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Abstract

We propose an SEIARD mathematical model to investigate the current
outbreak of coronavirus disease (COVID-19) in Mexico. Our model incor-
porates the asymptomatic infected individuals, who represent the majority
of the infected population (with symptoms or not) and could play an im-
portant role in spreading the virus without any knowledge. We calculate
the basic reproduction number (R0) via the next-generation matrix method
and estimate the per day infection, death and recovery rates. The local
stability of the disease free equilibrium is established in terms of R0. A
sensibility analysis is performed to determine the relative importance of the
model parameters to the disease transmission. We calibrate the parameters
of the SEIARD model to the reported number of infected cases and fatalities
for several states in Mexico by minimizing the sum of squared errors and
attempt to forecast the evolution of the outbreak until August 2020.

1 Introduction

At the beginning of December 2019, a new virus caused an increase in atypical
pneumonia at the city of Wuhan in China. The virus was isolated, sequenced and
identified as a new type of coronavirus [1]. The virus was called SARS-CoV-2 and
the disease associated with that virus was called COVID-19 [2]. On March 11,
2020 the World Health Organization (WHO) declared the outbreak of COVID-19
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as a global pandemic [3]. Most of the infected individuals will develop a mild
respiratory illness and they won’t need any special requirements; they will just
need to manage the symptoms. Symptoms associated to COVID-19 are fever,
cough and fatigue, few may develop other symptoms like headache and diarrhea
to name some.

The first case of COVID-19 confirmed in Mexico was until February 2020,
which was an imported case from Europe, by that time it was an epicenter of the
disease. Mexican authorities announced on March 14th the “Jornada Nacional de
Distanciamiento Social” that basically means quarantines for vulnerable groups.
Not only elderly individuals are considered a group of risk, individuals that have
comorbidities like diabetes, hypertension and obesity can develop more compli-
cated respiratory symptoms that can be fatal. Mexico declared phase 2 of the
coronavirus pandemic on March 23 with 367 confirmed cases. As of May 1st,
there were 20 739 confirmed cases and 1972 deaths. In [4], Cruz-Pacheco et al.
estimated the arrival of the infectious outbreak to Mexico between March 20 and
March 30, 2020. Other models for predicting the evolution of COVID-19 outbreak
in Mexico have been proposed in [5, 6].

Compartmental models like the one used in this paper have been used for study-
ing the spread of the COVID-19 pandemic in several countries, such as China [7,
8] and Italy [9, 10]. In this study, we use a compartmental mathematical model to
try to understand the outbreak of COVID-19 in Mexico and we evaluate the het-
erogeneity of COVID-19 throughout Mexican territory considering two important
regions: the Mexico Valley and the Yucatan Peninsula.

The rest of the paper is structured as follows. We formulate the mathematical
model, compute the basic reproduction number and perform a sensibility analysis
in Section 2. In Section 3, we calibrate our mathematical model using a sum of
squared errors approach using daily cumulative of infected and death individuals
published daily by the Ministry of Health in Mexico, we used the data until May
4th. In Section 4, we explore the simulations of the cases in Mexico and we
compare how different the outbreak is in the two regions. Lastly, we provide some
concluding remarks in Section 5.

2 Mathematical model with asymptomatic indi-

viduals

In this work, we will use a compartmental differential equation model for the spread
of COVID-19 in Mexico. The model monitors the dynamics of six subpopula-
tions, which are: susceptible (S(t)), exposed (E(t)), infected (I(t)), asymptomatic
(A(t)), recovered (R(t)) and dead (D(t)).
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Figure 1: Flow diagram of our mathematical model to evaluate the behavior of
the spread of nCoV-2019 in Mexico. S: susceptible, E: exposed, I: infected, A:
infected but without symptoms (asymptomatic), RI : recovered from symptomatic
infection, RA: recovered from asymptomatic infection, D: dead.

The model simulations will be carried out with the following assumptions:

(a) Individuals of 12 years old and higher are susceptible to the virus.

(b) The susceptible and infected individuals are homogeneous in the population.

(c) At first, no interventions were applied to stop the spread of COVID-19.

(d) The population is constant; no births are allowed, and we only take into
account the fatalities associated to COVID-19.

Figure 1 shows a diagram of the flow through the compartmental subpopula-
tions.

Susceptible population S(t): This subpopulation will remain constant be-
cause recruiting individuals is not allowed in our model. The susceptible popula-
tion will decrease after an infection, an acquired characteristic due to the interac-
tion with an infected person or asymptomatic one. The transmission coefficients
will be βI and βA. The rate of change of the susceptible population is expressed
in the following equation:

dS

dt
= −βS

(
I + A

N −D

)
. (1)

Exposed population E(t): This subpopulation consists of individuals that
are infected but cannot infect others. The population decreases at a rate w to
become infected or asymptomatic. Consequently,

dE

dt
= βS

(
I + A

N −D

)
− wE = βS

(
I + A

N −D

)
− pwE − (1− p)wE. (2)
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Infected population I(t): Infected (symptomatic) individuals are generated
at a proportion p (p ∈ (0, 1)) from the exposed class. They recover at a rate γ and
die at a rate δ. This is the only population that acknowledges death. Thus,

dI

dt
= pwE − (δ + γ)I. (3)

Asymptomatic population A(t): This population is considered an infected
population, but the individuals do not develop the common symptoms of COVID-
19. Asymptomatic individuals are important to model because they have the
ability to spread the virus without knowing; they are produced at a rate 1− p and
recover at a rate γ. Consequently,

dA

dt
= (1− p)wE − γA. (4)

Recovered populations RI(t) and RA(t): All individuals infected with
symptoms or not will recover at a rate γ. We subdivide the recovered popula-
tion in two compartments: individuals who recover after having symptoms (RI)
and individuals who recover from asymptomatic infection (RA). Hence

dRI

dt
= γI,

dRA

dt
= γA. (5)

Dead population D(t): Infected individuals with symptoms die at a rate δ,
that is,

dD

dt
= δI. (6)

Hence, the system of differential equations that will model the dynamics of
coronavirus spread in Mexico is:

dS

dt
= −βS

(
I + A

N −D

)
,

dE

dt
= βS

(
I + A

N −D

)
− wE,

dI

dt
= pwE − (δ + γ)I,

dA

dt
= (1− p)wE − γA,

dRI

dt
= γI,

dRA

dt
= γA,

dD

dt
= δI.

(7)
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We also observe that N := S + E + I + A + RI + RA + D is constant, where
N is the size of the population modeled.

2.1 Basic reproduction number with a disease-free equilib-
rium

There exists a disease-free equilibrium, which is given by S = N , E = I = A =
RI = RA = D = 0, and we will denote it by x0. We calculate the basic reproduction
number R0 based on this steady state. By applying the next-generation matrix
method to find R0, we must solve the equation R0 = ρ(FV −1), where F and V
are the derivatives of the new infections matrix F and the transition matrix V ,
respectively, evaluated at the disease-free equilibrium, and ρ denotes the spectral
radius. Then

F =

βS
(
I + A

N −D

)
0
0


The derivative of F at x0 is:

F =

0 β β
0 0 0
0 0 0

 .
The transition matrix is

V =

 wE
−pwE + (δ + γ)I
−(1− p)wE + γA

 .
The derivative of V at x0 is

V =

 w 0 0
−pw δ + γ 0

−(1− p)w 0 γ

 .
The inverse of V is

V −1 =


1

w
0 0

p

δ + γ

1

δ + γ
0

1− p
γ

0
1

γ

 .
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Then

FV −1 =


βp

δ + γ
+
β(1− p)

γ

β

δ + γ

β

γ
0 0 0
0 0 0

 .
We need to find the eigenvalues of FV −1, which are λ1 = βp

δ+γ
+ β(1−p)

γ
, λ2 = 0

and λ3 = 0. Then, the basic reproduction number is given by the dominant
eigenvalue, that is,

R0 =
βp

δ + γ
+
β(1− p)

γ
. (8)

The basic reproduction number formulated above has two components that have
a biological interpretation. The first half of (8) is associated with symptomatic
individuals: during the time of recovery 1/γ they can infect individuals at a rate
β, only these infected individuals die at a rate 1/δ. Thus, the first term of (8) can
be re-written as:

FS = β

(
S0

δ + γ

)
. (9)

The same derivation is for the second half of (8), only this represents the asymp-
tomatic individuals. Hence,

FA = β

(
S0

γ

)
. (10)

The functionality of the basic reproduction number is associated with the force of
infection of both symptomatic and asymptomatic individuals. Thus, (8) can be
expressed by the following equation:

R0 = FS(p) + FA(1− p). (11)

The stability of our disease-free equilibrium can be explained by the following
theorem, mentioned in [11]: the disease-free equilibrium NC = (N, 0, 0, 0, 0, 0, 0)
of our system of differential equations is locally asymptomatically stable if R0 < 1
and unstable if R0 > 1.

We calculate the Jacobian Matrix of our system of differential equations at the
disease-free equilibrium, which is given by

JNC =



0 0 −β −β 0 0 0
0 −w β β 0 0 0
0 pw −(δ + γ) 0 0 0 0
0 (1− p)w 0 −γ 0 0 0
0 0 γ 0 0 0 0
0 0 0 γ 0 0 0
0 0 δ 0 0 0 0


.
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Let λ be the eigenvalue of the matrix JNC . Then the characteristic equation is
given by det(JNC − λI) = 0, that is,

βδwλ4 + βγwλ4 − δγwλ4 − γ2wλ4 − βδpwλ4 − δγλ5 − γ2λ5 + βwλ5 − δwλ5

− 2γwλ5 − δλ6 − 2γλ6 − wλ6 − λ7 = 0.
(12)

To solve (12), we can factorize with λ4. Thus, (12) can be re-written as

− λ4
[
− βδw − βγw + δγw + γ2w + βδpw + (δγ + γ2 − βw + δw + 2γw)λ

+ (δ + 2γ + w)λ2 + λ3
]

= 0.

To determine the stability of the disease-free equilibrium, we must solve the cubic
equation

λ3 + a1λ
2 + a2λ+ a3 = 0, (13)

where the coefficients are

a1 = δ+2γ+w, a2 = δγ+γ2+δw+2γw−βw, a3 = δγw+γ2w+βδpw−βδw−βγw.

The Routh–Hurwitz criterion tells us that a necessary and sufficient condition for
all roots of (13) to have negative real part is that a3 > 0 and a1a2 − a3 > 0. In
order to check these conditions, we rewrite a3 in terms of the basic reproduction
number as a3 = γw(δ + γ)(1 − R0). From this, it is clear that a3 is positive
whenever R0 < 1. Therefore, we can conclude the following result:

Theorem 1. The disease-free equilibrium of model (7) is stable if and only if

R0 < 1 and

(δ+ 2γ +w)(δγ + γ2 + δw+ 2γw− βw)− (δγw+ γ2w+ βδpw− βδw− βγw) > 0.

2.2 Sensitivity analysis of the basic reproduction number

Using the formula (8) for the basic reproduction number, we can perform a sen-
sitivity analysis for R0 to determine how important each parameter is for disease
transmission. Sensitivity indices allow us to measure the relative change in a vari-
able, in this case R0, when a parameter varies. This can be used to determine the
robustness of model predictions to parameter values, and to discover parameters
that have a very high impact on R0 [12]. Hence, we use the following definition.

Definition 1. If R0 is differentiable with respect to a given parameter θ, the
normalized forward sensitivity index of R0 is defined by

ΓR0
θ =

θ

R0

· ∂R0

∂θ
.
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We will calculate the sensitivity index for R0 with respect to the parameters
β, p, δ and γ as follows (notice that R0 does not depend on w, so ΓR0

w = 0).

ΓR0
β =

β

R0

(
p

δ + γ
+

1− p
γ

)
= 1,

ΓR0
p =

p

R0

(
β

δ + γ
− β

γ

)
=

p

R0

· βγ − β(δ + γ)

(δ + γ)γ
= − βδp

(δ + γ)γR0

,

ΓR0
δ =

δ

R0

· −βp
(δ + γ)2

= − βδp

(δ + γ)2R0

,

ΓR0
γ =

γ

R0

[
−βp

(δ + γ)2
+
−β(1− p)

γ2

]
= − β

R0

[
γp

(δ + γ)2
+

1− p
γ

]
.

From this, we can see that ΓR0
β > 0, while ΓR0

p ,ΓR0
δ ,ΓR0

γ < 0, which means that
an increment in the contact rate β will cause R0 to increase, while an increment
in the symptomatic case proportion p, the death rate δ or the recovery rate γ will
cause R0 to decrease.

Also, we can see that∣∣ΓR0
δ

∣∣ =
βδp

(δ + γ)2R0

<
βδp

(δ + γ)γR0

=
∣∣ΓR0

p

∣∣ ,
which implies that a perturbation in the parameter p produces a relatively larger
change in R0 than a perturbation in δ.

Since ΓR0
β = 1, we can see that increasing the contact rate β by a given per-

centage always increases R0 by that same percentage. Moreover, 1
δ+γ

> γ
(δ+γ)2

,
so ∣∣ΓR0

β

∣∣ =
β

R0

(
p

δ + γ
+

1− p
γ

)
>

β

R0

[
γp

(δ + γ)2
+

1− p
γ

]
=
∣∣ΓR0

γ

∣∣ .
Hence, the parameters with the largest normalized forward sensitivity index are β
and p.

3 Implementation to estimate the parameters

To describe the evolution of the epidemic in Mexico taking into account the social
distancing measures taken by the government, we will assume that the infection
rate, recovery rate and death rate are time-dependent functions, similar to those
used in [10].

To model the effect of epidemic control measures, which cause the number
of contacts per person per unit time to decrease as the epidemic progresses, we
describe the infection rate by the function

β(t) = β0 exp

(
− t

τβ

)
+ β1,
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where β0 + β1 is the initial infection rate. This rate decreases exponentially to the
value β1 with a characteristic time of decrease τβ.

The time of recovery for patients may also vary with time due to the medical
staff improving their therapeutic procedures. Hence, we will assume that the
recovery rate is modeled by the function

γ(t) = γ0 +
γ1

1 + exp(−t+ τγ)
,

where γ0 is the recovery rate at time zero, and γ0 + γ1 is the recovery rate at a
later time, which is reached after τγ days of adaptation.

Lastly, the death rate may decrease with time due to the adaptation of the
pathogen or the development of more advanced treatments. Hence, we can model
this with the function

δ(t) = δ0 exp

(
− t

τδ

)
+ δ1,

where δ0 + δ1 is the initial death rate, which decreases to the value δ1 with a
characteristic time τδ.

If we replace the constant parameters β, δ and γ in equation (8) with the
aforementioned time-dependent functions, we can define

Rd(t) = FS(t)(p) + FA(t)(1− p). (14)

As we derived before, FS and FA are represented by β, δ and γ. Rd(t) is the
effective daily reproduction ratio, which measures the number of new infections
produced by a single infected individual per day, taking into account the evolving
public health interventions and available resources [13].

The set of differential equations was solved using Matlab 2016b with the ode45
solver, which is based on an explicit Runge-Kutta (4,5) formula. Our model was
calibrated using the cases of COVID-19 in Mexico. The data were collected in the
period since the first day after Mexico declared phase 2 of the pandemic (March
12th) until May 4th from the open source repository of the Ministry of Health in
Mexico [14].

The optimization of parameters to describe the outbreak of COVID-19 in Mex-
ico was fitted by minimizing the Sum of Squared Errors (SSE), in such a way that
the solutions for D(t) obtained by the model approximate the reported cumulative
number of fatalities, while the sum I(t) +RI(t) +D(t) approximates the reported
cumulative number of infected cases with symptoms. Since the Mexican govern-
ment does not keep a record of the number of asymptomatic cases, we assume
that the asymptomatic infected population is about nine times larger than the
population with symptoms, based on government estimations.

Since we do not have a reliable report of the number of recoveries by state in
Mexico, we choose not to fit the values of the recovery-related parameters (γ0, γ1
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and τγ) and optimize only the values of the other parameters (β0, β1, τβ, δ0, δ1, τδ,
w and p). For parameters γ0, γ1 and τγ we use the same fixed values for all states,
which were obtained previously in a best fit optimization using the recovered data
for all Mexico [15].

We applied three searches to minimize the SSE function: a gradient-based
method, a gradient-free algorithm, and finally, a gradient-based method. This
method was necessary to obtain the global minimum. We adapted the code from
Caccavo [10] for our mathematical model. The code and the data will be available
in the following github: https://github.com/UgoAvila/COVID-19.Mexico.

4 Evolution of the outbreak of COVID-19

4.1 Evolution of the outbreak of COVID-19 in mainland
Mexico

The predicted evolution of the outbreak for COVID-19 in Mexico can be seen
in Figure 2. The parameters of the mathematical model were fitted with the
experimental data provided by a daily update from the Mexican Ministry of Health.
By adjusting the data from the period from March 12, 2020 to April 28, 2020, we
simulated the daily new COVID-19 cases in Mexico until August 2020. The peak of
the infection modeled will be in the middle of May, with 13 000 infected individuals
with the known developed symptoms and roughly 130 000 infected individuals that
will not develop any kind of symptoms. The values of the best fit parameters are
given in Table 1. Figure 3 shows the variation of the infection rate β(t), recovery
rate γ(t) and death rate δ(t) with respect to time. The infection rate decreases
at a good pace with respect to time, taking roughly 90 days from March 12 to a
near infection rate per day of 0, which means that from that day they will be no
more new infected individuals. The recovery rate in Mexico at twenty days past
March 12 is increasing, and past the 20th day the recovery rate becomes constant
with respect to time. This type of behavior may be explained by the fact that, at
first, there were only mild cases in Mexico. Then, by March 30 there were much
more severe cases, which are associated with a death rate that remains roughly
constant at a rate of 0.015 per day. Using these values for the parameters, we can
calculate the effective daily reproduction ratio Rd(t) for each day (see Figure 4)
As we can see in Figure 4, during March Rd(t) decreases exponentially from 16 to
4, roughly, and it decreases from 4 to 2 during the month of April. The decrease
from the first period is very helpful and Mexico will be entering a declared phase
two of the pandemic with a relatively low reproduction number. We believe this
decay may have occurred because the Ministry of Health applied the “Jornada de
Distanciamiento Social” before Mexico declared to be in phase two. Our simulation
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Figure 2: Graphs for the spread of COVID-19 in Mexico. The solid red line
represents infected individuals, the solid blue line represents infected individuals
but without any type of symptoms, finally, the solid black line represents the
fatalities by the disease.

shows that Rd(t) will become less than 1 around the second week of May 2020.
In Figures 5–8, we carried out the simulation with the best fit parameters. We
show a comparison of the cumulative number of infections (Figure 5) and deaths
(Figure 6) with the reported data. We also plot the number of active symptomatic
infections and asymptomatic infections in Figures 7 and 8.

4.2 Heterogeneity of the outbreak of COVID-19 in two
regions in Mexico

We evaluated the heterogeneity of the spread of COVID-19 in Mexico. We applied
our SEIARD model for two important regions in Mexico: the Mexico Valley (Mex-
ico City, State of Mexico and Morelos) and the Yucatan Peninsula (Campeche,
Quintana Roo and Yucatan).

4.2.1 Mexico Valley

First, we modeled the evolution of the outbreak of COVID-19 in the Valley of
Mexico, which is shown in Figure 8. We adjusted the data provided by the Mexican
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Table 1: Model parameters obtained from the best fit optimization for Mexico.

Parameter Best fit value for Mexico Unit

β0 0.6052 1/day
β1 0.01 1/day
τβ 30 day
γ0 0.0000 1/day
γ1 0.0829 1/day
τγ 11.2885 day
δ0 0.0114 1/day
δ1 0.0088 1/day
τδ 76.1043 day
w 0.2535 1/day
p 0.1 –

Figure 3: Best fit values of the infection, recovery and death rates as functions of
time.
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Figure 4: Variation of the effective daily reproduction number through time. The
solid orange line represents the value of the reproduction number and the blue
dotted line represents the value one.

Figure 5: Cumulative number of symptomatic infected individuals (I(t) +RI(t) +
D(t)) predicted by the model and reported cases.
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Figure 6: Death toll (D(t)) predicted by the model and reported number of fatal-
ities.

Figure 7: Number of infected cases (I(t)) predicted by the model.
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Figure 8: Number of infected cases (I(t)) and asymptomatic cases (A(t)) predicted
by the model.

Ministry of Health from March 12 to April 27 and simulated the daily cumulative
cases for each state until August 2020. The outbreak in the Mexico Valley will
be slightly different from the national perspective, and each state will behave
differently.

Mexico City and State of Mexico (Figures 9A and 9B, respectively) have similar
behavior, but in Morelos (Figure 9C) the peak of the infection moves to the right.
The difference in the peak may be due to the separation of the capital of Morelos
from Mexico City (86.6 km). Also, the connection between these states was cut off
due to the confinement declared by the Ministry, which may be a reason for the
difference between the outbreak of the infection in these states. Figure 10 shows
the variation of the infection, recovery and death rates for the Mexico Valley.
The rates between these states are different: Mexico City (the capital of Mexico,
which has one of the two more important airports of the country) has a higher
infection rate in the initial days of the simulation of our model by being close to 1.
The death rate in Mexico City decreases considerably throughout the simulation,
which means that this state may have less fatalities than other states in Mexico
in the advanced stages of the outbreak. At the beginning, Morelos had a higher
infection rate than Mexico City, but it decays later at roughly the same rate as
Mexico City. At first the recovery rate in Morelos was very low and the death
rate was high, this means that Morelos was impacted at first with severe cases.
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Once times passes, the recovery rate increases due to more milder cases and the
death rate decreases as well. The daily reproduction number (Figure 11) in Mexico
City decreases at roughly the same rate as in Morelos and State of Mexico. We
believe that Mexico City should be treated differently to the other states in the
Mexico Valley since this city has a much higher influence of transients daily. This
is due to citizens from the surrounding areas coming to this city to work, creating
a larger population that comprises not only native citizens, but citizens from State
of Mexico and Morelos as well. In Figures 12–15, we carried out the simulation
with the best fit parameters. We show a comparison of the cumulative number of
infections: as we can see, Mexico City (Figure 12A) will have the greatest number
of infections within the pandemic of COVID-19, the state of Mexico (Figure 12B)
will be the second state with most infections.

Mexico City will have most of the fatalities caused by the virus, followed by
the State of Mexico, which has the cities with higher population than the rest
of the states (Figure 13) with the reported data. We also plot the number of
active symptomatic infections and asymptomatic infections in Figures 14 and 15.
Asymptomatic individuals are of great importance as they present a much higher
number with respect to symptomatic individuals, by activating the “Jornada de
Distanciamiento Social”, the number of symptomatic infections has been reduced
and the curve of this individuals has been flattened as well.

4.2.2 Yucatan Peninsula

Now, we evaluate the outbreak in the Yucatan Peninsula. We reviewed Campeche,
Yucatan and Quintana Roo; the outbreaks are depicted in Figure 16. The peak
of the infection in Campeche (Figure 16A) and Quintana Roo (Figure 16B) will
be around the last week of May. For the state of Yucatan (Figure 16C), it will be
during the month of June, the outbreak of COVID-19 is still starting as we will
see in the next figures.

Yucatan has the highest infection rate of the Peninsula with a value equal to
one at the beginning of the simulation (Figure 17C). Campeche (Figure 17A) starts
with an infection rate of 0.45, while Quintana Roo (Figure 17B) starts with an
infection rate of 0.5; the decay occurs at similar rates for these two states. The
recovery rate for the Yucatan Peninsula behaves the same between the states. In
the first days of the infection, there will be more severe cases and then a mixture
of severe and mild cases. By day twenty, the recovery rate for the three states will
remain constant. At the beginning of the simulation, Yucatan (Figure 17C) has a
higher death rate compared to the other states, but later it decays rapidly to less
than 0.01. The death rates for Campeche (Figure 17A) and Quintana Roo (Figure
17B) remain constant through most of the simulation with values slightly higher
than 0.02.
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Figure 9: Graphs for the spread of COVID-19 in the Valley of Mexico. Solid red
lines represent infected individuals, solid blue lines represent infected individuals
but without any type of symptoms, finally, solid black lines represent the fatali-
ties by the disease. A represents the outbreak for Mexico City, B represents the
outbreak for the state of Mexico and C for Morelos.
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Figure 10: Best fit parameters of the infection, death and recovery rates as func-
tions of time for the Valley of Mexico. Solid orange line is the death rate, dotted
orange line the recovery rate and the solid blue line the infection rate. A depicts
the rate for Mexico City, B for the State of Mexico and C for Morelos.
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Figure 11: Variation of the effective daily reproduction number through time for
the Mexico Valley. The solid orange line represents the value of the reproduction
number and the blue dotted line represents the value one. A represents the value
for Mexico City, B for the State of Mexico and C for Morelos.
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Figure 12: Cumulative number of symptomatic infected individuals C(t) = I(t) +
RI(t) +D(t) predicted by the model and reported cases for the Mexico Valley. A
represents Mexico City, B the State of Mexico and C Morelos.
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Figure 13: Death toll (D(t)) predicted by the model and the reported number of
fatalities for the Mexico Valley. A represents the fatalities for Mexico City, B for
the State of Mexico and C for Morelos.
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Figure 14: Number of infected cases (I(t)) predicted by the model of the Mexico
Valley. A represents Mexico City, B State of Mexico and C Morelos.

Regarding the daily reproduction number, Campeche and Quintana Roo (Fig-
ures 18A and 18B, respectively) will have the same behavior: by early April, both
will have a value for Rd(t) of 4 and they will enter phase two with a value smaller
than 3. During the month of May, the reproduction number will become smaller
than one. Yucatan has the same behavior, but the reproduction number will be
smaller than one by early June, this state should evaluate how well they are stay-
ing at their houses to try to diminish Rd(t) at the same velocity than the rest of
the states of the Yucatan Peninsula. We thought Quintana Roo (Figure 19B) was
going to have a higher number of infected individuals, but Yucatan will have much
more than the other states (Figure 19C). Campeche will have slightly more than
800 infected individuals. The death toll will be higher in Quintana Roo (Figure
20B) and then Yucatan (Figure 20C). Alarmingly, in Campeche roughly 20 percent
of the infected will die by complications product of COVID-19. This behavior is
of great importance, but we cannot know in detail why this is happening in this
state. Finally, we can see in Figure 22 the simulation of the symptomatic and
asymptomatic cases, which shows that the Yucatan peninsula is indeed flattening
the curve.
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Figure 15: Number of infected cases (I(t)) and asymptomatic cases (A(t)) pre-
dicted by our model for the Mexico Valley. A represents Mexico City, B State of
Mexico and C Morelos.
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Figure 16: Graphs for the spread of COVID-19 in the Yucatan Peninsula. Solid red
lines represent infected individuals, solid blue lines represent infected individuals
but without any type of symptoms, finally, solid black lines represent the fatalities
by the disease. A represents the outbreak for Campeche, B represents the outbreak
for Quintana Roo and C for Yucatan.
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Figure 17: Best fit parameters of the infection, death and recovery rates as func-
tions of time for the Yucatan Peninsula. Solid orange line is the death rate, dotted
orange line the recovery rate and the solid blue line the infection rate. A depicts
the rate for Campeche, B for Quintana Roo and C for Yucatan.
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Figure 18: Variation of the effective daily reproduction number throughout time
for the Yucatan Peninsula. The solid orange line represents the value of the repro-
duction number and the blue dotted line represents the value one. A represents
the value for Campeche, B for Quintana Roo and C for Yucatan.
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Figure 19: Cumulative number of symptomatic infected individuals C(t) = I(t) +
RI(t)+D(t) predicted by the model and reported cases for the Yucatan Peninsula.
A represents Campeche, B Quintana Roo and C Yucatan.
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Figure 20: Death toll (D(t)) predicted by the model and the reported number of
fatalities for the Yucatan Peninsula. A represents the fatalities for Campeche, B
for Quintana Roo and C for Yucatan.

Figure 21: Number of infected cases (I(t)) predicted by the model of the Yucatan
Peninsula. A represents Campeche, B Quintana Roo and C Yucatan.
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Figure 22: Number of infected cases (I(t)) and asymptomatic cases (A(t)) pre-
dicted by our model for the Yucatan Peninsula. A represents Campeche, B Quin-
tana Roo and C Yucatan.

5 Discussion

During the outbreak of a pandemic where the transmission is from infected indi-
viduals to healthy individuals, the use of mathematical models as a forecast is of
great importance. By this approach, authorities can plan a health care program
and control the spread even with limited resources. In this work, we formulated
and analyzed a compartmental mathematic epidemic model to simulate the out-
break of the virus in mainland Mexico and important regions of said country.

Our mathematical model was a data driven analysis, using data publicly avail-
able from our Ministry of Health, which are updated daily. Our model incorporates
two compartments that are of the utmost importance: exposed and asymptomatic.
By incorporating the exposed subpopulation, we are modeling the latency period,
and the asymptomatic subpopulation incorporates the individuals that do not
present any type of symptoms but have the ability to spread the virus and infect
more individuals. Both tools are important to understand the size and time of the
outbreak.

The results of our numerical solutions would let us compare how different the
outbreak will be in the two studied regions. For overall Mexico, we used the
cumulative infections for all 32 states. The Valley of Mexico will be the region
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with most infected individuals and deaths, because this region concentrates 22%
of the Mexican population. Nevertheless, there is still heterogeneity in the Valley
of Mexico: Mexico City and the State of Mexico present a similar behavior, but
in Mexico City they will be more infected individuals with or without symptoms.
Even though control measures like social distancing were applied and the curve of
infected individuals is flattened, there will be a high number of infected individuals
with symptoms. This being said, Mexico should focus their effort in applying
hospital interconnection and have the sufficient resources to help all individuals
that will develop more severe respiratory symptoms.

The Yucatan Peninsula has the same behavior on how the number of infections
is extended throughout time (the curve is flattened), but the number of infected
individuals is different. We recommend that Mexico should focus their actions
in supplying medical stock to Quintana Roo, because this region will have more
infected individuals, as well as Yucatan. Campeche, on the other hand, has an
alarming behavior, this state will have less infected individuals from the Yucatan
Peninsula, but they will have a very high death rate compared with their number
of infected individuals. Mexico should be concerned about why in this state the
number of fatalities is high compared to their size of population.

We believe Mexican authorities applied the control measures like social distanc-
ing and quarantine at the right time, and the number of infections in the regions
is the expected based on their population size. It is very important to mention
that even though Mexico succeeded in flattening the curve, they have still not
reached the peak of infection, so control measures should be applied still at this
time, because the number of infection will be higher in the coming days compared
to past weeks.
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