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Abstract

We investigate the age structured data for the COVID-19 outbreak in Japan. We consider
epidemic mathematical model with unreported infectious patient with and without age structure. In
particular, we build a new mathematical model which allows to take into account differences in the
response of patients to the disease according to their age. This model also allows for a heterogeneous
response of the population to the social distancing measures taken by the local government. We fit
this model to the observed data and obtain a snapshot of the effective transmissions occurring inside
the population at different times, which indicates where and among whom the disease propagates
after the start of the public measures.

1 Introduction
COVID-19 disease caused by the corona virus SARS-CoV-2 first appeared in Wuhan, China on

December 31, 2019. Beginning in Wuhan as an epidemic, it then spreads very quickly around the world
to become a global pandemic within a month. Symptoms of this disease include fever, shortness of
breath, cough, and a non-negligible proportion of infected individuals may develop severe forms of the
symptoms leading to their transfer to intensive care units and, in some cases, death. However it is also
worth noting that symptomatic and asymptomatic individuals are both infectious [19, 23, 26] making
challenging the control of the disease.

The virus is characterized by its rapid progression among individuals, most often exponential in
the first phase, but also a marked heterogeneity in populations and geographic areas. The number of
reported cases worldwide exceeded 3 millions as of May 3, 2020 [28]. The heterogeneity of the number
of cases and the severity according to the age groups, especially for children and elderly people, aroused
the interest of several researchers [3, 17, 14, 20, 21]. Indeed, several studies have shown that the severity
of the disease increases with the age and co-morbidity of hospitalized patients [21, 25]. Let us mention
that Wu et al. [24] have shown that the risk of developing symptoms increases by 4% by age in adults
aged between 30 and 60 years old while Davies et al. [4] found that there is a strong correlation
between chronological age and the likelihood of developing symptoms. However let us mention that a
higher probability of developing symptoms does not necessarily imply greater infectiousness as completely
asymptomatic individuals can also be contagious. In fact in [26] it has been found that the viral load in
the asymptomatic patient was similar to that in the symptomatic patients. Moreover while adults are
more likely to develop symptoms, it has been shown in [7] that the viral loads in infected children do
not differ significantly from those of adults.

These findings suggest that a study of the dynamics of inter-generational spread is fundamental to
better understand the spread of the corona virus and most importantly to efficiently fight the COVID-19
pandemic. To this end the distribution of contacts between age groups in society (home, workplace,
school ...) is an important factor to take into account when modeling the spread of the epidemic. To
account for these facts, some mathematical models have been developed in [1, 2, 4, 17, 20]. In [1] the
authors studied the dependence of the COVID-19 epidemic on the demographic structures in several
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countries but did not focus on the contacts distribution of the populations. In [2, 4, 17, 20] a focus on
the social contact patterns with respect to the chronological age has been made by using the contact
matrices provided in [16]. While [1, 4] used the example of Japan in their study, their approach is
significantly different from ours.

In this article we focus on an epidemic model with unreported infectious symptomatic patients (i.e.
with mild or no symptoms). Our goal is to investigate the age structured data of the COVID-19 outbreak
in Japan. In section 2 we present the age structured data and the mathematical models (with and
without age structure). One of the difficulties in fitting the model to the data is that the growth rate
of the epidemic is different in each age class, which lead us to adapt our early method presented in [9].
The new method is presented in the Appendix A. In section 3 we present the comparison of the model
with the data. In the last section we discuss our results.

2 Material and methods

2.1 Age-structured data
Patient data in Japan have been made public since the early stages of the epidemic with the quarantine of
the Diamond Princess in the Haven of Yokohama. We used data from [29] which is based on reports from
national and regional authorities. Patients are labeled “confirmed” when tested positive to COVID-19
by PCR. Interestingly, the age class of the patient is provided for 13 660 out of 13970 confirmed patients
(97.8% of the confirmed population) as of April 29. The age distribution of the infected population is
represented in Figure 1 and compared to the total population per age class (data from the Statistics
Bureau of Japan estimate for October 1, 2019). Both datasets are given in Table 1 and a statistical
summary is provided by Table 2. Note that the high proportion of 20-60 years old confirmed patients
may indicate that the severity of the disease is lower for those age classes than for older patients,
and therefore the disease transmits more easily in those age classes because of a higher number of
asymptomatic individuals. Elderly infected individuals might transmit less because they are identified
more easily. The cumulative number of death (Figure 4) is another argument in favor of this explanation.
We also reconstructed the time evolution of the reported cases in Figure 2 and Figure 3. Note that the
steepest curves precisely concern the 20-60-years old, probably because they are economically active and
therefore have a high contact rate with the population.
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Figure 1: In this figure we plot in blue the age distribution of the Japanese population for 10 000 people
and we plot in orange the age distribution of the number of reported cases of SARS-CoV-2 for 13660
patients on April 29. We observe that 77% of the confirmed patients belong to the 20–60 years age class.
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Figure 2: Time evolution of the cumulative number of reported cases of SARS-CoV-2 per age class.
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Figure 3: Time evolution of the cumulative number of reported cases of SARS-CoV-2 per age class.
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Figure 4: Cumulated number of SARS-CoV-2-induced deaths per age class. We observe that 83% of death
occur in between 70 and 100 years old.

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2020. ; https://doi.org/10.1101/2020.05.07.20093807doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.07.20093807
http://creativecommons.org/licenses/by-nc-nd/4.0/


Age group [0, 10[ [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50, 60[ [60, 70[ [70, 80[ [80, 90[ [90, 100[

Age class 9859515 11171044 12627964 14303042 18519755 16277853 16231582 15926926 8939954 2309313
for 2019

Age class per 781 885 1000 1133 1467 1290 1286 1262 709 183
10,000 people

Confirmed Cases 211 327 2216 2034 2220 2355 1566 1289 857 304

Death 0 0 0 2 6 4 7 37 49 9

Table 1: The age distribution of Japan is taken from the Statistics Bureau of Japan [30, 31]. The number
of cases and the number of death the data come from Prefectural Governments and Japan Ministry of
Health, Labour and Welfare [29].

Dataset Japanese population Infected Deceased
First Quartile 28 28 68

Median 48 44 75
Third Quartile 67 59 81

Table 2: Statistical summary of the data from Table 1.

2.2 SIUR Model
The model consists of the following system of ordinary differential equations:

S′(t) = −τ(t)S(t)I(t) + U(t)

N
,

I ′(t) = τ(t)S(t)
I(t) + U(t)

N
− νI(t),

R′(t) = ν1I(t)− ηR(t),
U ′(t) = ν2I(t)− ηU(t).

(2.1)

This system is supplemented by initial data

S(t0) = S0 ≥ 0, I(t0) = I0 ≥ 0, R(t0) ≥ 0 and U(t0) = U0 ≥ 0. (2.2)

Here t ≥ t0 is time in days, t0 is the starting date of the epidemic in the model, S(t) is the number of
individuals susceptible to infection at time t, I(t) is the number of asymptomatic infectious individuals
at time t, R(t) is the number of reported symptomatic infectious individuals at time t, and U(t) is the
number of unreported symptomatic infectious individuals at time t.

Asymptomatic infectious individuals I(t) are infectious for an average period of 1/ν days. Reported
symptomatic individuals R(t) are infectious for an average period of 1/η days, as are unreported symp-
tomatic individuals U(t). We assume that reported symptomatic infectious individuals R(t) are reported
and isolated immediately, and cause no further infections. The asymptomatic individuals I(t) can also
be viewed as having a low-level symptomatic state. All infections are acquired from either I(t) or U(t)
individuals.

Our study begins in the second phase of the epidemics, i.e. after the pathogen has succeeded in
surviving in the population. During this second phase τ(t) ≡ τ0 is constant. When strong government
measures such as isolation, quarantine, and public closings are implemented, the third phase begins. The
actual effects of these measures are complex, and we use a time-dependent decreasing transmission rate
τ(t) to incorporate these effects. The formula for τ(t) during the third phase is{

τ(t) = τ0, 0 ≤ t ≤ D,

τ(t) = τ0 exp (−µ (t−D)) , D < t.
(2.3)

The date D is the first day of public intervention and µ characterises the intensity of the public inter-
vention.
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A similar model has been used by [6, 9, 10, 11, 12, 13] to describe the epidemics in mainland China,
South Korea, Italy, and other countries, and predict the future evolution of the epidemic based on actual
data.

Symbol Interpretation Method
t0 Time at which the epidemic started fitted
S0 Number of susceptible at time t0 fixed
I0 Number of asymptomatic infectious at time t0 fitted
U0 Number of unreported symptomatic infectious at time t0 fitted
τ(t) Transmission rate at time t fitted
N First day of public intervention fitted
µ Intensity of the public intervention fitted

1/ν Average time during which asymptomatic infectious are asymptomatic fixed
f Fraction of asymptomatic infectious that become reported symptomatic infectious fixed

ν1 = f ν Rate at which asymptomatic infectious become reported symptomatic fixed
ν2 = (1− f) ν Rate at which asymptomatic infectious become unreported symptomatic fixed

1/η Average time symptomatic infectious have symptoms fixed

Table 3: Parameters of the model.
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Figure 5: Compartments and flow chart of the model.

2.3 Comparison of the model (2.1) with the data
At the early stages of the epidemic, the infectious components of the model I(t), U(t) and R(t) must be
exponentially growing. Therefore, we can assume that

I(t) = I0 exp (χ2 (t− t0)) .

The cumulative number of reported symptomatic infectious cases at time t, denoted by CR(t), is

CR(t) = ν1

t∫
t0

I(s)ds. (2.4)

Since I(t) is an exponential function and CR(t0) = 0 it is natural to assume that CR(t) has the following
special form:

CR(t) = χ1 exp (χ2t)− χ3. (2.5)

As in our early articles [9, 10, 11, 12, 13], we fix χ3 = 1 and we evaluate the parameters χ1 and χ2 by
using an exponential fit to

χ1 exp (χ2t) ' CRdata(t).

We use only early data for this part, from day t = d1 until day t = d2, because we want to catch the
exponential growth of the early epidemic and avoid the influence of saturation arising at later stages.

Remark 2.1 The estimated parameters χ1 and χ2 will vary if we change the interval [d1, d2].
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Once χ1, χ2, χ3 are known, we can compute the starting time of the epidemic t0 from (2.5) as :

CR(t0) = 0⇔ χ1 exp (χ2t0)− χ3 = 0 ⇒ t0 =
1

χ2
(ln (χ3)− ln (χ1)) .

We fix S0 = 126.8 × 106, which corresponds to the total population of Japan. We fix the fraction f
of symptomatic infectious cases that are reported. We assume that between 80% and 100% of infectious
cases are reported. Thus, f varies between 0.8 and 1. We assume that the average time during which the
patients are asymptomatic infectious 1/ν varies between 1 day and 7 days. We assume that the average
time during which a patient is symptomatic infectious 1/η varies between 1 day and 7 days. In other
words we fix the parameters f , ν, η. Since f and ν are known, we can compute

ν1 = fν and ν2 = (1− f) ν. (2.6)

Computing further (see below for more details), we should have

I0 =
χ1χ2exp (χ2t0)

f ν
=
χ3χ2

f ν
, (2.7)

τ = N
χ2 + ν

S0

η + χ2

ν2 + η + χ2
, (2.8)

R0 =
ν1

η + χ2
I0 =

fν

η + χ2
I0. (2.9)

and
U0 =

ν2
η + χ2

I0 =
(1− f)ν
η + χ2

I0. (2.10)

By using the approach described in [5, 22] the basic reproductive number for model (2.1) is given by

R0 =
τS0

νN

(
1 +

ν2
η

)
.

By using (2.8) we obtain

R0 =
χ2 + ν

ν

(η + χ2)

ν2 + η + χ2

(
1 +

ν2
η

)
. (2.11)

2.4 Model SIUR with age structure
In what follows we will denote N1, . . . , N10 the number of individuals respectively for the age classes
[0, 10[, . . . , [90, 100[. The model for the number of susceptible individuals S1(t), . . . , S10(t), respectively
for the age classes [0, 10[, . . . , [90, 100[, is the following

S′1(t) = −τ1S1(t)

[
φ1,1

(I1(t) + U1(t))

N1
+ . . .+ φ1,10

(I10(t) + U10(t))

N10

]
,

...

S′10(t) = −τ10S10(t)

[
φ10,1

(I1(t) + U1(t))

N1
+ . . .+ φ10,10

(I10(t) + U10(t))

N10

]
.

(2.12)

The model for the number of asymptomatic infectious individuals I1(t), . . . , I10(t), respectively for the
age classes [0, 10[, . . . , [90, 100[, is the following

I ′1(t) = τ1S1(t)

[
φ1,1

(I1(t) + U1(t))

N1
+ . . .+ φ1,10

(I10(t) + U10(t))

N10

]
− νI1(t),

...

I ′10(t) = τ10S10(t)

[
φ10,1

(I1(t) + U1(t))

N1
+ . . .+ φ10,10

(I10(t) + U10(t))

N10

]
− νI10(t).

(2.13)

The model for the number of reported symptomatic infectious individuals R1(t), . . . , R10(t), respectively
for the age classes [0, 10[, . . . , [90, 100[, is

R′1(t) = ν11 I1(t)− ηR1(t),
...
R′10(t) = ν101 I10(t)− ηR10(t).

(2.14)
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Finally the model for the number of unreported symptomatic infectious individuals U1(t), . . . , U10(t),
respectively in the age classes [0, 10[, . . . , [90, 100[, is the following

U ′1(t) = ν12 I1(t)− ηU1(t),
...
U ′10(t) = ν102 I10(t)− ηU10(t).

(2.15)

In each age class [0, 10[, . . . , [90, 100[ we assume that there is a fraction f1, . . . , f10 of asymptomatic
infectious individual who become reported symptomatic infectious (i.e. with severe symptoms) and a
fraction (1−f1), . . . , (1−f10) who become unreported symptomatic infectious (i.e. with mild symptoms).
Therefore we define

ν11 = νf1 and ν12 = ν(1− f1),
...

ν101 = νf10 and ν102 = ν(1− f10).
(2.16)

In this model τ1, . . . , τ10 are the respective transmission rates for the age classes [0, 10[, . . . , [90, 100[.
The matrix φij represents the probability for an individual in the class i to meet an individual in the

class j. In their survey [16], Prem and co-authors present a way to reconstruct contact matrices from
existing data and provide such contact matrices for a number of countries including Japan. Based on
the data provided by Prem et al. [16] for Japan we construct the contact probability matrix φ. More
precisely, we inferred contact data for the missing age classes [80, 90[ and [90, 100[. The precise method
used to construct the contact matrix γ is detailed in Appendix B. The precise contact matrix γ we used
is the following

[γij ] =



4.03 0.92 0.47 1.69 0.83 0.92 0.78 0.56 0.57 0.57
0.71 8.06 1.38 1.36 1.96 1.74 0.75 0.86 0.74 0.57
0.55 1.05 4.63 2.25 1.84 1.92 0.94 0.46 0.74 0.73
1.52 1.20 2.54 4.97 2.98 2.40 1.76 0.99 0.53 0.73
0.69 1.42 1.93 2.87 3.91 2.76 1.35 1.33 0.95 0.53
0.34 0.48 1.20 1.46 1.61 2.97 1.40 0.98 1.23 0.95
0.28 0.18 0.20 0.52 0.38 0.77 2.67 1.72 0.92 1.23
0.12 0.10 0.09 0.18 0.19 0.25 0.76 1.99 1.18 0.93
0.09 0.10 0.08 0.09 0.13 0.17 0.27 0.64 1.61 1.19
0.09 0.09 0.10 0.08 0.09 0.13 0.17 0.27 0.64 1.61


, (2.17)

where the ith line of the matrix γij is the average number of contact made by an individuals in the age
class i with an individual in the age class j during one day. Notice that the higher number of contacts
are achieved within the same age class. The matrix of conditional probability φ of contact between age
classes is the following

[φij ] =



0.35 0.08 0.04 0.14 0.07 0.08 0.06 0.04 0.05 0.05
0.03 0.44 0.07 0.07 0.10 0.09 0.04 0.04 0.04 0.03
0.03 0.06 0.30 0.14 0.12 0.12 0.06 0.03 0.04 0.04
0.07 0.06 0.12 0.25 0.15 0.12 0.08 0.05 0.02 0.03
0.03 0.07 0.10 0.16 0.22 0.15 0.07 0.07 0.05 0.03
0.02 0.03 0.09 0.11 0.12 0.23 0.11 0.07 0.09 0.07
0.03 0.02 0.02 0.05 0.04 0.08 0.30 0.19 0.10 0.13
0.02 0.01 0.01 0.03 0.03 0.04 0.13 0.34 0.20 0.16
0.02 0.02 0.01 0.02 0.02 0.03 0.06 0.14 0.36 0.27
0.02 0.02 0.03 0.02 0.02 0.03 0.05 0.08 0.19 0.48


. (2.18)
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3 Results

3.1 Model without age structure
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Figure 6: Cumulative number of cases. We plot the cumulative data (reds dots) and the best fits of the
model CR(t) (black curve) and CU(t) (green curve). We fix f = 0.8, 1/η = 7 days and 1/ν = 7 and we
apply the method described in [13]. The best fit is d1 = April 2, d2 = April 5, N = April 27, µ = 0.6,
χ1 = 179, χ2 = 0.085, χ3 = 1 and t0 = January 13.
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Figure 7: Daily number of cases. We plot the daily data (black dots) with DR(t) (blue curve). We fix
f = 0.8, 1/η = 7 days and 1/ν = 7 and we apply the method described in [13]. The best fit is d1 = April
2, d2 = April 5, N = April 27, µ = 0.6, χ1 = 179, χ2 = 0.085, χ3 = 1 and t0 = January 13.

The daily number of reported cases from the model can be obtained by computing the solution of the
following equation:

DR′(t) = ν1 I(t)−DR(t), for t ≥ t0 and DR(t0) = DR0. (3.1)

The model to compute the cumulative number of death from the reported individuals is the following

D′(t) = ηD pR(t), for t ≥ t0 and D(t0) = 0, (3.2)

where ηD is the death rate of reported infectious symptomatic individuals and p is the case fatality rate
(namely the fraction of death per reported infectious individuals).

In the simulation we chose 1/ηD = 6 days and the case fatality rate p = 0.286 is computed by using
the cumulative number of confirmed cases and the cumulative number of deaths (as of April 29) as follows

p =
cumulated number of deaths

cumulated number of reported cases
=

393

13744
. (3.3)
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Figure 8: In this figure we plot the data for the cumulative number of death (black dots), and our best
fits for D(t) (red curves).

3.2 Model with age structure
In order to describe the confinement for the age structured model (2.12)-(2.15) we will use for each age
class i = 1, . . . , 10 a different transmission rate having the following form{

τi(t) = τi, 0 ≤ t ≤ Di,

τi(t) = τi exp (−µi (t−Di)) , Di < t.
(3.4)

The date Di is the first day of public intervention for the age class i and µi is the intensity of the public
intervention for each age class.

In Figure 9 we combine the method described in the Appendix A to estimate the parameters τi from
the data.
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Figure 9: We plot a comparison between the model (2.12)-(2.15) and the age structured data from Japan
by age class. We took 1/ν = 1/η = 7 days for each age class. Our best fit is obtained for fi which
depends linearly on the age class until it reaches 90%, with f1 = 0.1, f2 = 0.2, f3 = 0.3, f4 = 0.4,
f5 = 0.5, f6 = 0.6, f7 = 0.7, f8 = 0.8, f9 = 0.9, and f10 = 0.9. The values we used for the first day
of public intervention are Di = Apr. 13 for the 0-20 years age class i = 1, 2, Di = Apr. 11 for the age
class going from [20, 30[ to [60, 70[ i = 3, 4, 5, 6, 7, and Di = Apr. 16 for the remaining age classes. We
fit the data from March 30 to April 20 to derive the value of χi1 and χi2 for each age class. For the
intensity of confinement we use the values µ1 = µ2 = 0.4829, µ3 = µ4 = 0.2046, µ5 = µ6 = 0.1474,
µ7 = 0.0744, µ8 = 0.1736, µ9 = µ10 = 0.1358. By applying the method described in Appendix A, we
obtain τ1 = 0.1630, τ2 = 0.1224, τ3 = 0.3028, τ4 = 0.2250, τ5 = 0.1520, τ6 = 0.1754, τ7 = 0.1289,
τ8 = 0.1091, τ9 = 0.1211 and τ10 = 0.1642. The matrix φ is the one defined in (2.18).
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Figure 10: Rate of contact between each age class according to the fitted data. For each age class in
the y-axis we plot the rate of contacts between one individual of this age class and another individual
of the age class indicated on the x-axis. (a) is the rate of contacts before the start of public measures
(April 11). (b) is the rate of contacts at the date of effect of the public measures for the last age class
(April 16). (c) is the rate of contacts one week later (April 23). (d) is the rate of contacts one month
later (May 16). In this figure we use τ1 = 0.1630, τ2 = 0.1224, τ3 = 0.3028, τ4 = 0.2250, τ5 = 0.1520,
τ6 = 0.1754, τ7 = 0.1289, τ8 = 0.1091, τ9 = 0.1211 and τ10 = 0.1642, µ1 = µ2 = 0.4829, µ3 = µ4 =
0.2046, µ5 = µ6 = 0.1474, µ7 = 0.0744, µ8 = 0.1736, µ9 = µ10 = 0.1358, and D1 = D2 = Apr. 13,
D3 = D4 = D5 = D6 = D7 = Apr. 11, D8 = D9 = D10 = Apr. 16.

In order to understand the role of transmission network between age groups in this epidemic, we
plot in Figure 10 the transmission matrices computed at different times. The transmission matrix is the
following

C(t) = diag (τ1(t), τ2(t), . . . , τ10(t))× φ (3.5)

where the matrix φ describes contacts and is given in (2.18), and the transmission rates are the ones
fitted to the data as in Figure 9

τi(t) = τ0i (t) exp(−µi(t−Di)+).

During the early stages of the epidemic, the transmission seems to be evenly distributed among age
classes, with a little bias towards younger age classes (Figure 10 (a)). Younger age classes seem to
react more quickly to social distancing policies than older classes, therefore their transmission rate drops
rapidly (Figure 10 (b) and (c)); one month after the start of social distancing measures, the transmission
mostly occurs within elderly classes (60-100 years, Figure 10 (d)).

4 Discussion
The recent COVID-19 pandemic has lead many local governments to enforce drastic control measures

in an effort to stop its progression. Those control measures were often taken in a state of emergency and
without any real visibility concerning the later development of the epidemics, to prevent the collapse of
the health systems under the pressure of severe cases. Mathematical models can precisely help see more
clearly what could be the future of the pandemic provided that the particularities of the pathogen under
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consideration are correctly identified. In the case of COVID-19, one of the features of the pathogen
which makes it particularly dangerous is the existence of a high contingent of unidentified infectious
individuals who spread the disease without notice. This makes non-intensive containment strategies
such as quarantine and contact-tracing relatively inefficient but also renders predictions by mathematical
models particularly challenging.

Early attempts to reconstruct the epidemics by using SIUR models were performed in [6, 9, 10, 11, 12],
who used them to fit the behavior of the epidemics in many countries, by including undetected cases into
the mathematical model. Here we extend our modeling effort by adding the time series of deaths into
the equation. In section 3 we present an additional fit of the number of disease-induced deaths coming
from symptomatic (reported) individuals (see Figure 8). In order to fit properly the data, we were forced
to reduce the length of stay in the R-compartment to 6 days (on average), meaning that death induced
by the disease should occur on average faster than recovery.

The major improvement in this article is to combine our early SIUR model with chronological age.
Early results using age structured SIR models were obtained by Kucharski et al. [8] but no unreported
individuals were considered and no comparison with chronological data were performed. Indeed in this
article we provide a new method to fit the data and the model. The method extends our previous method
for the SIUR model without age (see Appendix A).

The data presented in section 2 suggests that the chronological age plays a very important role in
the expression of the symptoms. The largest part of the reported patients are between 20 and 60 years
old (see Figure 1), while the largest part of the deceased are between 60 and 90 years old (see Figure
4). This suggests that the symptoms associated with COVID-19 infection are more severe in elderly
patients, which has been reported in the literature several times [14, 25]. In particular, the probability
of being asymptomatic (our parameter f) should in fact depend on the age class.

Indeed, the best match for our model (see Figure 9) was obtained under the assumption that the
proportion of symptomatic individual among the infected increases with the age of the patient. Moreover,
our model reveals the fact that the policies used by the government to reduce contacts between individuals
have strongly heterogeneous effects depending on the age classes. Plotting the transmission matrix at
different times (see Figure 10) shows that younger age classes react more quickly and more efficiently
than older classes. This may be due to the fact that the number of contacts in a typical day is higher
among younger individuals. As a consequence, we predict that one month after the effective start of
public measures, the new transmissions will almost exclusively occur in elderly classes.

A Appendix: Method to fit of the age structured model to the
data

We first choose two days d1 and d2 between which each cumulative age group grows like an exponential.
By fitting the cumulative age classes [0, 10[,[10, 20[, . . . and [90, 100[ between d1 and d2, for each age class
j = 1, . . . 10 we can find χj1 and χj2

CRdataj (t) ' χj1 eχ
j
2t.

We choose a starting time t0 ≤ d1 and we fix

χj3 = χj1 e
χj
2t0 ,∀j = 1, . . . , n,

and we obtain 
CR1(t) = χ1

1 e
χ1
2t − χ1

3,
...

CRn(t) = χn1 e
χn
2 t − χn3 i

(A.1)

where
χij ≥ 0,∀i = 1, . . . , n, ∀j = 1, 2, 3.
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Figure 11: We plot an exponential fit for each age classes using the data from Japan.

We assume that
CR1(t)

′ = ν11I1(t),
...

CRn(t)
′ = νn1 In(t),

(A.2)

where
νi1 = ν fi, and νi2 = ν (1− fi), ∀i = 1, . . . , n.

Therefore we obtain
Ij(t) = I?j e

χj
2t (A.3)

where

I?j :=
χj1 χ

j
2

νj1
.

By assuming that the number of susceptible individuals remains constant we have
I ′1(t) = τ1S1

[
φ11

I1(t) + U1(t)

N1
+ . . .+ φ1n

In(t) + Un(t)

Nn

]
− νI1(t),

...

I ′n(t) = τnSn

[
φn1

I1(t) + U1(t)

N1
+ . . .+ φnn

In(t) + Un(t)

Nn

]
− νIn(t),

(A.4)

and 
U ′1(t) = ν12 I1(t)− ηU1(t),

...
U ′n(t) = νn2 In(t)− ηUn(t).

(A.5)
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If we assume that the Uj(t) have the following form

Uj(t) = U?j e
χj
2t, (A.6)

then by substituting in (A.5) we obtain

U?j =
νj2I

?
j

η + χj2
. (A.7)

We define the error between the data and the model as follows
ε1(t) = I ′1(t)− τ1S1

[
φ11

I1(t) + U1(t)

N1
+ . . .+ φ1n

In(t) + Un(t)

Nn

]
+ νI1(t),

...

εn(t) = I ′n(t)− τnSn
[
φn1

I1(t) + U1(t)

N1
+ . . .+ φnn

In(t) + Un(t)

Nn

]
+ νIn(t),

(A.8)

or equivalently
ε1(t) =

(
χ1
2 + ν

)
I?1e

χ1
2t − τ1S1

[
φ11

I?1 + U?1
N1

eχ
1
2t + . . .+ φ1n

I?n + U?n
Nn

eχ
n
2 t

]
,

...

εn(t) = (χn2 + ν) I?ne
χn
2 t − τnSn

[
φn1

I?1 + U?1
N1

eχ
1
2t + . . .+ φnn

I?n + U?n
Nn

eχ
n
2 t

]
.

(A.9)

Let the matrix φ be fixed. We look for the vector τ = (τ1, . . . , τn) which minimizes of

min
τ∈Rn

∑
j=1,...,n

∫ d2

d1

εj(t)
2dt.

Define for each j = 1, . . . , n

Kj(t) :=
(
χj2 + ν

)
I?j e

χj
2t

and
Hj(t) := Sj

[
φj1

I?1 + U?1
N1

eχ
1
2t + . . .+ φjn

I?n + U?n
Nn

eχ
n
2 t

]
,

so that
εj(t) = Kj(t)− τjHj(t).

Hence for each j = 1, . . . , n∫ d2

d1

εj(t)
2dt =

∫ d2

d1

Kj(t)
2dt− 2τj

∫ d2

d1

Kj(t)Hj(t)dt+ τ2j

∫ d2

d1

Hj(t)
2dt,

and by setting

0 =
∂

∂τj

∫ d2

d1

εj(t)
2dt = −2

∫ d2

d1

Kj(t)Hj(t)dt+ 2τj

∫ d2

d1

Hj(t)
2dt

we deduce that

τj =

∫ d2
d1
Kj(t)Hj(t)dt∫ d2
d1
Hj(t)2dt

. (A.10)

Remark A.1 It does not seem possible to estimate the matrix of contact φ by using similar optimization
method. Indeed, if we look for a matrix φ = (φij) which minimizes

min
φ∈Mn(R)

∑
j=1,...,n

∫ d2

d1

εj(t)
2dt,

it turn out that ∑
j=1,...,n

∫ d2

d1

εj(t)
2dt = 0
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whenever φ is diagonal. Therefore the optimum is reached for any diagonal matrix. Moreover by using
similar considerations, if several χ2

j are equal, we can find a multiplicity of optima (possibly with φ not
diagonal). This means that trying to optimize by using the matrix φ does not yield significant and reliable
information.

In the figure 12 below, we present an example of application of our method to fit the Japanese data.
We use the period going from March 20 to April 15.
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Figure 12: We plot a comparison between the model (2.12)-(2.15) (without public intervention) and the
age structured data from Japan. We set 1/ν = 1/η = 7 days, fi which actually depends on the age class,
with f1 = 0.1, f2 = 0.2, f3 = 0.4, f4 = 0.4, f5 = 0.6, f6 = 0.6, f7 = 0.8, f8 = 0.8, f9 = 0.8, and
f10 = 0.9. and we obtain τ1 = 0.1264, τ2 = 0.1655, τ3 = 0.3538, τ4 = 0.2966, τ5 = 0.1513, τ6 = 0.1684,
τ7 = 0.1251, τ8 = 0.1168, τ9 = 0.1015, τ10 = 0.1258. The matrix φ is the one defined in (2.18).

B Appendix: Construction of the contact matrix
The survey [16] presents reconstructed contact matrices for a number of countries including Japan

for the 5-years age classes [0, 5), [5, 10), ..., [75, 80) at various locations (work, school, home, and other
locations) and a compilation of those contact matrices to account for all locations. The precise description
of the compilation is presented in the paper. Note that this paper is a follow-up of Mossong et al. [15]
where the survey procedure is described (including the data collection protocol) for several European
countries participating in the POLYMOD study.

The data is publicly available online [32] and is presented in the formed of a zipped collection of
spreadsheets, containing the data for several countries in columns X1 X2 ... X16. The columns stand
for the average number of contact of one individual of the corresponding age class (0-5 years for X1,
5-10 years for X2, etc...), with an individual of the age class indicated by the row (first row is 0-5 years,
second is 5-10 years etc...). Since the age span covered by the study stops at 80, we had to infer the
number of contacts for people over the age of 80. We postulated that most people aged 80 or more are
retired and that their behaviour does not significantly differs (statistically speaking) from the behaviour
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of people in the age class [75, 80). Therefore we completed the missing columns by copying the last
available information and shifting it to the bottom. We repeated the procedure for lines. We believe
that the introduced bias is kept to a minimum since the numerical values are relatively low compared to
the diagonal.

Because we use 10-years ages classes and the data is given in 5-years age classes, we had to combine
adjacent columns to recover the average number of contacts. To combine columns together, we used the
following formula

C ′i =
N2(i−1)+1C2(i−1)+1 +N2(i−1)+2C2(i−1)+2

N2(i−1)+1 +N2(i−1)+2
,

where the column C ′i corresponds to the average number of contacts of an individual taken at random
in the [10(i− 1), 10i) and Ci is the average number of contacts of an individual taken at random in the
age class [5(i− 1), 5i). To combine two lines, we simply use the sum of the data

L′i = L2(i−1)+1 + L2(i−1)+2.

The matrix γ in (2.17) is the transpose of the array obtained by the former procedure applied to the “all
locations” dataset. Then φ is obtained by scaling the lines of γ to 1, i.e.

φij =
γij∑10
k=1 γik

.
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