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Abstract—COVID-19 first appeared in Wuhan, Hubei Province, China 
in late December 2019 and spread rapidly in China. Currently, the spread 
of local epidemics has been basically blocked. The import of overseas 
epidemics has become the main form of growth in China ’s new epidemic. 
As an important international transportation hub in China, Shanghai is 
one of the regions with the highest risk of imported cases abroad. Due to 
imported of overseas cases are affected by the international epidemic trend. 
The traditional infectious disease model is difficult to accurately predict 
the cumulative trend of cumulative cases in the Shanghai areas. It is also 
difficult to accurately evaluate the effectiveness of the international traffic 
blockade. In this situation, this study takes Shanghai as an example to 
propose a new type of infectious disease prediction model. The model first 
uses the sparse graph model to analyze the international epidemic spread 
network to find countries and regions related to Shanghai. Next, multiple 
regression models were used to fit the existing COV-19 growth data in 
Shanghai. Finally, the model can predict the growth curve of Shanghai's 
epidemic without blocking traffic. The results show that the control 
measures taken by Shanghai are very effective. At present, more and more 
countries and regions will face the current situation in Shanghai. We 
recommend that other countries and regions learn from Shanghai ’s 
successful experience in preventing overseas imports in order to fully 
prepare for epidemic prevention and control. 

 
Index Terms—COVID-19, overseas imports, Shang Hai, Gaussian 

sparse network model, regression model 

I. INTRODUCTION 

INCE December 2019, COVID-19 broke out in Wuhan, Hubei 
Province, China. Coronavirus disease (COVID-19) caused by the 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). this 
virus quickly spread throughout China. In the early stages of the 
COVID-19 epidemic, the number of infected cases increased 
exponentially[1]. The Chinese government has taken various 
preventive and control measures to intervene, including mandatory  
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blockades, staggered working hours, etc.[2-4]. These measures 
effectively prevent the virus from spreading from person to person, and 
reduce the morbidity and mortality[5]. After more than two months, 
COVID-19 was gradually control in China and entered a stable state.  

In view of the fact that the COVID-19 epidemic in China has been 
basically contained, other international regions of the world are still 
experiencing outbreaks. Unless substantive public health interventions 
are implemented, overseas countries and regions that have close 
communications with China may cause the epidemic in China to 
escalate again. Among them, Shanghai, as one of China's largest 
international airports, is the region with the highest risk of overseas 
imports. Overseas case importation poses a huge threat to this city with 
a population of 24 million. As of 24:00 on April 2, 2020, there were 
1562 confirmed cases in China, including 698 confirmed cases 
imported from abroad. The number of confirmed cases in Shanghai is 
177, including 171 imported cases abroad. Therefore, in order to solve 
this problem. The Shanghai government has taken a lot of measures, 
including isolation observation, traffic control, and nucleic acid 
detection, etc. It is worth noting that from March 28th, Shanghai 
suspended the entry permit for non-Chinese nationals.  

We also note that apart from Shanghai, many other regions in the 
world also face the same problem as Shanghai, that is, what measures 
should use to control the import of overseas cases? Since the outbreak 
of Wuhan, several modeling research teams around the world have 
used an infection model based on the SIR or SEIR framework to 
estimate and predict COVID-19[6-8].However, the existing models 
are difficult to be directly applied to the prediction of overseas case 
trends. In this article, we propose a sparse relationship graph model for 
the establishment of an international epidemic spread network. After 
combining the regression model, we can predict the growth trend of 
cases in the target area. Because Shanghai, China is one of the earliest 
areas to take measures to block overseas spread. Therefore, this article 
takes Shanghai as an example, on the one hand, we want to verify the 
model proposed in this paper. On the other hand, we want to analyze 
whether the epidemic prevention and control measures taken by 
Shanghai are effective and whether Shanghai's measures can provide 
an effective reference for similar regions. 

We used 77-day real diagnosis data of 188 countries and regions 
around the world, and established an international network related to 
Shanghai. we discover that the epidemic trend in Shanghai is highly 
correlated with the epidemic situation in 30 countries and regions and 
most of these countries and regions are the center of the outbreak of 
the international epidemic. We established a variety of regression 
models to fit the existing growth curve, and predicted the growth of 
Shanghai cases from April 4th to 19th without blocking international 
traffic. This study believes that Shanghai's blockade measures are 
necessary and effective, which avoids greater losses and effectively 
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reduces the risk of secondary epidemics for China. We suggest that 
other countries learn from Shanghai ’s successful experience and 
prepare well in advance when the next battle arrives. 

II. MATERIALS AND METHOD 

A. data source 

The data in this article comes from the Johns Hopkins University 
Repository, mainly from January 19 to April 19, 2020, the number of 
daily diagnoses in various countries and regions around the world. 

B. Model 

1) Model of international relations network based on 𝑳𝟏 
In order to discover the international correlation network of 

COVID-19, we build a sparse network model based on regularization, 
As the name implies, the network obtained by this model is a 
directionless network. The typical characteristic of a directionless 
network is that the degree between most nodes in the network is very 
small, the few nodes with large existence are called central points. For 
this study, our main focus is on nodes related to Shanghai, In the 
relationship network, if the model thinks that a country or region is 
related to Shanghai, it means that the epidemic situation in that country 
can affect the growth of cases in Shanghai. The mathematical 
framework of the sparse network model based on regularization in this 
paper is as follows[9]: 

Consider the n-dimensional multivariate normal distributed random 
variable Equation (1): 

𝐶 = (𝐶&,⋯⋯𝐶)) ∼ 𝑁(𝜇,∑) (1) 
This includes Gaussian linear models. For example, 𝐶&  is the 

response variable,{𝐶1; 2 ≦ 𝑘 ≦ 𝑛} is a predictor, Assuming that the 
covariance matrix is nonsingular, you can use the graphical model 𝐺 =
(Γ, Ε) conveniently express the conditional independence structure of 
the distribution, In Γ = {1,⋯⋯𝑛} is the set of nodes, and E is the set 
of edges in C. Given all remaining variables 𝐶𝛤\{𝑎, 𝑏} = ?𝐶1; 𝑘 ∈
𝛤\{𝑎, 𝑏}A，A pair of (𝑎, 𝑏) is included in the edge set E if and only if 
𝐶B depends conditionally on 𝐶C. Given all remaining variables, each 
pair of variables not included in the edge set is conditionally 
independent and corresponds to the zero term in the inverse covariance 
matrix[10]. 

Neighborhood selection is a sub-problem of covariance selection. 
The minimum subset of the neighborhood Γ\{𝑎}  of the node 𝑎𝜖Γ , 
therefore, considering all the variables 𝐶B in the neighborhood, 𝐶B is 
conditionally independent of all remaining variables. The 
neighborhood of node𝑎𝜖Γ consists of all nodes 𝑏𝜖Γ\{𝑎}, so ((𝑎, 𝑏)𝜖Ε. 
For the observation of 𝐶 , neighborhood selection aims to estimate 
(individually) the neighborhood of any given variable (or node). 
Neighborhood selection can be used as a standard regression problem, 
it can be effectively solved with 𝐿& [11], As will be shown in this paper. 

For sparse high-dimensional graphs, the consistency of the 
proposed neighborhood selection will be shown, where the number of 
variables may grow with any power of the number of observations 
(high-dimensional), whereas the number of neighbors of any variable 
is growing at most slightly slower than the number of observations 
(sparsity). 

Neighborhood selection with the 𝐿&. It is well known that the Lasso, 
introduced by Tibshirani [8], and known as Basis Pursuit in the context 
of wavelet regression[12], With simplicity [10].When the forecast has 
all remaining variables 𝐶B?𝐶1; 𝑘𝜖Γ\(𝑛)\{𝑎}A, The estimated value of 
the disappeared lasso coefficient asymptotically identifies the 
neighborhood of node 𝑎 in the graph, as shown below. Let 𝑛 × 𝑐()) -
dimensional matrix 𝐶  contain 𝑐 independent 	𝑛  observations, so for 
all 𝑎𝜖Γ(𝑛) , column 𝐶B  corresponds to a vector of 𝑛  independent 

observations. Let〈∙	, ∙〉 on ℝ) be the usual inner product, and ‖∙‖Nthe 
corresponding norm. 

The 𝐿& estimate 𝜃B,P of 𝜃B is given by Equation (2): 
				𝜃QB,P = 𝑎𝑟𝑔 min

W:WYZ[
(𝑛\&‖𝐶B − 𝐶W‖NN + 𝜆‖𝜃‖&)   (2) 

‖𝜃‖& = ∑𝑏𝜖Γ()) |𝜃C| is the 𝑳𝟏-norm of the coefficient vector. It is 
recommended to normalize all variables to a common empirical 
variance in the above formula. The solution of the above formula is not 
necessarily unique. However, if the uniqueness fails, the solution set is 
still convex, and all of our results on the neighborhood apply to any 
solution of the above formula. 

Other regression estimates based on the 𝑙𝑝  norm have been 
proposed, where p is usually in the range [0, 2] (see[13]). A value of 
𝑝 = 2  will result in ridge estimation, while 𝑝 = 0  corresponds to 
traditional model selection. As we all know, only when 𝑝 ≤ 1, the 
estimated value has a parsimony property (some components happen 
to be zero), For 𝑝 ≥ 1, the optimization problem in the above formula 
is only convex. Therefore, the minimization of empirical risk 
constrained by 𝑳𝟏  occupies 𝑎  unique position, because 𝑝 = 1 is the 
only value of 𝑝 , variable selection is made at this value, and the 
optimization problem is still convex, so it is feasible for high-
dimensional problems. 

The neighborhood estimate (parameterized by 𝜆) is defined by the 
non-zero coefficient estimate of 𝐿& penalty regression Equation (3): 

𝑛𝑒gB
P = ?𝑏𝜖Γ(𝑛): 𝜃QC

B,P ≠ 0A (3) 
Therefore, each choice of penalty parameter 𝜆 specifies an estimate 

of the neighborhood of node 𝑎𝜖Γ(𝑛), and the rest is to choose the 
appropriate penalty parameter. A larger penalty value tends to reduce 
the size of the estimated set, and if the value of 𝜆 decreases, usually 
more variables are included in the estimated value. 

The prediction-oracle solution. A seemingly useful choice of 
penalty parameters is (unavailable) to predict the oracle value Equation 
(4): 
𝜆jkBlmn = 𝑎𝑟𝑔min

P
Εo𝐶B − ∑ 𝜃Q1

B,P𝐶11pq()) r
N
                             （4） 

Expectation is understood to be abo has nothing to do with samples 
that estimate 𝜃B,P . The prediction penalty minimizes the prediction 
risk in all 𝐿& regular sub-estimates. The 𝜆𝑜𝑟𝑎𝑐𝑙𝑒 estimate is obtained 
by selecting 𝜆𝑐𝑣 for cross-validation. 

Shao[14] showed that for 𝐿[  penalty regression, the cross-
validation choice of penalty parameters is consistent with the model 
choice of the verification set size under certain conditions. Predicting 
that the Oracle solution will not lead to consistent model selection for 
𝐿&, as shown in the simple example below. 

Proposition. Let the number of variables grow to infinity, for 𝑛 →
∞, 𝑝(𝑛) → ∞, for some 𝛾 > 0	𝑤𝑖𝑡ℎ	𝑝(𝑛) = 𝑜(𝑛})，Assume that the 
covariance matrices ∑(𝑛) except for some pair (𝑎, 𝑏)𝜖Γ(𝑛) × Γ(𝑛)，
for which ∑BC(𝑛) = ∑CB(𝑛) = 𝑠, for some 0 < 𝑠 < 1 and all 𝑛𝜖𝑁。
under the prediction-oracle penalty, The probability of choosing the 
wrong neighborhood for node 𝑎  converges to 1, as shown in 
Equation(5): 

𝑃 �𝑛𝑒gB
P��Y��� ≠ 𝑛𝑒B� → 1							𝑓𝑜𝑟	𝑛 → ∞ (5) 

From the proof of the above proposition, it can be concluded that 
many noise variables are included in the prediction of the 
neighborhood of the Oracle solution. In fact, for a fixed number of 
variables, the possibility of including noise variables in prediction 
predictions will not even disappear. If the selected penalty is greater 
than the predicted optimal value, then the 𝐿& regularizer can be used 
for consistent neighborhood selection. 
2) Regression model 

After establishing a global epidemic spread relationship network 
and identifying relevant countries and regions in Shanghai. In this 
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paper, three regression models are established for experiments 
including: nuclear ridge regression model, elastic network model and 
Bayesian regression model. 

a) Kernel Ridge Regression 
For the parameter matrix, in order to solve the risk of overfitting, 

we sequentially add "kernel" and "ridge" to the linear regression model 
to transform the model[15]. 

The first step is to add "kernel". For a given test sample, each 
training sample 𝑥����⃗  contains a coefficient 𝛼�, so the loss function can be 
expanded as shown in Equation (6). 

�(𝑦� −�𝛼�
)

�Z&

𝑘(𝑥����⃗ , 𝑥����⃗ ))N
)

�Z&

(6) 

This is a quadratic loss function. We choose the appropriate 𝛼� to 
maximize it. 

The second step, adding "ridge", is actually adding regularization 
terms, adding an 𝐿N regularization on the basis of linear regression. 
Then the loss function becomes shown in Equation (7). 

��𝑦� −�𝛼�

)

�Z&

𝑘o𝑥����⃗ , 𝑥����⃗ r�

N
)

�Z&

+ 𝜆‖𝜓‖ℋ (7) 

The second summation part of the above formula will penalize large 
coefficients, which can prevent the model from giving a large weight 
to a single training example and overemphasizing the role of a single 
training example, the parameter λ controls the trade-off between the 
degree of fitting and the complexity of the model.ℋis Hilbert space，
‖∙‖ℋ  is a 2-paradigm under Hilbert space. Expanding the 
regularization term, the loss function can be changed to the form 
shown in Equation (8). 

�(𝑦� −�𝛼�
)

�Z&

𝑘(𝑥����⃗ , 𝑥����⃗ ))N + 𝜆��𝛼�
)

�Z&

)

�Z&

)

�Z&

𝛼�𝑘o𝑥�,����⃗ 𝑥����⃗ r (8) 

Among them, K is a matrix of 𝑛 ∗ 𝑛, 𝑘𝑛,𝑚 = 𝑘(𝑥)����⃗ , 𝑥������⃗ ) . �⃗�  is a 
vector of n labels. 

b) Elastic network 
Elastic network is a linear regression model trained using 𝑳𝟏 and 𝑳𝟐 

norms as a priori regular terms[16]. This model can fit non-zero sparse 
matrices with a small number of parameters. Elastic networks are very 
useful when many features are interrelated. Elastic networks are more 
inclined to consider two of these characteristics randomly, and inherit 
the stability of Ridge during the allowed cycle[17]. 

Here, the objective function of minimization is shown in Equation 
(9). 

min
 

1
2𝑛¡B�¢m¡

‖𝑋𝑤 − 𝑦‖NN + 𝛼𝜌‖𝑤‖& +
𝛼(1 − 𝜌)

2
‖𝑤‖NN (9) 

c) Bayesian Ridge Regression 
Bayesian Ridge Regression is to use the probability model to 

estimate the regression model, mainly to solve the complexity of the 
model in the process of maximum likelihood estimation[18]. The 
process of Bayesian Ridge regression is a process in which sample 
points are gradually added to the learner. The posterior of the previous 
sample point will be used as a priori by the next estimation. In other 
words, Bayesian learning is gradually updating the prior. The prior 
update is actually iterated by updating the maximum likelihood 
estimation parameter and sample points, the prior parameter ω  is 
obtained by the Gaussian mode Equation (10). 

𝑝(𝑤|𝜆) = 𝒩o𝑤¨0, 𝜆\&Ι¢r (10) 
The prior parameters α	and	λ  generally follow the gamma 

distribution, and this distribution has a conjugate prior relationship 
with Gaussian [19]. The parameters ω，α	𝑎𝑛𝑑	λ  are estimated 

together when the model is fitted, where the parameters α	and	λ are 
obtained by maximum likelihood estimation. 

The difference between Bayesian Ridge Regression and ordinary 
Ridge Regression is that it adopts Bayesian strategy of updating priors’ 
step by step. Ordinary Ridge Regression allows the parameter to be 
zero, but Bayesian Estimation cannot do so because the standard 
deviation of Gaussian Can be infinite. At the same time, Bayesian 
regression will give the confidence interval of the parameter, which is 
an optional range of the parameter, which is essentially a covariance 
matrix. 

III.  EXPERIMENT 

This chapter first uses the case data of 188 countries and regions in 
the world from January 19 to April 4 to accumulate a total of 77 days 
to establish a global epidemic transmission relationship network. Next, 
the subnet data of countries related to Shanghai are extracted. Then, 
three regression models were used to establish regression models to fit 
the cumulative case growth data from January 19 to April 4 in 
Shanghai. This article mainly uses the 5-fold cross-validation, 
explained_variance，mean_absolute_error, mean_squared_error and 
r2 indicators to verify the model results. Finally, through the regression 
model after training, we predicted the cumulative diagnosed cases in 
Shanghai from April 4 to April 19(without blocking traffic). 

A. Global network analysis 
According to the latest China national epidemic prevention and 

control instructions "anti-import, non-proliferation", the Shanghai 
government responded to the Chinese government's call. On March 28, 
2020, the entry application for non-Chinese nationals was stopped. The 
infection period of COVID-19 seems to be very long, which may last 
10 days or longer after the incubation period [20]. Considering the 
special situation, we chose a latency of 7 days. Therefore, through the 
sparse network model based on 𝐿&, we constructed the data matrix of 
the actual case statistics of 188 countries and regions in the world from 
January 19th to April 4th, and plotted the COVID-19 international 
network. As shown in Figure 1, by analyzing the international relations 
network, we have counted the central nodes of the international 
epidemic transmission network, As shown in Table 1, we found that 
the United States, Italy, Iran, and Hubei, China are the main Hub nodes, 
that is, the main international epidemic spread countries. This result is 
consistent with the existing real situation; Therefore, it can be 
concluded that the international network relations based on 𝑳𝟏 in this 
study have certain reliability. 

B. Shanghai Subnet Analysis 
Next, we extracted the relationship subnets of cities and regions 

related to Shanghai. as shown in Figure 2. We can see that Shanghai is 
closely related to many areas of China, such as Hubei, Guangdong, 
Beijing and Heilongjiang. This is because in the early days of the 
spread of the Shanghai epidemic, these areas were the main import 
areas to Shanghai. At present, the epidemic situation in these areas has 
been stable and basically contained. As shown in Figure 2, we can also 
find many international communication channels, such as: The United 
States, European countries, Iran, the Philippines and other regions, this 
is caused by COVID-19 broke out in the international scope, brought 
by passengers entering international flights Input abroad. After 
identifying 30 countries and regions related to Shanghai, we can 
further establish a regression model to fit the epidemic growth data of 
Shanghai from January 19 to April 4. 
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Figure. 1. COVID-19 International Relations Network in 188 countries and regions 

 
Figure. 2. COVID-19 International Relations Network in 30 countries and regions related to Shang Hai 
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Figure .3. Comparison of cumulative confirmed cases and actual values predicted by the three regression methods 

 

 
Figure 4 Comparison between predicted and actual values (unblocked international traffic) 

 
TABLE I 

 HUB NODES IN THE INTERNATIONAL EPIDEMIC RELATIONSHIP NETWORK 
Country United States France Germany Italy Iran Hubei, China 
Number of 
nodes 

183 183 183 181 180 180 

 
TABLE II 

THE RESULTS OF THREE REGRESSION METHODS BASED ON 5-FOLD VERIFICATION 
 0 1 3 4 5 
KernelRidge -7.8 0.62 -11.51 -12.12 -18.64 
BayesianRidge -12.14 -2.6 -21.18 -7.6 24.04 
ElasticNet -10.68 0.92 -5.41 -0.17 -22.78 
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TABLE III 
 PERFORMANCE OF DIFFERENT INDICATORS OF THE THREE REGRESSION MODELS 

 ev mae mse r2 
KernelRidge 0.996 3.39 43.12 0.996 
BayesianRidge 0.997 2.82 31.10 0.997 
ElasticNet 0.997 3.19 29.68 0.997 

 
TABLE IV 

COMPARISON BETWEEN PREDICTED AND ACTUAL VALUES (UNBLOCKED INTERNATIONAL TRAFFIC) 
 

 KernelRidge BayesianRidge ElasticNet Real 
April 5 379  370  378  371 

April 6 422  415  414  380 

April 7 450  440  446  394 

April 8 471  468  487  404 

April 9 529  541  552  414 

April 10 545  553  590  433 

April 11 684  671  684  451 

April 12 755  705  741  468 

April 13 846  807  884  485 

April 14 960  871  999  492 

April 15 1014  915  1076  498 

April 16 1106  946  1144  509 

April 17 1136  1022  1239  516 

April 18 1211  1091  1347  522 

April 19 1275  1154  1386  526 

 
C. Building a regression model 

This article uses three regression algorithms to build the model, 
which are: KernelRidge，BayesianRidge and ElasticNet model. As 
shown in Figure 3 and Table 2-3, the three methods can fit the existing 
growth data in Shanghai well. Among them, the ElasticNet model 
performs best, explained_variance ， mean_absolute_error, 
mean_squared_error and r2 values Only 0.997, 3.19, 29.68 and 0.997, 
respectively, the average loss value of the 5-fold cross-validation is 
only -6.624. It can also be seen from the fitting curve that this method 
shows a good fitting effect.Experiments have proved that without 
blocking international traffic in Shanghai,The real data of the countries 
and regions related to Shanghai in the above international relations 
networkCan effectively predict the growth of cases in Shanghai. 

D. Short-term epidemic growth curve (unblocked international 
traffic) 

After establishing a regression model, we use data from 30 countries 
and regions related to Shanghai from April 4 to April 19 for 15 days to 
predict Shanghai's epidemic growth curve without the international 
traffic blockade, and compare it with real data. The experimental 
results are shown in Figure 4 and Table 4. On the premise that 
international traffic is not blocked, all three regression models have 
concluded that the cumulative number of confirmed cases will far 
exceed the existing real data. On April 19th, the cumulative case 
prediction results of the three models were between 1154-1386 people. 
In fact, the cumulative confirmed cases on that day were 526, and the 
predicted data was slightly greater than twice the true confirmed cases. 
The result of this comparison shows that Shanghai ’s adoption of the 
international traffic blockade has a significant effect and can largely 
prevent the import of overseas epidemic situations. It also means that 
Shanghai ’s traffic control is effective and necessary. 

IV. DISCUSSION 
COVID-19 quickly spread from a city to the entire country in just 

30 days. This alarming rate of expansion and the number of cases 
growing shocked the public health service system of the entire country. 
The Chinese government showed to the world its epidemic response 
capacity in the first time. These measures have made a significant 
effect in responding to COVID-19. China's domestic epidemic 
situation has been basically blocked. At present, COVID-19 has 
broken out in many countries outside the country. Therefore, at this 
stage, the main way of confirmed cases in China is passengers entering 
by international transportation. 

This article establishes a network of epidemic transmission 
relationships between Shanghai and different countries and regions 
around the world, and builds a regression model based on network 
information to fit Shanghai ’s COVID-19 epidemic growth data. The 
results show that the regression model based on the relational network 
can better fit the existing cumulative number growth curve. Combined 
with the regression model, we can predict the future development trend 
of cumulative cases in Shanghai (unblocked international traffic). 
According to the prediction results, we learned that the Shanghai 
government adopted traffic blockade measures, which effectively 
prevented the epidemic from spreading further. At present, the 
imported epidemic situation outside Shanghai has been effectively 
controlled, but we still need to be vigilant to prevent the recurrence of 
the epidemic situation. More importantly, with the effective control of 
the local epidemic situation in various countries, Shanghai's successful 
experience in dealing with the import of overseas epidemic situations 
has also played a demonstration role for other countries and regions. 

In order to reduce the risk of imported COVID-19 cases, Shanghai 
has adopted a series of measures to prevent and control possible 
overseas imported cases, strengthen monitoring and rapid 
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identification of possible cases. First, during the epidemic, all Chinese 
and foreign personnel who have lived in key countries or regions 
within 14 days before entering Shanghai will be quarantined for 14 
days. Secondly, conduct temperature examination and medical 
observation on all entry personnel, and then transfer and isolate 
confirmed cases and suspected cases for rapid treatment. Carry out 
preventive measures for close contacts. Since March 28, international 
routes have been suspended, and foreign tourists are prohibited from 
entering Shanghai. 

As a successful import case for overseas epidemic prevention, 
Shanghai has fully demonstrated how a region can prevent a global 
pandemic, and it has provided a good demonstration for other countries 
and regions. At the same time, it also showed the friendly style of the 
Chinese nation and treated all immigrants equally during the epidemic, 
making foreign friends feel warm during this difficult time. 
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