
  
 

 

  
Abstract— Recent studies indicated that detecting radiographic 

patterns on CT chest scans can yield high sensitivity and specificity 
for COVID-19 detection. In this work, we scrutinize the 
effectiveness of deep learning models for semantic segmentation of 
pneumonia infected area segmentation in CT images for the 
detection of COVID-19. We explore the efficacy of U-Nets and 
Fully Convolutional Neural Networks in this task using real-world 
CT data from COVID-19 patients. The results indicate that Fully 
Convolutional Neural Networks are capable of accurate 
segmentation despite the class imbalance on the dataset and the 
man-made annotation errors on the boundaries of symptom 
manifestation areas, and can be a promising method for further 
analysis of COVID-19 induced pneumonia symptoms in CT 
images. 
 

Index Terms—COVID-19, deep learning, semantic 
segmentation, CT images, pandemic. 
 

Impact Statement— Fully Convolutional Neural Networks 
appear to be an accurate segmentation method in CT scans for 
COVID-19 pneumonia and could assist in the detection as a fast 
and cost-effective option. 

I.   INTRODUCTION 
 HE novel coronavirus 2019-nCoV first transmitted to 
humans in December 2019, resulting in a pandemic 

outbreak the following months. The disease, known as COVID-
19 [1] caused or is expected to cause significant short-term and 
long-term societal and economic impacts [2], resulting in more 
than 260,000 deaths up to 7th of May 2020 [3]. 

A further insight on the findings so far indicate that COVID-
19 affects multiple organs in the human body, including heart 
and blood vessels, kidneys, gut, and brain. The virus enters the 
cells by binding to surface receptors angiotensin-converting 
enzyme 2 or ACE2. This receptor can be found on alveoli, i.e. 
tiny air sacs in human lungs. Thus, lungs become the ground 
zero for the virus affection [4]. 

In this context, CT scanning could be a promising and 
efficient alternative or auxiliary tool for the detection and 
control of COVID-19 disease, compared to other types of tests. 
For example, a test based on reverse transcription polymerase 
chain reaction (RTPCR), takes 4 to 6 hours, assuming that the 
required resources are available.  
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CT scan analysis can be interpreted as an image analysis 
problem, which can be addressed as: a) classification, b) object 
detection, and c) semantic segmentation problem. The first 
approach, i.e. CT scan classification provides a binary outcome 
of the form 0 or 1, which indicates if the patient has COVID-
19. The second approach, in case of a positive detection, 
provides bounding boxes, indicated the symptomatic areas. The 
third case involves the pixel level detection of the symptomatic 
areas, in each of the CT scan slices. In this paper, we propose a 
deep learning semantic segmentation approach for the 
annotation of symptomatic lung areas, for COVID-19 patients. 

 

A.   Related Work 
CT abnormalities related to COVID-19 patients, are a 

common case and are reported and used by the doctors in 
multiple studies [5]–[7]. There are two important outcomes 
from these studies: a) there are clear patterns indicating viral 
infections, even at early stages [6], [7], and b) CT abnormalities 
diagnostic of viral pneumonia can be available before a positive 
laboratory test in almost 70% of the cases [5]. Hence, CT 
investigation appears a promising candidate for an early 
detection of COVID-19 infections.  

Research outcomes on COVID-19 confirmed cases, indicated 
that CT abnormalities, before the appearance of clinical 
symptoms, may occur [8]. Asymptomatic patients typically 
have abnormal chest CT, which are consistent with viral 
pneumonia.  On the one hand, typical patterns may refer to 
unilateral, multifocal and peripherally based ground glass 
opacities [GGO]. On the other hand, interlobular septal 
thickening, thickening of the adjacent pleura, nodules, round 
cystic changes, bronchiectasis, pleural effusion, and 
lymphadenopathy were rarely observed in the asymptomatic 
group, but appear in symptomatic cases.  

The adaptation of any visual detection approach should 
emphasize on the identification of predominant patterns of lung 
abnormalities like GGOs, crazy-paving pattern, consolidation, 
and linear opacities. Yet, the appearance rates and the density 
varied greatly depending on the stage of the disease, expecting 
a maximum manifestation after 9 days from the onset of the 
initial symptoms [6]. 
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Deep learning approaches over various types of images 
consist a common approach for identification, detection or 
segmentation in medical imaging [9]. In this context, several 
approaches have already started being investigated by 
researchers to assist medical professionals in COVID-19 
detection. 

A first approach was the classification of multiple CT slices 
using a convolutional neural network variation [10]. The 
adopted methodology is capable to identify a viral infection 
with an ROCAUC score of 0.95 (score of 1 indicates a perfect 
classifier). However, despite the high detection rates, authors 
indicate that is extremely difficult to distinguish between 
different types of viral pneumonia based solely on CT analysis. 

CNN variations for the distinction of Coronavirus vs Non-
coronavirus cases has been proposed by [11]. The specific 
approach allows for the distinction between COVID-19, other 
types of viral infections and non-infection cases. Results 
indicate that there are adequate detection rates and a higher 
detection rate than RT-PCR testing. 

A multistage approach involving segmentation and the 
classification between COVID-19 and other viral infection has 
been proposed in the work of [12], allowing for advanced 
disease progression monitoring. At first, a segmentation 
approach, i.e. U-net, focus on the lungs regions, by removing 
image portions that are not relevant for the detection. Then, a 
pretrained Resnet-50 network is modified to handle the 
classification problem: COVID-19 or other cases. 

Volumetric Medical Image segmentation networks, known as 
V-nets [13], were also utilized. The work of [14], used a V-net 
to segment all the slices of a given MRI, at once. Quantitative 
evaluation results indicate that automatic infection region 
delineation can be feasible and effective. 

An object detection approach, i.e. denoting the areas of 
interest using bounding boxes was, also, considered [15]. The 
detection of symptomatic lung areas has been achieved by 
employing a VGG architecture [16] variation. Proposed 
approach can classify COVID-19 cases from community 
acquired pneumonia (CAP) and non-pneumonia (NP). 

scans 

B.   Our contribution 
In this paper, we propose a deep learning framework for the 

identification of areas with COVID-19 symptoms in CT scans. 
Compared to other approaches, we adopt a light U-net model 
from scratch, which can be trained and operate on ordinary PC 
without GPU utilization, requires a limited annotated dataset for 
training and validations, and can handle the class imbalance 
problem. 

II.   MATERIALS AND METHODS 
Identification of COVID-19 symptoms on CT images could 

be seen as a binary classification approach; the negative class 
consists of regions without COVID-19 induced symptoms, e.g. 
swelling, lesions and other types, described in section I.A., and 
the positive class includes areas depicting symptoms 
manifestation related to COVID-19.  

Such semantic segmentation tasks can be implemented in a 
two-step process: (i) feature extraction over an image patch and 
(ii) a training process, using annotated datasets. In such a 
scenario, each pixel is described by feature values, extracted 
locally, over a, typically, small area, denoted as “patch”. Deep 
learning approaches do both steps for a given set of data. The 
main question, thus, involves the type of deep learning 
approach: traditional CNNs over image patches [9] or FCNs 
over the entire image. 

In the former case, a classifier is fed with these feature values 
and produces an outcome, which classifies the pixel at the 
center as positive or negative detection. As such, for any CT 
slice (image) of size 630	  ×	  630 pixels, and given a patch size 
of 11×11 pixels, we should annotate 630 − 5 − 5 × 630 −
5 − 5 = 384,400 overlapping image patches. Deep learning 
feature extraction has been the common case approach; 
experimental results indicate the benefits over traditional, hand-
made, feature extraction processes. In such case, a CNN 
classifier could annotate the image within a few seconds time 
frame [17]. The advantages of such a technique are the high 
accuracy rate and the flexibility in handling unbalanced data 
sets. 

The latter case involves the utilization of the entire image and 
the annotation in one pass. Towards that direction, the fully 
convolutional neural networks techniques were considered and 
implemented. The main advantages of such processes are 
described in the next section. 

A.   Employed deep learning techniques 
There are various levels of granularity in image 

understanding, starting from a coarse-grained down to a more 
fine-grained comprehension. The first step is the classification. 
In this case, we just indicate if an image depicts a COVID 
infection or not. The second step includes localization, where 
along with the discrete label, i.e. COVID-19 or not, we also 
expect a bounding box, indicating the area of interest. That way, 
the model assists the experts by narrowing the time they have 
to spend on scans.  

However, for many applications, bounding boxes do not 
suffice, e.g. precise tumor detection. In such cases, we need the 
information on a pixel-level basis, i.e. highly detailed results. 
This is the goal of semantic image segmentation algorithms. In 
this case, we try to label each pixel of an image with a 
corresponding class of what is being represented. Semantic 
segmentation comes with specific limitations in the form of 
time constraints, limited hardware access, and low false-
negative detection thresholds.  

In this study, we handle the semantic segmentation problem 
for COVID-19 infection-induced symptoms in the lung areas, 
given as inputs CT scans. Fig. 1 demonstrates the proposed 
approach outcomes compared to other segmentation 
approaches or experts’ annotated images. 

 
1)   Fully convolutional neural networks 

Fully Convolutional Networks (FCNs), as the name suggests, 
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are built using locally connected layers, such as convolution, 
pooling and upsampling [18]. Note that no dense layer is used 
in this kind of architecture. This reduces the number of 
parameters and computation time [19], [20]. Their topology 
contains 2 parts: (i) downsampling path, which is responsible 
for capturing semantic/contextual information and (ii) 
upsampling path, responsible for recovering spatial 
information. Any disadvantages related to information loss, due 
to pooling or downsampling layers, can be mitigated using an 
operation called skip connection, which bypasses at least one 
layer.  

 
2)   U-nets 

U-net is another variation based on the CNNs, designed and 
applied in 2015 to process biomedical images [21], [22]. As a 

general convolutional neural network focuses its task on image 
classification, where input is an image and output is one label, 
but in biomedical cases, it requires us not only to distinguish 
whether there is a disease, but also to localize the area of 
abnormality. 

The U-Net is built upon the Fully Convolutional Network and 
modified in a way that it yields better segmentation in medical 
imaging. To that extent, the architecture contains two paths. 
The first path is the contraction path (also known as the 
encoder) which is used to capture the context in the image. The 
encoder is just a traditional stack of convolutional and max-
pooling layers. The second path is the symmetric expanding 
path (also known as the decoder) which is used to enable precise 
localization using transposed convolutions. Contracting and 

(a) 

    

(b) 

    

(c) 

    

(d) 

    
 Input CT image Ground truth FCN-8s output U-Net output 

Fig. 1 Semantic segmentation results comparison among deep learning models’ outputs and experts’ annotations. 
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expanding paths are connected using a bottleneck, built from 
simply 2 convolutional layers (with batch normalization), with 
dropout. 

Compared to known FCN approaches, e.g. FCN-8s [18], the 
two main differences are the (i) symmetry and (ii) connection 
skipping between paths. U-net is symmetric. Furthermore, the 
skip connections between the downsampling path and the 
upsampling path apply a concatenation operator instead of a 
sum. These skip connections intend to provide local 
information to the global information while upsampling. Given 
the model’s symmetry, the network has a large number of 
feature maps in the upsampling path, which allows transferring 
information. 

Fig. 2 provides further insights regarding the models’ 

annotations, in terms of accuracy and edge smoothness. Given 
a CT scan slice, the FCN-8 model tends to produce more coarse 
boundaries. On the other hand, U-net provide smoother regions, 
slightly smaller that the original annotated area. Both models 
are capable to localize well, for the majority of symptomatic 
regions. 

III.   RESULTS AND DISCUSSION 
All models were developed in Python, using Keras and 
TensorFlow libraries. The deep models were trained using an 
NVIDIA Tesla P4 GPU, provided by Google Colab. For the 
evaluation process we conducted tests on a typical PC with 8 
CPU cores (AMD FX-8320 @ 3.5 GHz) and 8GB RAM. Fig. 3 
describes the adopted topology for the proposed U-net 

(a) 

    

(b) 

    

(c) 

    

(d) 

    
 Input CT image Ground truth FCN-8s output U-Net output 

Fig. 2 Visual comparison of the deep models’ outputs. The leftmost column is the original CT scan image, whereas the second column 
illustrates the corresponding segmentation for COVID-19 symptomatic areas. The last two columns depict the generated semantic 
segmented area. 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 11, 2020. ; https://doi.org/10.1101/2020.05.08.20094664doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.08.20094664
http://creativecommons.org/licenses/by-nd/4.0/


  
 

 

architecture. The final U-net model required less than 3MB of 
storage space. 

A.   Dataset description 
This dataset was collected from Radiopaedia [23] and 

manually annotated in the work of [24]. All images are CT 
scans of lungs, with dimensions of 630	  ×	  630 pixels, and were 
labeled, segmented, and verified by radiologist experts. More 
specifically, it consists of 10 axial volumetric CT scans of 
confirmed COVID-19 pneumonia patients. It is noted that the 
dataset consists of CT volumes providing a total of 939 cross-
sectional images, both positive and negative. In particular, 447 
slices have been labeled as negative and 492 as positive and 
then segmented by radiologist experts. From the whole number 
of CT images in the dataset, about 85% is used for training and 
validation of the deep learning models, while the rest 15% is 
used for testing.  Among the training data, about 90% of them 
were used for training and the remaining 10% for validation. 

B.   Implementation and limitations of mitigation strategies 
Prior to any implementation approach, we should consider the 

limitations of the problem at hand. In deep learning approaches, 
there are two main concerns: (i) data availability and (ii) data 
imbalance, which both impact the classification model selection 
and topology’s complexity. 

The first step was a training data balancing strategy, involving 
under-sampling of the majority class [25]. At first glance, 
approximately 400 images contain no positive annotations. 
These were excluded from the training set. The remaining 300, 
approximately, images had various ratios ranging from 0.1% to 
20% of positive annotations to image total pixels. 

Man-made annotations are prone to errors [26]. It is extremely 
difficult, rather impossible for most cases, to be able to 
distinguish if a specific pixel, on a boundary area, between two 
classes, corresponds to either of them. Towards that direction, 
we could utilize the networks’ capabilities to generalize and 
handling the noise, given that the wrong annotations are limited. 

Other approaches considered where the implementation of 
different performance metrics during the training process and 
building models of limited complexity. 

C.   Experimental results 
Experimental results consider both the detection capabilities, 

employing multiple classification related performance metrics 
and the computational average time, required by a trained 
model to fully annotate a CT slice. Fig. 4 provides the average 
execution times per image, which range between 0.01 to 0.018 
seconds.  

 
Similarly to the evaluation strategies adopted in other 

classification related problems, four performance metrics were 
considered: a) precision, which calculates how many correct 
positive predictions we have, b) recall, which indicates the 
fraction of the positive samples that are successfully retrieved, 
c) accuracy, which is the percentage of correct classification for 
both, positive and negative, classes, and d) F1-score, which is 
the weighted harmonic mean of precision and recall. 

Fig. 6 illustrates the performance scores in terms of precision 
and recall, for the segmentation approaches in train, validation 
and test data sets. In this case, we mainly focus on recall. Recall 
indicates the model’s capability to identify the case; i.e. if a CT 

 
Fig. 4 Average processing time per image. 

 
Fig. 3 The proposed U-net architecture. 
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slice image has COVID symptomatic areas the model will 
indicate these areas even if precision (on the positive class) is 
limited. Results indicate two important aspects: significant 
recall variation scores between train and test sets and b) the 
better generalization capabilities of U-net despite the lower 
performance during training and validation. 

Fig. 5 displays the performance scores in terms of accuracy 
and F1 scores, for the segmentation approaches in train, 
validation and test datasets. The difference between accuracy 
and F1 score can be put down to the class imbalance. Indeed, 
the majority class, i.e. no detections, is almost always correctly 
identified. The false-negative detections can be spotted on the 

boundaries in images where COVID symptoms manifestation 
becomes apparent. Yet, the F1 score is relatively high, 
indicating that the minority class, i.e. COVID symptomatic 
areas, can be identified. 

Finally, Fig. 7 provides an indication of low detection rates 
cases. Detection failures may include partial area annotation or 
non-annotation at all, despite the appearance of symptoms in 
the CT slice. However, CT scans have consecutive slices; even 
if the detection fails for the current slice, it is highly likely that 
it will succeed in the next ones, thus providing a potentially 
valuable aid to medical professionals. 

 
Fig. 5 Performance results, in terms of accuracy and F1 scores, for the segmentation approaches in train, validation and test data set. 

 

 
Fig. 6 Performance results, in terms of precision and recall scores, for the segmentation approaches in train, validation and test data sets. 
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IV.   CONCLUSION 
In this paper, we have presented a deep learning based 

approach for semantic segmentation in CT images for the 
detection of COVID-19 induced symptoms in the lung area. 
Preliminary results indicate that the proposed Fully 
Convolutional Neural Networks are capable of providing 
accurate segmentation for symptomatic areas, despite the class 
imbalance on the dataset and the man-made annotation errors 
on the boundaries of symptom manifestation areas, and could 
thus assist doctors in the detection as a fast and cost-effective 
supplementary option. 
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