiological associations.  We observed similar mortality patterns with 

previous literature using data extracted from EHR. For example, in line with previous research, we 
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observed an increased risk of mortality in patients with low eosinophil and low lymphocyte counts [21] 

Similarly, we observed a “U” shape relationship for systolic and diastolic blood pressure measurements 

which is concordant to previous findings [22]. Finally, intuitively, we observed that a decrease in FEV1 

and FVC was associated with an increased risk of mortality and conversely an increase in CRP was 

associated with an increased risk.  

 

Our method has several strengths. Firstly, it enables the rapid bootstrapping of phenotyping algorithms 

by reducing the number of Read terms requiring manual review by several orders of magnitude, 

thereby reducing the amount of resources required. Second, the approach is potentially applicable to 

non-UK data that face similar challenges, such as for example large biobanked efforts in the US such 

as MVP and others. Lastly, it provides research-ready phenotyping algorithms for commonly recorded 

biomarkers in primary care for users. The observed distribution values of the measurements across all 

biomarkers are consistent with the standard reference ranges for normal results [23]. As previously 

reported [24] UKB participants are healthier and of higher socioeconomic status than the general 

population so we would expect to observe these patterns in the measurements. 

 

Our approach also has limitations. Firstly, given that the initial pool of codes is from Read 2 and CTV3 

terms are identified through a forward cross-map, it’s possible to omit terms that only exist in CTV3 and 

are used to record information. The likelihood of this happening however is low given that CTV3 

encapsulates Read v2 and GPs tend to use the same set of terms over time. Due to the manner in 

which codes are used, similar but distinct measurements were sometimes grouped under the same 

entity code and were incorrectly included by the approach - for example, most lipid measurements had 

both plasma and serum related terms and manual review subsequently removed the plasma 

measurements for consistency. Similar patterns were observed, but at much lower frequency, in 

between fasting and random measurements and values corrected/uncorrected values were reported. 

Finally, physiological measurements which are performed during routine consultations and not explicitly 

ordered, such as height, weight and blood pressure required manual phenotyping given the 

heterogeneity in how data sources captured them despite the small number of Read terms composing 

the phenotypes (Supplementary Figures 2 and 3). 

 

Conclusion 

In this manuscript, we have demonstrated the challenges that UK Biobank researchers will face when 

extracting biomarker values from the primary care EHR records of participants. We presented a semi-

supervised approach that uses existing phenotyping algorithms and semantic mappings to bootstrap 

algorithms for 31 common biomarkers spanning haematological and physiological measurements which 
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are widely-used in research. Our research findings are applicable to international audiences given that 

the controlled clinical terminologies used in the UK primary care EHR are part of SNOMED-CT, two 

thirds of UK Biobank users US-based investigators and similar large-scale initiatives (e.g. eMERGE, 

MVP) are likely to face similar challenges. As such, the phenotyping algorithms that have resulted from 

this work should hopefully facilitate rapid and robust access to the primary care EHR data for UKB 

participants during the COVID-19 public health emergency, and long after. 
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