Predicting inpatient flow at a major hospital using interpretable analytics
View ORCID ProfileDimitris Bertsimas, View ORCID ProfileJean Pauphilet, Jennifer Stevens, Manu Tandon
doi: https://doi.org/10.1101/2020.05.12.20098848
Dimitris Bertsimas
1Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA
Jean Pauphilet
2London Business School, London
Jennifer Stevens
3Beth Israel Deaconess Medical Center, Boston, MA
Manu Tandon
3Beth Israel Deaconess Medical Center, Boston, MA

Data Availability
Data is not available
Posted September 16, 2020.
Predicting inpatient flow at a major hospital using interpretable analytics
Dimitris Bertsimas, Jean Pauphilet, Jennifer Stevens, Manu Tandon
medRxiv 2020.05.12.20098848; doi: https://doi.org/10.1101/2020.05.12.20098848
Subject Area
Subject Areas
- Addiction Medicine (238)
- Allergy and Immunology (520)
- Anesthesia (124)
- Cardiovascular Medicine (1417)
- Dermatology (158)
- Emergency Medicine (291)
- Epidemiology (10280)
- Gastroenterology (527)
- Genetic and Genomic Medicine (2621)
- Geriatric Medicine (254)
- Health Economics (496)
- Health Informatics (1728)
- Health Policy (788)
- Hematology (266)
- HIV/AIDS (564)
- Medical Education (273)
- Medical Ethics (83)
- Nephrology (288)
- Neurology (2451)
- Nursing (144)
- Nutrition (377)
- Oncology (1318)
- Ophthalmology (400)
- Orthopedics (145)
- Otolaryngology (235)
- Pain Medicine (168)
- Palliative Medicine (51)
- Pathology (342)
- Pediatrics (776)
- Primary Care Research (296)
- Public and Global Health (4996)
- Radiology and Imaging (892)
- Respiratory Medicine (681)
- Rheumatology (309)
- Sports Medicine (244)
- Surgery (297)
- Toxicology (45)
- Transplantation (140)
- Urology (108)