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Abstract 

 
The Covid-19 first occurs in Wuhan, China in December 2019. After that the virus spread all around the world and at the time of 
writing this paper the total number of confirmed cases are above 4.7 million with over 315000 deaths. Machine learning algorithms 
built on radiography images can be used as a decision support mechanism to aid radiologists to speed up the diagnostic process. 
The aim of this work is to conduct a critical analysis to investigate the applicability of convolutional neural networks (CNNs) for 
the purpose of COVID-19 detection in chest X-ray images and highlight the issues of using CNN directly on the whole image. To 
achieve this task, we first use 12-off-the-shelf CNN architectures in transfer learning mode on 3 publicly available chest X-ray 
databases together with proposing a shallow CNN architecture in which we train it from scratch. Chest X-ray images fed into CNN 
models without any preprocessing to follow the many of researches using chest X-rays in this manner. Next, a qualitative 
investigation performed to inspect the decisions made by CNNs using a technique known as class activation maps (CAM). Using 
CAMs, one can map the activations contributed most to the decision of CNNs back to the original image to visualize the most 
discriminating regions on the input image.  
We conclude that CNN decisions should not be taken into consideration, despite their high classification accuracy, until clinicians 
can visually inspect, and approve, the region(s) of the input image used by CNNs that lead to its prediction. 
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I. INTRODUCTION 
The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the virus causing COVID-19, has become a pandemic 
since its emergence in Wuhan, China in Dec 2019 [1]. The 
death toll from the infection is escalating at a worrying rate and 
many health systems around the world are struggling to cope. 
Social distancing is among some approaches proposed by the 
World Health Organization (WHO) to control the spread of this 
viral infection. A critical step in this direction is an effective 
and accurate screening of the COVID-19 patients so positive 
cases receive timely treatment and get appropriately isolated 
from the public; a measure deemed crucial in curbing the spread 
of the infection. Reverse-transcription polymerase chain 
reaction (RT-PCR) testing, which can detect SARS CoV-2 
RNA from respiratory specimens (such as nasopharyngeal or 
oropharyngeal swabs), is the golden screening method for 
detecting COVID-19 cases. The high sensitivity of RT-PCR 
testing is overshadowed by the limited availability of test kits 
and the amount of time required for the result to be available 
(few hours to a day or two) [2]. Therefore, there is a growing 
need to use fast and reliable screening techniques that could be 
further confirmed by the RT-PCR testing. Some studies have 
suggested the use of imaging techniques such as X-rays 

 
 

Computed Tomography (CT) scans of the chest to look for 
visual indicators associated with SARS-CoV-2 viral infection.  
It was found in early studies that patients display abnormalities 
in chest radiographs that are characteristic of COVID-19 
infection, with some suggesting that radiography examination 
could be used as a primary tool for COVID-19 screening in 
epidemic areas [3]. Facilities for chest imaging is readily 
available in modern healthcare systems making radiography 
examination a good complement to RT-PCR testing and, in 
some cases, showing even a higher sensitivity index. Given X-
ray visual indicators could be subtle; radiologist will face a 
great challenge in being able to detect those subtle changes and 
interpreting them accurately. As such, it becomes highly 
desired and required to have computer-aided diagnostic systems 
that can aid radiologists in making a more time-efficient and 
accurate interpretation of X-ray changes that are characteristic 
of COVID-19 [4].   
In recent months, many researches came out addressing the 
problem of COVID-19 detection in chest X-rays using deep 
learning approaches in general, and convolutional neural 
networks (CNNs) in particular [3]–[10]. Majority of the papers 
report high COVID-19 disease detection accuracy [2][6][10]–
[14]. For a detailed survey of recent artificial intelligence 
algorithms, we direct interested reader to check the well-written 
survey in [15] by Thanh Thi Nguyen. However, deploying CNN 
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architectures directly on chest radiography images may not 
produce reliable COVID-19 detection results, especially when 
chest X-ray images feed into CNN models directly without any 
preprocessing steps such as region of interest segmentation, 
noise elimination and un-wanted object removal. We take this 
hypothesis onboard to prove that despite high classification 
accuracies by CNN models, we demonstrate that CNNs are 
‘cheating’ by using artefacts in the images to build their 
prediction that has nothing to do with COVID-19 disease. 

II. RELATED WORKS (SURVEY)   
Since the start of COVID-19, researchers quickly divided 

their effort on combating it by focusing on developing a vaccine 
in one hand [16] and detecting COVID-19 using PCR and 
imaging systems on the other hand [3]. Here, we review studies 
devoted to the use of radiography images to aid and 
complement PCR in diagnosing COVID-19 cases. Ai et al. [3] 
built a deep convolutional neural network (CNN) based on 
ResNet50, InceptionV3 and Inception-ResNetV2 models for 
the classification of COVID-19 Chest X-ray images to normal 
and COVID-19 classes. They reported a good correlation 
between CT image results and PCR approach. Chest X-ray 
images of 50 COVID-19 patients have been obtained from the 
open source GitHub repository shared by (Dr. Joseph Cohen 
[17]). Prabira et al. in [5] proposed a method to detect COVID-
19 using X-ray images based on deep feature and support vector 
machines (SVM). They collected X-ray images from GitHub, 
Kaggle and Open-I repository. They extracted the deep feature 
maps of a number of CNN models and conclude that ResNet50 
is performing better despite the small number of images used in 
their investigation. Maghdid et al. [6] proposed a simple CNN 
of 16 layers only to detect COVID-19 using both X-ray and CT 
scans and reported good performance but the dataset used is 
small. The work of Fei et al. [18] focused on segmenting 
COVID-19 CT scans using a deep learning approach known as 
VB-Net and reported dice similarity of 91%±10%.   

Xiaowei et al. [8], obtained an early prediction model to 
classify COVID-19 pneumonia from Influenza-A viral 
pneumonia and healthy cases using pulmonary CT images 
using Resnet18 model by feeding image patches focused on 
regions of interest.  The highest accuracy for the CNN model 
was 86.7 % CT images.  In Wang et al. [9], authors use CT 
images to predict COVID-19 cases where they deployed 
Inception transfer-learning model to establish an accuracy of 
89.5% with specificity of 88.0% and sensitivity of 87.0%. In [4] 
a number of CNN architectures that are already used for other 
medical image classifications evaluated over a dataset of X-ray 
images to distinguish the coronavirus cases from pneumonia 
and normal cases. CNN’s adopted on a dataset of 224 images 
of COVID-19, 700 of non- COVID19 pneumonia, and 504 
normal where they report overall accuracy of 97.82.       

Wang and Wong [2] investigated a dataset that they called 
COVIDx and a neural network architecture called COVID-Net 
designed for the detection of COVID- 19 cases from an open 
source chest X-ray radiography images. The dataset consists of 
chest radiography images belonging to 4 classes including 
Normal X-rays comprising cases without any infections, 

Bacterial, Viral pertaining to non-COVID-19 pneumonia and 
COVID-19 X-rays. They reported an overall accuracy of 83.5% 
for these four classes. Their lowest reported positive predictive 
value was for non-COVID-19 class (67.0%) and highest was 
for Normal class (95.1%). As required to improve the previous 
studies Muhammad and Hafeez [7] deals with this need by 
presenting another CNN with fewer parameters but better 
performance. Authors used the same dataset as in [2] to build 
an open source and accurate COVID-ResNet for differentiating 
COVID-19 cases from the other four pneumonia cases and 
outperform COVID-Net. In [10], Narin et al. experimented 
several CNN architectures classify normal with COVID-19 X-
ray images and they report excellent classification accuracy, 
sensitivity and specificity. But the authors failed to discuss the 
clinical importance of their approach as it may not be difficult 
to distinguish severe COVID-19 cases from normal chest X-
rays , as we show in table 1, and this is not the situation 
radiologists face in a regular basis or it may not be of 
importance in this current pandemic. Finally, they trained their 
CNNs based on 50 images from each of the normal and 
COVID-19 classes which may result in some sort of biasness in 
the training phase. 

In all the works discussed here, to the best of our knowledge, 
we did not encounter an explicit description of preprocessing, 
segmentation nor noise reduction performed on chest X-rays. 
Also, whether such operations will affect the final decision by 
proposed CNNs or not. We address this problem by assessing 
the quality of the decision made by 12 CNN models using class 
activation mapping introduced in [19]. Also, there is no 
justification why researchers favored a particular CNN model 
over others and did not compare their final results if one opt to 
choose another CNN architecture. This paper benchmarks 12 
popular CNN models and deploy them in a transfer learning 
mode on 3 public datasets popularized for the detection of 
COVID-19 infection. Finally, a qualitative analysis performed 
on these 12 CNN models to demonstrate the most 
discriminating regions in the input image used by each CNN 
and the need of such process to reveal the bias in current 
datasets as well as CNN weaknesses.  

III. CNN ARCHITECTURES- BRIEF OVERVIEW 
In recent years, the use of deep learning algorithms in general 

and convolutional neural networks (CNNs) led to many 
breakthroughs in a variety of computer vision applications like 
segmentation, recognition and object detection [20]. Deep 
learning methods have been shown to be successful in 
automating the task of feature-representation learning and 
gradually attempts to eliminate the tedious task of handcrafted 
feature engineering. Deep learning, and convolutional neural 
networks (CNNs), attempts to mimic the human visual cortex 
system in terms of structure and operation by adopting a 
hierarchical layer of feature representation. This approach of 
multi-layer feature representation made it possible to learn 
different image features automatically and hence enabled CNNs 
to outperform handcrafted-feature methods [21].  

In 1960s, Hubel and Wiesel [22] studied monkey’s visual 
cortex system and found cells which are responsible for 
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constructing image and detecting light signal in receptive filed. 
In the same vein, Hubel and Wiesel also showed that monkey’s 
visual field can be represented using a topographic mapping. In 
1980s, Neocognitron proposed by Fukushima and Miyake [23] 
which is a self-organizing neural network and regarded as a 
predecessor of CNN. In [24], LeCun et al.’s groundbreaking 
work introduced modern CNN models for the purpose of 
handwritten digit recognition in which the architecture later 
popularized and known as LeNet. After LeNet architecture, 
convolutional layers and backpropagation algorithm for 
training popularized and became a fundamental building block 
of most of the modern CNN architectures. In 2012, AlexNet 
architecture, proposed by Krizhevsky et al. [25], won ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC) [26] by 
outperforming other methods and reducing the top-5 error from 
26% to 15.3%. This was a turning point so that CNNs became 
an exceptionally popular tool to be deployed in many computer 
visions tasks. Roughly speaking, AlexNet is a similar version 
of LeNet but deeper structure and trained on 1.2 million high 
resolution images. Complex architectures that has millions of 
parameters, and hyperparameters, to train and fine tune need a 
substantial amount of computational time and power but again 
AlexNet popularized the use of powerful computational 
resources such as graphical processing units (GPUs) to 
compensate the increase in trainable parameters. 

AlexNet opened the door for researchers around the world to 
design novel CNN models which are deep but efficient at the 
same time especially after ILSVRC became an annual venue for 
the recognition of new CNN models. The participation of 
technology giants such as Google, Microsoft and Facebook also 
helped in pushing research in this direction especially the depth 
of CNN architectures increased dramatically from 8 layers in 
2012 to 152 layers in 2015 which helped the recognition error 
rate to drop to 3.5%. Pre-trained CNN architectures on 
ImageNet have been open-sourced and immediately used by 
researcher to transfer the knowledge to other application 
domains and promising results achieved [27]. One of the many 
useful features of transfer learning (TL) is that in other domains, 
such as medical image analysis, millions of labeled medical 
images are not available therefore it is natural to consider the 
use of fine-tuned weights and biases of CNN architectures 
trained on ImageNet, and other large databases, to be used for 
medical image analysis. Hence, we opt to use 12 deep learning 
architectures in a TL mode and modify their final layers to adapt 
to the number of classes in our investigation. The deep learning 
architectures that we used for the purpose of COVID19 
detection from X-ray images are AlexNet, VGG16, VGG19, 
ResNet18, ResNet50, ResNet101, GoogleNet, InceptionV3, 
SqueezeNet, Inception-ReseNet-v2, Xception and 
DenseNet201.  

In what follows we are going to briefly describe each of the 
12 CNN architectures used here and highlight their distinct 
properties. It is out of the scope of this work to give details of 
all of these 12 CNN models, hence we direct interested reader 
to consult many survey articles on deep learning and CNN 
architectures such as [28], [29].  

AlexNet architecture is the winner of ILSVRC 2012, 

proposed by Krizhevsky et al. [25] outperformed the 
handcrafted features significantly. AlexNet constitutes of 5 
convolutional layers and 2 fully connected layers together with 
rectified linear unit (ReLU) activation function which is used 
for the first time.  It can be regarded as a scaled version of LeNet 
except that it is a deeper architecture trained on a larger dataset 
of images (ImageNet) and benefitted from the GPU 
computational power. Hyperparameters of AlexNet fine-tuned 
and won 2013 ILSVRC [26] (later named ZF-Net).  We use 
AlexNet in a transfer learning mode and modify the last layer 
of AlexNet according to the number of X-ray image classes, i.e. 
instead of 1000 classes that AlexNet trained on we change this 
to 4 classes because 4 X-ray classes used here which are 
COVID19, Bacteria, Viral and Normal. The same approach of 
TL is used for the rest of CNN models. 

VGG architectures proposed by Oxford university’s visual 
geometry group [30], hence the acronym VGG, whereby they 
demonstrated that using small filters of size 3-by-3 in all of the 
convolutional layers throughout the network leads to a better 
performance. The main intuition behind VGG architectures is 
that multiple small filters in a sequence can imitate the effect of 
larger filters. Due to its simplicity in design and generalization 
power, VGG architectures are widely used. We use VGG16 and 
VGG19 that constitute of 16 and 19 convolutional layers, 
respectively. 

GoogleNet architecture is the winner of ILSVRC 2014 
which is proposed by Szegedy et al. [31] from Google in 2014. 
Novelty of GoogleNet is the innovation of inception module, 
which is a small network inside a bigger network. Furthermore, 
1-by-1 convolutional layers/blocks used as a dimensionality 
reduction and feature aggregation. In total, GoogleNet is 22 
layers deep with 9 inception modules. Inception V1 
(GoogleNet), is later improved in terms of batch normalization, 
representational bottleneck and computational complexity and 
resulted in Inception V2 and V3. Here we opt to use GoogleNet 
and InceptionV3 [32] in a transfer learning mode. In the same 
vein, we use Xception [33], which is another architecture 
proposed by F. Chollet from Google which uses the idea of 
extreme inception module whereby depthwise convolutional 
layers used first then followed by pointwise convolutional 
layers. In other words, they replaced inception modules by 
depthwise separable convolutions in such a way that the total 
number of parameters is the same as inceptionV3 but the 
performance on large datasets (350 million images of 17000 
classes) are significantly higher. 

ResNet architectures are proposed by He et al. [34] from 
Microsoft and won 2015 ILSVRC. Main innovation in ResNet 
architectures are the use of residual layers and skip connections 
to solve the problem of vanishing gradient that may result in 
stopping the weights in the network to further update/change. 
This is particularly a problem in deep networks because the 
value of gradient can vanish, i.e. shrink to zero, when several 
chain rules applied consecutively. Skipping connections will 
help gradians to flow backwards directly from end layers to 
initial layer filters enabling CNN models to deepen with 152 
layers.  

DenseNet can be regarded as a logical extension of ResNet 
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which was first proposed in 2016 by Huang et al. from 
Facebook [35]. In DenseNet, each layer of CNN connected to 
every other layer in the network in a feed-forward manner 
which helps in reducing the risk of gradient-vanishing, fewer 
parameters to train, feature-map reuse and each layer takes all 
preceding layer features as inputs. The authors also point out 
that when datasets used without augmentation, DenseNet is less 
prone to overfitting. There are a number of DenseNet 
architectures, but we opt to use DenseNet201 for our analysis 
of COVID19 detection from X-ray images by using the weights 
trained on ImageNet dataset in TL mode.  

SqueezeNet is a small architecture proposed by Landola et 
al. [36] in 2016 that uses the idea of fire module which contain 
3 filters of size 1-by-1 feed into an expanded layer (4 filters of 
size 1-by-1 and 4 filters of size 3-by-3). Even though the 
number of parameters of SqueezeNet is by 50x less than 
AlexNet but achieves the same accuracy of AlexNet on 
ImageNet.  

Inception-ResNetV2 is a combined architecture proposed 
by Szegedy et al. [32] in 2016 that uses the idea of inception 
blocks and residual layers together. The aim of using residual 
connections is to avoid the problem of degradation causes by 
deep networks and reduce the training time. The inception-
resnetV2 architecture used here contains 20 inception-resnet 
blocks that empower the network to become 164 layers deep, 
and we use the pre-trained weights in these layers to assist our 
mission of detecting COVID19 in X-Ray images.    

IV. PROPOSED CNN 
In this study, we designed a CNN model for COVID-19 

detection from chest radiography images guided by the fact that 
in order to properly classify and detect COVID-19, radiologists 
need to discriminate COVID-19 X-rays from normal chest X-
ray first, and then from other viral and bacterial infections in 
order to isolate and treat the patient properly. Therefore, we opt 
to choose the design of CNN to make one of the following 
predictions: a) Normal (i.e. no infection) b) COVID-19, c) Viral 
infection (none-COVID-19) and d) Bacterial infection. The 
rationale behind using these 4 cases is to aid radiologists to 
prioritize COVID-19 patients for PCR testing and employ 
treatments according to infection-specific causes. Having these 
requirements in mind, we designed our simple CNN 
architecture, named CNN-X, that constitutes of 4 parallel layers 
where we have 16 filters in each layer in 3 different sizes (3-by-
3, 5-by-5 and 9-by-9). Batch normalization and rectified linear 
unit (ReLU) is then applied to the convolved images and two 
different types of pooling operation applied next which are 
average pooling and maximum pooling. The rationale behind 
using different filter sizes is to detect local-features using filters 
of size 3-by-3 and rather global features by filters of size 9-by-
9 while 5-by-5 filter size is to detect what is missed by the other 
two filters.  

Different pooling operations utilized to further reduce the 
dimensionality of feature maps. A stride of size 3 is adopted 
here, with pooling operations, to further reduce the dimension 
of the resulting feature maps taking into consideration the fact 
that there is redundant information in images and neglecting a 

row and a column after each pooling window is not causing a 
massive information loss. See Fig. 1 where we visually depict 
the difference between pooling of size 3-by-3 with stride 2 
versus pooling of size 2-by-2 with stride 3 and conclude that we 
are not losing much information while reducing the size of the 
image/feature map further. Proposed architecture design is not 
deep, hence the feature map (i.e. convolved image) is not a very 
abstract representation of the input image yet and as such there 
are still redundant information.  

 
 
Fig. 1. Effect of stride and pooling on image resolution. 
 
Feature maps from the four parallel layers are then 

concatenated before fully connected layer. Weights are 
generated using Glorot method [37] with Adam optimizer [38] 
and 0.0003 initial learning rate. Training conducted using 20 
epochs and 15 mini batch size. We visualize the structure of 
proposed CNN model in Fig. 2. 

 

 
Fig. 2. Proposed CNN Architecture design. 

V. DATASET DESCRIPTION 
To investigate and test the CNN architectures explained in 

section III and IV, we used X-ray images collected from 3 
publicly available sources. First dataset is a collection of 111 
COVID-19 chest X-ray images collected by Cohen [17]. 
Second dataset is a collection of 6290 chest X-ray images of 
confirmed normal, bacterial and other non-COVID-19 viral 
infections from Kermany et al. [39]. Specifically, the images 
divided into four classes as follows; the total number of normal 
cases are 1575 cases, confirmed bacterial infection cases are 
2771 and viral (Non-COVID-19) are 1494 confirmed cases. 
The third dataset contains 73 confirmed COVID-19 chest X-
rays collected from the following websites; Radiological 

MaxPooling, Size(3,3) , Stride: 2
MaxPooling, Size(2,2) , Stride: 3

Original Image
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Society of North America (RSNA), Radiopedia, and Italian 
Society of Medical and Interventional Radiology (SIRM). This 
dataset again is available publicly in [40]. In Fig. 3 examples of 
all four radiographic X-ray classes are shown. 

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 
(a) Normal (b) Bacteria (c) Viral (non-

COVID19)  
(d)  COVID-19 

Fig. 3. Sample of the X-Ray images used in our experiments. 
 
Details of distributing the images to train set, validation set, 

and test set will be discussed and explained in the next section. 

VI. EXPERIMENTAL SETUP AND RESULTS  
We adopted transfer learning (TL) approach to investigate 

the performance of the CNN architectures discussed here and 
compare it with proposed CNN-X architecture. TL is the 
process of utilizing gained knowledge (learned weights) from 
solving one problem to a different but related problem. Weights 
optimized from training the 12 CNN models on ImageNet 
dataset used in TL mode such that weights in all layers are 
retrained on our X-ray images. All images from training and 
testing sets are resized to the suitable dimensions that each of 
the architectures designed for. No preprocessing applied to 
input images because none of the methods in literature work 
mentioned it and hence, we followed the same norm.  Training 
parameters in TL for all 12 CNN architectures are as follows: 
number of epochs = 20, mini-batch size = 15, initial learning 
rate =0.0003.  All experiments conducted using MATLAB 
version 2019b on a Core i5 CPU machine with 16 GB of RAM 
and 3.30 GHz. To measure CNN classification performance, 
four metrics were recorded which are sensitivity, specificity, 
F1-score and classification confidence. To be able to calculate 
the aforementioned metrics the following measures of test 
classification computed: 

True positive (TP): number of correctly identified disease X-
ray images. 

False Negative (FN): number of incorrectly classified disease 
X-ray images. 

True Negative (TN): number of correctly identified healthy 
X-ray cases 

False Positive (FP): incorrectly identified healthy X-ray 
cases.  

Furthermore, TP refers to disease (COVID-19, bacterial or 
viral) X-ray images correctly identified as a disease X-ray 
image while FP is normal or other pneumonia cases incorrectly 
identified as COVID-19 disease. Sensitivity measures the 
proportion of diseased cases correctly detected by CNNs while 
specificity measure the proportion of healthy cases correctly 
identified as healthy by CNN models. The equation of 
sensitivity and specificity calculation is provided in appendix, 
which also contain the F1-score calculation and equation. 
Because the number of COVID-19 chest X-ray images is small 
in comparison with the other 3 classes, it is sometimes 
misleading to rely on sensitivity and specificity of CNN models 

alone. Therefore, we also report the computation of the estimate 
of 95% confidence interval (see the appendix) of classification 
errors of each of the CNN models utilised here where we 
assume that the CNN classification output distributed normally, 
i.e. follows a gaussian distribution. The smaller the confidence 
interval, more reliable the predictive model is and hence one 
expects its CNN model more likely to work on other datasets.  

Three different scenarios deployed to test the performance of 
12 off-the-shelf CNN architectures as well as our proposed 
CNN-X model which will be discussed next.  
• Scenario 1: Normal vs COVID-19 classification (All 

Data). 
In this scheme, CNN architectures trained on 1341 normal X-

ray images with 111 COVID-19 cases while 234 cases of 
normal with 73 cases of COVID-19 are used for testing. Table 
1 below shows obtained results from all the 13 CNN 
architectures. The aim of testing this hypothesis is to see the 
effect of differentiating COVID-19 from normal chest X-rays. 

 
Table 1. Testing result for all architectures used in scenario 1. 

CNN Architectures Sensitivity Specificity 
AlexNet 90.41 88.03 

GoogleNet 93.15 96.15 
Vgg16 84.93 97.86 
Vgg19 0 100 

ResNet18 95.89 98.72 
ResNet50 95.89 97.01 
ResNet101 91.78 97.86 

InceptionV3 97.26 92.74 
InceptionResNetv2 95.89 99.57 

SqueezeNet 93.15 99.57 
Densenet201 90.41 100 

Xception 93.15 100 
CNN-X (Ours) 93.15 97.86 

It can be seen from the table above that all of the CNN 
models (except Vgg19 and Vgg19), can be deployed 
successfully to detect COVID-19 X-rays with sensitivity of 
above 90%. However, the specificity of some of the techniques 
are below 90% in which we can avoid using it in practice. In 
this vein, one can opt to rely on the highest performing 
architectures such as Xception, Desnsenet201, SqueezeNet and 
inceptionresnetv2 as their specificity is >99%. It should be 
noted that our proposed CNN architecture’s performing is 
comparable to other state-of-the-art CNN models whereby it 
achieves 93% sensitivity and specificity of 97%, which is better 
than AlexNet, GoogleNet, VGG19 and VGG16. Albeit 
excellent results in table 1, this is not a realistic scenario to build 
machine learning algorithms for the purpose of COVID-19 
detection in the present time because there is no guarantee that 
the system is not classifying other pneumonia infections as 
COVID-19 and vice versa. Furthermore, it may not be of a 
clinical significance to differentiate extreme COVID-19 cases 
from normal chest X-rays but it’s the diagnostics and 
discrimination of COVID-19 from other pneumonia is of a 
particular interest. Hence, we designed the second scenario to 
address the task of discriminating COVID-19 cases from other 
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viral, bacterial and normal X-rays images. 
• Scenario 2: Normal vs COVID-19 vs Viral (non-

COVID-19) vs Bacteria  
In this scenario we aim to classify X-ray images into the 4 

respective classes of normal, COVID-19, Bacteria and Viral 
(non-COVID-19). This scenario addresses the limitation in the 
first scenario whereby any machine learning algorithm needs 
to, ultimately, discriminate not only COVID-19 chest X-ray 
from normal X-ray but it also needs to discriminate COVID-19 
chest X-rays from other viral and bacterial infections. This is a 
necessary condition to stop the spread of the virus and prepare 
COVID-19 patients for special treatments.   

A total of 1341 normal X-rays, 2529 Bacteria cases, 1346 
Viral X-rays and 111 COVID-19 X-rays used for training. For 
testing, 234, 242, 148 and 73 X-rays of normal, Bacteria, Viral 
and COVID-19 respectively used. It is worth to notice that we 
train the model on 111 COVID chest X-rays from COVIDx 
dataset but we test the CNN models on 73 chest X-rays from a 
different source. This is critical to examine the effectiveness of 
feature maps learnt by CNN on one source and testing it on 
images coming from a different source.   Table 2 below 
demonstrates classification performance obtained by adopting 
this scenario.  
• Scenario 3: Normal vs COVID-19 vs Viral vs Bacteria 

(Training on part of the data) 
 In this scenario we used part of the dataset to train CNN 

models to see the effect of each architecture with the smaller 
number of image samples. The rationale behind this scenario is 
the fact that most of the time the challenge in medical image 
analysis is limitation of available data for investigation and to 
reduce bias in having unbalanced number of images in training 
phase. Hence, the design of this scenario is to get more insight 
of how these CNN models perform in the case of limited 
availability of image samples.    

In this scenario, four classes used with 350 X-ray images of 
normal, Bacteria, viral and 111 X-rays of COVID-19 for 
training whereas the same number of testing images used for 
the four classes are as scenario 2.  
Table 2 shows experimental results obtained from scenario 2 
and scenario 3, where Sn and Sp stand for sensitivity and 
specificity respectively in Table 2. It clearly depicts that none 
of the CNN architectures perform well on differentiating X-rays 
to all four classes. Perhaps the only exception is Inception-
ResnetV2 that performs better in comparison with the rest of 
the architectures especially on normal X-rays with sensitivity 
of >76% using all image samples. The good performance of 
Inception-ResnetV2 is due to the idea of combining residual 
learning with inception blocks which makes the performance to 
be better than ResNet or Google/Inception architectures alone. 
Furthermore, we notice that all CNN models work well on 
detecting two of the classes, namely Bacteria and COVID-19, 
but not performing well on classifying normal and viral X-rays 
to their respective classes which suggests that deployed CNN 
models learns features of bacterial and COVID-19 better than 
normal and non-COVID19 viral infections.  
 

Table 2.  Testing result for scenario 2 and scenario 3 for all 
Models. 

 
  Scenario 2 Scenario 3 
 Class Sn Sp Sn Sp 

A
le

xN
et

 Bacteria 92.98 95.48 73.55 84.08 
Covid-19 93.15 99.20 90.41 98.89 
Normal 42.74 77.33 34.19 74.84 
Viral 69.59 90.98 43.24 81.29 

G
oo

gl
e-

N
et

 

Bacteria 90.50 94.74 89.26 92.40 
Covid-19 76.71 97.35 93.15 99.20 
Normal 44.44 78.04 59.40 82.21 
Viral 83.11 94.06 8.78 77.12 

V
gg

16
 Bacteria 95.45 96.89 80.58 86.46 

Covid-19 82.19 97.95 89.04 98.72 
Normal 37.61 75.75 49.15 78.98 
Viral 77.03 93.20 12.16 76.58 

V
gg

19
 Bacteria 92.15 96.89 80.58 87.73 

Covid-19 80.82 97.80 90.41 98.89 
Normal 43.16 77.53 74.79 87.55 
Viral 69.59 90.76 12.84 78.68 

R
es

N
et

-
18

 
Bacteria 94.63 96.45 75.62 83.70 
Covid-19 93.15 99.20 93.15 99.21 
Normal 59.40 82.85 44.02 77.72 
Viral 58.78 88.85 20.27 76.95 

R
es

N
et

-
50

 

Bacteria 92.56 95.45 82.23 90.14 
Covid-19 94.52 99.36 94.52 99.36 
Normal 46.15 78.50 71.37 86.84 
Viral 75.68 92.52 59.46 88.55 

R
es

N
et

-
10

1 

Bacteria 95.87 97.20 88.84 92.86 
Covid-19 91.78 99.04 95.89 99.50 
Normal 44.44 77.89 29.91 73.63 
Viral 65.54 90.17 44.59 83.16 

In
ce

pt
io

n 
V

3 

Bacteria 96.69 98.01 90.50 93.52 
Covid-19 94.52 99.36 95.89 99.52 
Normal 59.83 82.97 65.38 84.97 
Viral 76.35 93.12 29.05 8158 

In
ce

pt
io

nR
es

N
et

v2
 Bacteria 81.40 90.63 93.39 95.42 

Covid-19 95.89 99.52 94.52 99.35 
Normal 76.07 88.82 64.53 84.69 
Viral 83.11 94.85 37.84 84.19 

Sq
ue

ez
e 

N
et

 

Bacteria 98.35 98.73 54.55 76.94 
Covid-19 93.15 99.20 94.52 99.35 
Normal 38.03 76.03 51.71 79.89 
Viral 51.35 86.76 43.24 80.69 

D
en

se
-

N
et

 2
01

 Bacteria 94.21 96.50 72.31 82.18 
Covid-19 93.15 99.21 97.26 99.69 
Normal 54.70 81.21 38.78 74.20 
Viral 66.22 89.96 13.91 75.93 

X
ce

pt
io

n Bacteria 97.11 98.34 95.87 97.38 
Covid-19 94.52 99.36 94.52 99.39 
Normal 66.67 85.45 24.71 70.05 
Viral 82.43 94.85 38.41 80.82 

C
N

N
-X

 
(O

ur
) 

Bacteria 94.21 95.78 83.47 89.25 
Covid-19 91.78 99.05 94.52 99.35 
Normal 33.33 74.43 44.44 77.70 
Viral 58.11 88.08 39.86 82.89 
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In other words, there is more similarity between features of X-
ray images of viral infection and normal cases with each other 
and with other classes that cannot be distinguished easily. The 
second-best performing architecture, using all image samples, 
is Xception architecture with sensitivity of 97%, 94%, 66% and 
82% for bacteria, COVID-19, normal and viral chest infections 
respectively. When it comes to scenario 3, where only 350 
images used from normal, bacterial and viral chest X-rays, 
again Inception-ResnetV2 outperform all other CNN 
architectures including CNN-X. This confirms the 
effectiveness of Inception-ResnetV2 in terms of design and 
learning power. Nonetheless, we want to remind the reader that 
input images have not been segmented and they contain artefact 
that may contribute to CNN prediction but has no relation to 
COVID-19 infection. We confirm this point in the next section, 
see Fig. 4, where we demonstrate the region(s) in the image 
used by CNNs and some, if not all, of these regions are artifacts. 
Direct comparison of best results obtained here, which is by 
Inception-ResnetV2, is not possible with other works in the 
literature because the COVID-19 images used for testing here 
is different and more importantly the number of testing images 
is 73 which is higher than the number of test images used in [2] 
and [7] whereby they tested their CNNs based on 8 COVID-19 
images only. Nonetheless, our results are outperforming 
COVID-Net in terms of sensitivity for viral and normal X-ray 
classification. The sensitivity of Inception-ResNet-V2 is again 
outperforms COVID-Net for bacterial, COVID-19, and viral 
infection classification.  

Proposed CNN-X architecture is performing like Squeeze-
Net, which is an architecture with 1.2 million parameters and 
our architecture has about 1.4 million parameters. Furthermore, 
CNN-X’s performance is comparable to VGG16 and AlexNet 
architecture which indicate that shallow CNN networks has the 
potential to be used to detect COVID-19 in the future with 
further improvements.  

Next, we analyse qualitatively the performance of all CNN 
models used to visually inspect the most discriminating regions 
they utilized on classifying input chest X-rays into a specific 
category. This step is critical so that radiologists can visualize 
the regions used by CNNs to predict pneumonia presence in 
input X-ray images.  

VII. CNN INTERPRETABILITY  
There are many ways one can visualize the region(s) used by 

CNNs to predict the class label of an input image such as 
gradient descent class activation mappings or global average 
pooling class activation mappings and others [19][41][42].To 
interpret the output decision made by any of the CNN 
architectures investigated in this study, heatmaps of the most 
discriminating regions generated and visualized for the input 
images in testing using the method introduced in [19] which is 
known as class activation mappings (CAM). Using CAMs, one 
can highlight class specific distinctive regions used by CNNs 
that lead to its prediction. After fully training a CNN model, a 
testing image will be feed into the network and feature maps 
extracted from final convolutional layer. In what follows we 

briefly introduce the steps of generating CAMs. Let 𝐴"(𝑥, 𝑦) 
be activation of unit 𝑢 of the last convolutional layer at a spatial 
position of (𝑥, 𝑦). Let  

																												𝐺" =,	
-,.

𝐴"(𝑥, 𝑦)																																												(1) 

be average pooling operation and the input by the SoftMax 
layer is then can be defined as follows: 

																					𝑆1 =,𝑤"1
"

𝐴"																																																							(2) 

where 𝑙 is the class label, 𝑤"1  is the weight of class 𝑙 of the unit 
𝑢. Here, 𝑤"1  highlights important of the activation 𝐴" for a given 
class 𝑙. Probability score output by SoftMax for a given class 𝑙 
can then be defined as follows: 

			𝑃1 = 𝑒𝑥𝑝 8,		
"

𝑤"1 	𝐴"9 × ;,	
"

𝑒𝑥𝑝 8,		
"

𝑤"1 	𝐴"9<

=>

		(3) 

Substituting equation (1) into equation (2) we obtain the 
following: 

	𝑆1 =,	
"

𝑤"1 	, 	
-,.

𝐴"(𝑥, 𝑦) 	=,	
"

	,	
-,.

𝑤"1 	𝐴"(𝑥, 𝑦)										(4) 

Then each class 𝑙 activation maps can be defined at each 
spatial position (𝑥, 𝑦) as follows: 

																		𝑀1(𝑥, 𝑦) =,	
"

𝑤"1 	𝐴"(𝑥, 𝑦)																																					(5) 

Finally, substituting activation maps for each class label in 
equation (5) into equation (4) we obtain the activation output 
by SoftMax for each class label 𝑙 as follows: 

																𝑆1 =,	
-,.

𝑀1(𝑥, 𝑦).																																																							(6) 

Hence, 𝑀1(𝑥, 𝑦) indicates the discriminative power of 
activation maps at the spatial grid (𝑥, 𝑦) that leads to the 
decision made the CNN to classify the input image into class 𝑙. 
To allow comparison to the input image, bilinear up-sampling 
is then applied to resize activation map to the size of input 
images accepted by each CNN model. 

In Fig.4 we demonstrate the image regions used by CNN 
models that lead to a successfully class prediction. It can be 
observed that in very few occasions the CNN algorithms are 
focusing on the frontal region of the chest where we search for 
signs/features of COVID-19 and other infections. Rather, they 
are using either regions outside the frontal view of chest area, 
see row (d) and (e) of Fig. 3, or texts and medical device pieces 
on the images to derive their decision, see 1st column in row (b) 
of Fig. 4. 

In the same vein, incorrect classification, too, may be caused 
by these artifacts, see Fig 5 where we show examples of mis-
classified images by CNNs and their corresponding CAMs to 
highlight the most discriminating regions lead to CNN 
decisions. For example, in 4th column of Fig. 5 is an X-ray image  
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 Bacteria Covid-19 Normal Viral 

(a) 

    

(b) 

    

(c) 

    

(d) 

    

(e) 

    

(f) 

    

(g) 

    

(h) 

    

(i) 

    

(j) 

    

(k) 

    
 
Fig. 4. Visualization of X-rays images classified correctly by CNNs. (a) 

Original X-ray, (b) AlexNet, (c) GoogleNet, (d)VGG16, (e) VGG19 (f) 
ResNet18, (g) ResNet50 (h) InceptionResNet (i) DenseNet (j) SqueezeNet and 
(k) CNN-X (ours). 
 
that has a letter R on it and used by almost all the architectures 
to drive their incorrect decision.  Therefore, we conclude that 
using X-ray images as it is, without preprocessing to segment 
the region of interest and remove some hidden noise, is not a 

 Bacteria Covid-19 Normal Viral 

(a) 

    

(b) 

    

(c) 

    

(d) 

    

(e) 

    

(f) 

    

(g) 

    

(h) 

    

(i) 

    

(j) 

    

(k) 

    
 

Fig. 5. Visualization of X-rays images classified incorrectly by CNNs. (a) 
Original X-ray, (b) AlexNet, (c) GoogleNet, (d)VGG16, (e) VGG19 (f) 
ResNet18, (g) ResNet50 (h) InceptionResNet (i) DenseNet (j) SqueezeNet and 
(k) CNN-X (ours). 
 
good practice and result in a biased and misleading 
classification prediction. In other words, one wants to have a 
CNN model that learn the symptoms of COVID-19 and its 
classification prediction is solely based on these features. 
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VIII. CONCLUSION AND FUTURE WORKS 
This paper presented a critical analysis for 12 off-the-shelf 

CNN architectures, proposed originally for natural image 
analysis, for the purpose of aiding radiologists to discriminate 
COVID-19 disease based on chest X-ray images. We also 
proposed a simple CNN architecture, with fewer parameters, 
that can outperform architectures such as Xception and Dense 
net when trained on a small dataset of images. Furthermore, 
beside quantitative analysis of CNNS, we qualitatively assessed 
CNN methods investigated in this paper using class activation 
mappings where we visualize the regions on X-ray images 
utilised by CNNs to derive their final prediction scores. We 
demonstrated that deep learning predictions of COVID-19 
disease are not reliable when clear artefacts such as texts and 
medical device traces are present on the input X-ray image. In 
the same vein, we demonstrated that CNNs will use 
regions/features in the input image which are outside the ROI 
and have no relation with COVID-19 pneumonia, see Fig 5 for 
more than one example of this case as evidence.  

Therefore, positive or negative class predictions by CNNs 
must be treated cautiously unless qualitatively inspected and 
approved by radiologists. Figures 4 and 5 contain multiple 
examples where texts, medical device traces and irrelevant X-
rays image regions of CODIVD-19 disease used by CNNs to 
build their prediction result. It is important to note that, one 
needs to design machine learning algorithms based on 
radiologist opinion and not fully depend on data-driven 
mechanisms.  

Future research directions, and in progress work, contain 
segmenting the lung region from chest X-rays and removing 
other artefact such as text and medical device traces on chest X-
rays. We have not encountered any study that segmented the 
lung region in X-ray images and then feed it to CNN models, 
while this is considered as one of the important areas that needs 
to be further researched. The reliability of lung segmentation 
approaches is another problem that needs to be addressed and 
further researched by machine learning community. We have 
also not encountered, to the best of our knowledge, any study 
incorporated clinical and cardiac features with deep learning 
models or used cardiac features alone to prognosticate COVID-
19 pneumonia. Data from other sources need to be incorporated 
to build CNN models that can be generalized and not biased 
towards a specific country, such as China or Italy, or a targeted 
population. 
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Appendix: 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) 

 
For Multi-Classes: 
 

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒	(𝐹1) =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  

Where  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

And  
𝑅𝑒𝑐𝑎𝑙𝑙 = 	

𝑆𝑢𝑚	𝑜𝑓	𝑎𝑙𝑙	𝑇𝑟𝑢𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝑇𝑃)
𝑆𝑢𝑚	𝑜𝑓	𝑎𝑙𝑙	𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑆𝑢𝑚	𝑜𝑓	𝑎𝑙𝑙	𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	(𝐹𝑁 

 
Confidence Interval of Classifier’s performance is equal to 
  

𝑒𝑟𝑟𝑜𝑟	 ± 	𝑐𝑜𝑛𝑠𝑡 ∗ 𝑠𝑞𝑟𝑡(
𝑒𝑟𝑟𝑜𝑟 ∗ (1 − 𝑒𝑟𝑟𝑜𝑟)

𝑛 ) 
Where 

𝑒𝑟𝑟𝑜𝑟 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 , 

 
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 1.96	(𝑓𝑜𝑟	%95	𝑐onfidence) 

 
𝑎𝑛𝑑	𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛	𝑢𝑠𝑒𝑑	𝑡𝑜	𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒	𝑡ℎ𝑒	𝑚𝑜𝑑𝑒𝑙. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.  F1-Score and Classifiers confidence interval. 
    Confidence 

Interval  
 Class F1-

Score Error Min C. Max C. 

A
le

xN
et

 Bacteria 79.93 

0.288 0.262 0.331 
Covid-19 93.79 
Normal 58.82 
Viral 59.54 

G
oo

gl
e-

N
et

 

Bacteria 87.25 

0.280 0.239 0.306 
Covid-19 86.82 
Normal 61.36 
Viral 58.02 

V
gg

16
 Bacteria 78.97 

0.293 0.256 0.325 
Covid-19 88.89 
Normal 53.50 
Viral 66.09 

V
gg

19
 Bacteria 79.36 

0.303 0.298 0.370 
Covid-19 87.41 
Normal 59.59 
Viral 57.54 

R
es

N
et

-
18

 

Bacteria 79.93 

0.250 0.221 0.287 
Covid-19 93.15 
Normal 73.74 
Viral 58.39 

R
es

N
et

-
50

 

Bacteria 82.50 

0.264 0.239 0.306 
Covid-19 97.18 
Normal 62.61 
Viral 61.54 

R
es

N
et

-
10

1 

Bacteria 79.73 

0.283 0.252 0.320 
Covid-19 93.71 
Normal 60.64 
Viral 59.51 

In
ce

pt
io

n 
V

3 

Bacteria 87.15 

0.202 0.176 0.237 
Covid-19 97.18 
Normal 73.88 
Viral 67.26 

In
ce

pt
io

nR
es

N
et

v
2  

Bacteria 85.84 

0.185 0.160 0.220 
Covid-19 96.55 
Normal 82.79 
Viral 68.33 

Sq
ue

ez
e 

N
et

 

Bacteria 76.16 

0.324 0.298 0.370 
Covid-19 95.77 
Normal 54.60 
Viral 50.50 

D
en

se
-

N
et

 2
01

 Bacteria 84.60 

0.251 0.236 0.303 
Covid-19 96.45 
Normal 69.75 
Viral 56.48 

X
ce

pt
io

n 

Bacteria 90.91 

0.165 0.138 0.194 
Covid-19 97.18 
Normal 78.99 
Viral 71.76 

C
N

N
- X

 
(O

ur
)  

Bacteria 75.12 

0.341 0.317 0.390 
Covid-19 95.04 
Normal 48.60 
Viral 52.92 

 


