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Summary 
Understanding how environmental factors impact COVID-19 transmission informs global 
containment efforts. We studied the relative risk of COVID-19 due to weather and ambient air 
pollution. We estimated the daily reproduction number at 3,739 global locations, controlling for 
the delay between infection and detection, associating those with local weather conditions and 
ambient air pollution. Controlling for location-specific fixed effects and local policies, we found a 
negative relationship between the estimated reproduction number and temperatures above 
25oC, a U-shaped relationship with outdoor ultraviolet exposure, and weaker positive 
associations with air pressure, wind speed, precipitation, diurnal temperature, SO2 and ozone. 
We projected the relative risk of COVID-19 transmission due to environmental factors in 1,072 
global cities. Our projections suggest warmer temperature and moderate outdoor ultraviolet 
exposure may offer a modest reduction in transmission; however, upcoming changes in weather 
alone will not be enough to fully contain the transmission of COVID-19. 

 

Introduction 
The COVID-19 pandemic has significantly challenged the global community. High-stakes policy 
decisions depend on how environmental factors impact the transmission of the disease (1). 
Given that many related viral infections such as seasonal flu (2), MERS (3-5), and SARS (6) 
show notable seasonality, one may expect the transmission of SARS-CoV-2 virus to be similarly 
dependent on weather. Earlier works indicate that temperature (7), humidity (7-9), air pressure, 
ultraviolet light exposure, and precipitation may impact the spread of COVID-19 by changing the 
virus survival times on surfaces and in droplets (10-12), moderating the distance virions may 
travel through air (12), changing host susceptibility, and impacting individual activity patterns 
and immune systems (7, 8, 10-12). A few other studies suggest air pollutants may act as 
vectors for the virus or impact the immune system (13, 14). 

Yet, there is limited agreement on the shape and magnitude of those relationships. While 
studies find correlations between pandemic severity and variations in temperature (9, 15-22), 
relative and absolute humidity (9, 16-24), ultraviolet light (19), wind speed (18, 21), visibility, and 
precipitation (17), others (19, 25-27) indicate weaker, inconsistent, or no relationships. A recent 
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review finds inconclusive evidence for the role of weather in COVID-19 transmission (1) and 
others caution against interpreting weather as a key driver due to this uncertainty (28).  

The explanation for these inconclusive results is unclear. Estimates that are based on datasets 
focused only on China or the United States (17, 19, 20, 22-24, 29, 30) may be too narrow. 
Others have studied only a subset of meteorological measures (9, 16, 22-24, 27, 29), 
complicating comparisons. Most studies have not controlled for other important factors such as 
varying government and public responses, population density, and cultural practices (9, 17-19, 
24, 30, 31). The delay between infection and official recording of cases is a particularly 
understudied factor. Failure to correct for these delays, estimated to be approximately 10 days 
(32, 33), confounds attempts to associate daily weather conditions with recorded new cases and 
may partially explain the inconsistent and inconclusive findings to date.  

Here, we assemble one of the most comprehensive datasets of the global spread of COVID-19 
pandemic through late April 2020, spanning more than 3,700 locations around the world. We 
validate and apply a statistical method to estimate the daily reproduction number in each 
location. Controlling for location-specific differences in population density, cultural practices, 
socio-economic differences, public transportation, nutrition, age distribution, and time-variant 
responses in each location (e.g., physical distancing, quarantine, lock-down, public space 
closures), we estimate the association of weather and air pollutants with the reproductive 
number of COVID-19 and provide year-round, global projections.  
 

Data and Methods 
Data 

Our dataset includes infection data for 3,739 distinct locations, spanning the beginning of the 
epidemic (December 12, 2019) to April 22, 2020.  We augment the data reported by the Johns 
Hopkins Center for Systems Science (34) with data reported by the Chinese Center for Disease 
Control and Prevention, Provincial Health Commissions in China, and Iran’s state-level reports. 
We assemble disaggregate data on the spread of COVID-19 in Australia (8 states), Canada (10 
states), China (34 province-level administrative units and 301 individual cities), Iran (31 
provinces), and the United States (3,144 counties and 5 territories) and use country-level 
aggregates for the remaining 206 locations.  

We compile weather data from archival databases (World Weather Online, and OpenWeather 
Ltd.), and air pollution data from the European Centre for Medium-Range Weather Forecasts. 
For country-level locations that include cities with populations 500,000 or greater, weather and 
pollution data were first gathered for each city and then averaged over all cities weighted by 
their population into country-level measures. For U.S. counties, Canadian and Australian 
provinces, and any remaining countries, we use the weather and air pollution data for the 
coordinate of the centroid of that location. We obtain daily data for minimum and maximum 
temperature, humidity, precipitation, snowfall, moon illumination, sunlight hours, ultraviolet 
index, cloud cover, wind speed and direction, pressure data, as well as air pollutants including 
ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter with 
aerodynamic diameter ≤ 2.5 µm (PM2.5). We used population density data from Demographia 
(Cox., W, Demographia, The Public Purpose), the United States Census (U.S. Census Bureau), 
the Iran Statistical Centre, the United Nation’s Projections, City Population (citypopulation.de), 
and official published estimates for countries not covered by these sources (United Nations).  
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Methods  

Estimation of the Reproduction Number 

A critical parameter in understanding the spread of an epidemic is the effective reproduction 
number, 𝑅௘, the expected number of secondary cases generated by an index patient. An 
epidemic grows when 𝑅௘ is above 1 and will die out once 𝑅௘ stays below 1. Reproduction 
number can be approximated (𝑅෠) based on the number of new infections (𝐼ெ) per currently 
infected individual, multiplied by the duration of illness (𝜏). Actual new infections on any day (𝐼ே) 
are not directly observable but an unbiased estimator, 𝐼መே, can be used to estimate 𝑅෠ (equation 
1). Data on measured daily infections (𝐼ெ) lag actual new infections by both the incubation 
period and the delay between the onset of symptoms and testing and recording of a case. We 
use published measures to quantify the distribution of both the incubation period and onset-to-
detection delays (averaged between 5 to 6 days (20, 32, 33, 35) and between 4 to 6 days (32, 
33), respectively). Together these shape the overall detection delay. Given the variance in 
detection delay, a simple shift of measured infection by the mean delay (about 10 days) offers 
an unreliable estimate of true infections (see Section S3 and S5.2.2.2 in Supplementary 
Document). We therefore develop an algorithm to find the most likely actual daily new infections 
(𝐼መே) based on the observed measured infections (𝐼ெ) and the detection delay distribution (see 
S3). We then use 𝐼መே to estimate the reproduction number: 

𝑅෠ሺ𝑡ሻ ൌ
ூመಿሺ௧ሻఛ

∑ ூመಿሺ௦ሻೞస೟షభ
ೞస೟షഓషభ

                                                               (1) 

We use the daily 𝑅෠ሺ𝑡ሻ as our dependent variable. The estimate of 𝑅෠ሺ𝑡ሻ is robust to the existence 
of asymptomatic cases, under-reporting, and changing test coverage as long as the changes in 
test coverage are uncorrelated with weather conditions 10 days ago (see S3 and S5.2.2.3 for 
details). We use a delay of 𝜏=20 days from exposure to resolution; results are robust to other 
durations of illness (see S4.1). For each location, we only include days with 𝐼መே values above 
one. Reliability of early 𝐼መே values for each location is affected by irregularities in early testing. 
Moreover, an unbiased estimate for 𝑅෠ሺ𝑡ሻ requires 𝜏 days of prior new infection estimates. Thus, 
to ensure robustness we exclude the first 20 days after 𝐼መே reaches one in each location (S4 
discusses robustness to these criteria and the exclusion of outliers). 

Controls for estimating 𝑹෡ 

The reproduction number for COVID-19 primarily varies due to location-specific factors, from 
population density, cultural practices, and public transportation use to nutrition, age distribution, 
and genetic profile, among others. We control for these and other unobserved factors using 
location fixed effects. Moreover, school closures, gathering bans, distancing, and other 
behavioral responses reduce 𝑅௘ over time. Reproduction number may also increase if 
endogenous epidemic takes off later (e.g. when contact tracing is overwhelmed). We account 
for such changes by estimating a location-specific time trend in 𝑅௘ and assess sensitivity to 
nonlinear trend controls in S4. We also separately control for day of the week. 

Independent Predictors 

Prior studies (9, 20) suggest 𝑅௘ may depend on various meteorological and air pollution factors 
through at least three pathways. First, the survival of the virus on surfaces and the spread of 
droplets and particles containing the virus may be impacted by temperature, UV, humidity, wind, 
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and particulate matter (12, 13). Second, human host susceptibility may be impacted due to 
factors moderating immune response (e.g., impact of UV on serum Vitamin D (19)) as well as 
respiratory tract susceptibility to virus (e.g., temperature, humidity, and pollutants (9, 14)). 
Finally, the behavior of human hosts (e.g., interacting indoors and outdoors) is likely affected by 
multiple factors, ranging from temperature and precipitation to air pollutants, UV index, and 
humidity (27). Our data do not allow us to tease out these distinct pathways explicitly. Instead, 
we include the following potential contributing factors, focusing on their direct effects in the main 
specification and discussing interactions in the Supplementary Document: temperature (mean 
and diurnal temperature (difference between maximum and minimum daily temperature), 
relative humidity, pressure, precipitation, average wind speed, and ultraviolet exposure (𝑈𝑉 
Index). We included Oଷ and SOଶ, as air pollutants. We also explored a few interactions among 
these variables as well as the inclusion of other environmental variables including absolute 
humidity, number of sun hours received, snowfall, moon illumination, NO2, and PM2.5 and report 
those results in S4.  

Statistical Specification and Validation 

Given the large variations in 𝑅෠ estimated in this method, we use a log transformation of 𝑅෠ሺ𝑡ሻ 
and linear models to predict (𝑙𝑛൫𝑅෠൯). We designed and validated our statistical model for 

estimating 𝑙𝑛൫𝑅෠൯ by testing its ability to identify true parameters in synthetic data. Specifically, 
we built a stochastic simulation model of the COVID-19 epidemic, generated synthetic infection 
data using historical weather inputs and presumed impact functions, and designed a statistical 
model that reliably found those presumed effects under an ensemble of simulated epidemics 
with different basic reproduction numbers, weather effects, population sizes, and test coverage, 
among others. We found that: a) given actual infections (𝐼ே), our method identifies the 
presumed functional form relating weather to transmission rate; b) estimates become 
conservative (between null and true effects) when true infections are inferred rather than known; 
c) our method for inferring infections offers significantly better results than a simple shifting of 
official counts (see Sections S3 and S5.2.2.2). 

Separately, to independently validate the resulting statistical method, authors NG and MG 
created a realistic individual-based model of disease transmission and used that to generate a 
separate test dataset with synthetic epidemics. Three scenarios were created using actual 
temperatures from a sample of 100 regions and three different functions for the temperature 
effect. Then author RX, who was blinded to the true functions in this synthetic dataset, 
successfully estimated the correct qualitative shape of those functions using our method 
(Section S5.3).  

Building upon these findings, our main specification excludes days with 𝐼መே<1 and the first 20 
days after 𝐼መே exceeds one for the first time. The model includes location-specific fixed effects 
and trends and includes the following effects: a linear spline for the effect of average 
temperature on transmission (𝑇ത), with the knot at 25oC (see Section S4.5 for alternative knot 
values), diurnal temperature (∆𝑇), air pressure (𝑃), relative humidity (𝐻), linear and quadratic 
effects of Ultraviolet Index (𝑈𝑉), log precipitation (𝐶), log wind speed (𝑊), log 𝑂ଷ, and log 𝑆𝑂ଶ: 

ln൫𝑅෠௜௧൯ ൌ 𝛼௜ ൅ 𝜃௜𝑡 ൅ 𝛽ଵ minሾ𝑇ത௜௧, 25ሿ ൅ 𝛽ଶሺmaxሾ𝑇ത௜௧, 25ሿ െ 25ሻ ൅ 𝛽ଷ∆𝑇௜௧ ൅ 𝛽ସሺ𝑃௜௧ െ
1000ሻ൅𝛽ହ𝐻௜௧൅𝛽଺ሺ𝑈𝑉௜௧ െ 7.13ሻ ൅ 𝛽଻ሺ𝑈𝑉௜௧ െ 7.13ሻଶ൅𝛽଼ lnሺ𝐶௜௧ ൅ 1ሻ ൅𝛽ଽ𝑙𝑛ሺ𝑊௜௧ ൅ 1ሻ ൅ 𝛽ଵ଴𝑙𝑛ሺ𝑂ଷ௜௧ ൅
1ሻ൅𝛽ଵଵ𝑙𝑛ሺ𝑆𝑂ଶ௜௧ ൅ 1ሻ ൅ 𝜖௜௧         (2) 
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Projection 

We project the impact of weather and air pollution on the relative risk of transmission for all 
locations in our sample as well as 1072 major urban areas (population > 0.5 million) constituting 
about 30% of world’s population. A summary of results is provided in the paper and an 
interactive online platform offers comprehensive projections. 
 

Results 
Estimated impact of weather and air pollution on transmission rate 

Table 1 reports our main results. The model explains roughly three quarters of the variance in 
ln൫𝑅෠൯ values (R2=.740), much of which due to fixed effects (39.2 % of variance) and trends (34.6 

% of variance). Average initial 𝑅෠ is 1.98 (IQR: 0.88 to 2.49) 20 days after the first estimated 
case with much variation across locations (Figure 1-A). Initial 𝑅෠ is negatively correlated with 
epidemic start time and positively with population density. Most locations show rapid reductions 
in reproduction number over time that capture the impact of policies and behavioral changes 
that reduce contacts. On average, 𝑅෠ falls 5.8% (IQR: -1.7% to 8.7%) per day but with notable 
variability across locations (Figure 1-A) partly explained by locations with higher initial 𝑅෠ having 
faster subsequent reduction. For example, after excluding the first 20 days of estimated 
infections, New York City shows an initial 𝑅෠ of 5.07, followed by a 7.8% daily reduction (Figure 
1-B).  

Even after controlling for these factors, mean temperature, Ultraviolet index, diurnal 
temperature, air pressure, wind speed, precipitation, 𝑂ଷ, and 𝑆𝑂ଶ are significantly associated 
with transmission (Table 1). We found a robust effect of mean daily temperature, which is best 
characterized within two regimes, below and above 25oC (Figure 1-C). Temperatures higher 
than 25oC were associated with lower transmission rates (by 3.7% (CI: 1.9-5.4%) per additional 
degree) while those below that threshold had a smaller impact (0.4% (0.14-0.66) reduction per 
degree).  

UV has a robust U-shaped effect on the reproduction number, with a minimum around 6.3 
(Figure 1-D). At a low/moderate UV of 3, a unit higher UV decreased 𝑅෠ by 3.5% (0.4-6.4%). At a 
high UV of 10, a unit higher UV increased 𝑅෠ by 4% (1.8-6.3%). While less robust across 
specifications (see Section S4), we also find weak/moderate and statistically significant positive 
effects of diurnal temperature, air pressure, wind speed, precipitation, O3, and SO2. A one 
standard deviation increase in each increases 𝑅෠ by 1.4% (0.4-2.4%) for diurnal temperature, 
1.3% (0.3-2.4%) for air pressure, 1.4% (0.4-2.5%) for log-transformed wind speed, 2.7% (1.7-
3.8%) for log-transformed precipitation, 2.4% (1.1-3.6%) for log-transformed O3, and 2.9% (1.1-
4.6%) for log-transformed SO2.   

We also find a few interactions among these predictors may be relevant in determining 
transmission rates (Not included in main model; See 4.7 for details): the quadratic effect of 
ultraviolet index precipitation is dampened with the increase in precipitation; the negative effect 
of mean temperature above 25 oC is attenuated with higher SO2 levels; and there may be a 
positive effect of PM2.5 which is attenuated with increased air pressure. Finally, we found a 
significant reduction in transmission rate associated with higher moon visibility, but lacking a 
theoretical explanation for the effect, we did not include it in the main specification.  
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Overall, the association of various weather and air pollution variables with COVID-19 
transmission is large enough to be relevant to assessing the risk of across locations and 
seasons. Variations in the reproduction number associated with the combined set of predictors 
in our estimation dataset showed a ratio of 1.24 between the 95th and 5th percentile despite the 
sample largely coming from late winter/early spring. Given that the typical reproduction number 
estimated for COVID-19 is in the range of 2 to 3 (36, 37), estimated weather effects alone may 
not provide a path to containing the epidemic in most locations, but could notably impact the 
relative transmission rates.  
 

Table 1. Impact of weather on COVID-19. Outcome variable: 𝑙𝑛൫𝑅෠൯ 

Weather variables Mean (SD) Coefficient (95% CI) p-value 
Standardized 
coefficient* 

Wind speed (log of Km/Hour) 2.552 (.444) .0323 (.0079 .0567) .01 .0144 

Precipitation (log of Millimeters) .785 (1.022) .0265 (.0168 .0361) <.001 .0271 

Air pressure (millibars) 1015.47 (6.08) .0022 (.0005 .0039) .013 .0132 

Humidity (Percent) 66.946 (15.075) -.0006 (-.0015 .0003) .179 -.0091 

Mean temperature below 25 (Celsius) 11.351 (7.089) -.004 (-.0066 -.0014) .003 -.031 

Mean temperature above 25 (Celsius) 27.761 (2.204) -.0377 (-.0559 -.0194) <.001 -.0391 

Ultraviolet index (25 milliwatts/m2) 7.13 (2.824) .0089 (-.0083 .0260) .312 .0250 

Ultraviolet index^2  .0053 (.0025 .0081) <.001 .0702 

Diurnal temperature (Celsius) 8.757 (3.315) .0042 (.0012 .0072) .006 .0139 

Ozone (log of ppbv) 3.289 (.667) .0349 (.0161 .0537) <.001 .0232 

Sulfur Dioxide (log of ppbv) 1.139 (.936) .0301 (.0118 .0485) .001 .0282 

 Mean (SD) over i Mean of Standard Error Across Locations 

Fixed Effects (ln൫𝑅෡ 𝑖ሺ0ሻ൯ ൌ 𝛼𝑖ሻ .377 (.767) .519 

Trends (𝜃௜ሻ -.060 (.157) .107 

N=19,221; R2=.740 

*Standardized coefficients were obtained by first standardizing all of the weather variables (mean=0, SD=1) and then re-running the 
analysis with our main model specification. 

 

    (A) (B) 
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Figure 1. Summary of results. A) Scatter diagram of Initial Reproduction Number (Y-axis) and Daily % 
Change (X-axis) across different locations, color coded for date of local epidemic start. Circles’ sizes 
scale with population density in a location. B) Estimated daily 𝑅෠ values for New York City (blue dots; 20 
days in gray area excluded); the estimated initial 𝑅෠ ሺൌ 𝑒ఈಿ೐ೢ ೊ೚ೝೖሻ (Red Dot) and trend (Black line). C) 
Relationship between temperature and reproduction number (β1 and β2) with its uncertainty. D) 
Relationship between UV index and reproduction number. Panels C and D include (downsampled) data 
and control for other factors as in Eq. 2. 
 

Robustness 

Validation of our statistical method using synthetic data (S5.2) showed that: (a) our results are 
robust to under-reporting as well as changes in test coverage; (b) our method can identify the 
correct sign and shape for the impact of environmental variables; and (c) those estimates are 
potentially conservative (i.e., smaller than the true impacts). The conservatism is due to two 
factors. First, unavoidable errors in estimating daily infections from lagged official data lead to 
imperfect matching of independent variables and true infection rates, weakening any estimated 
relationship. Second, fixed effects further weaken the signal used for estimation: If a region has 
a lower/higher baseline reproduction number due to weather factors, that effect is absorbed in 
the fixed effects and will not impact the estimates for relevant factors.   

We also conducted eight empirical tests to assess the robustness of our findings (See S4). First, 
our results do not change with the use of different illness durations to calculate 𝑅෠. Second, our 
main findings are robust to excluding extreme values of the dependent variables, the last few 
days of data, only using the USA sample, and the inclusion of location-specific quadratic trend 
or time fixed effects. Third, our results are largely insensitive to different exclusion criteria for 
initial periods of transmission per location. Fourth, when independent variables in each location 
are permuted and shifted in a placebo test, no effects remain, showing that results are not 
artifact of statistical method. Fifth, using different knots for the spline effect of temperature 
shows 25°C best separates the effect into two distinct slopes. Sixth, the estimated U-shaped 
effect of UV does not change when observations with high UV index are excluded. Seventh, we 
explored more interaction terms, additional weather variables (e.g. absolute humidity, nitrogen 
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dioxide and PM2.5), none of which change the main results. Finally, overall projections of how 
weather and air pollution impact transmission rates using various specifications and on 
independent samples are consistent with our main specification.  

Projections  

Our results are associative and extrapolating out-of-sample includes unknown risks. With that 
caveat in mind, one can calculate the contribution of weather and air pollution to expected 
transmission for any vector of weather and air pollution based on Table 1 results. We defined 
“Relative COVID-19 Risk Due to Weather and air pollution” (CRW) as the relative predicted risk 
of each weather and air pollution vector relative to the 95th percentile of predicted risk in our 
estimation sample (1.476). The choice of this reference point is somewhat arbitrary but makes a 
value of 1 a rather high-risk level. A CRW of 0.5 reflects a 50% reduction in the estimated 
reproduction number compared to this (high-risk) reference. Formally: 

CRW ൌ exp ሺ 0.0301 lnሺ𝑆𝑂ଶ ൅ 1ሻ ൅ 0.0349 lnሺ𝑂ଷ ൅ 1ሻ ൅ 0.0323 lnሺ𝑊 ൅ 1ሻ ൅ 0.0265 lnሺ𝐶 ൅ 1ሻ ൅
0.00217ሺ𝑃 െ 1000ሻ െ 0.000602𝐻 െ 0.00399 minሾ𝑇ത, 25ሿ  െ 0.0377ሺmaxሾ𝑇ത, 25ሿ െ 25ሻ  ൅
0.00421∆𝑇 ൅ 0.00886ሺ𝑈𝑉 െ 7.13ሻ ൅ 0.00533ሺ𝑈𝑉 െ 7.13ሻଶሻ/1.4757        (3) 

These scores do not reveal the actual value of Re as that value is contingent on location-specific 
factors and policies for which we have no data outside the estimation sample. Rather, CRW 
scores inform relative risks due to weather and air pollution (i.e., assuming all else equal) across 
locations or within a location over time. 

Figure 2 provides a visual summary of global CRW scores, averaged over the first half of July 
2020. The color-coded scores suggest much variation in the expected risk of COVID-19 
transmission across locations, with increased risks due to both low temperature (some regions 
in southern hemisphere) and very high UV indexes (some locations in central America). Section 
S6 provides additional snapshots of global CRW scores at different times of the year, and the 
website (projects.iq.harvard.edu/covid19) offers week-by-week risk measures year-round. 
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Figure 2. Relative COVID-19 Risk Due to Weather and air pollution (CRW) for different regions of the 
world, averaged over the first half of July 2020.  

 

Figure 3 shows CRW projections for five major cities in each of the four regions of America 
(panel A), Europe (B), Africa and Oceania (C), and Asia (D). These projections use prior year 
weather and air pollution from 2019, averaged over a 15-day moving window, for 2020-2021 
dates; as such, they include historical noise despite the 15-day averaging. Many large cities go 
through periods of higher and lower risk during the year. We cannot associate these risks with 
absolute reproduction numbers, and our estimates are likely conservative. Nevertheless, 
assuming typical basic reproduction rates (e.g., 2-3), weather factors will not bring the 
reproduction number below 1. For example, in New York City, with estimated 𝑅෠ே௘௪ ௒௢௥௞ሺ0ሻ~5, 
the impact of weather may lead to a 30% variation in the reproduction number (i.e., the 4 to 6 
range), requiring significant social distancing policies to enable containment regardless of 
weather. The website projects.iq.harvard.edu/covid19 provides these projections for the 1,072 
largest global cities. 

                

0.5  1.5 

Relative COVID‐19 Risk 
Due to Weather (CRW) 

July 1‐15, 2020 
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Figure 3. CRW measures over the year for major cities around the world. 

 

Discussion 
This work combines one of the most comprehensive datasets of COVID-19 transmission with 
weather and air pollution data across the world to estimate the association of various 
environmental variables with the spread of COVID-19.  

We find a strong association between temperatures above 25°C and reduced transmission 
rates, and a weaker effect below 25oC. These suggest many temperate zones with high 
population density may face larger risks in winter, while some warmer areas of the world may 
experience slower transmission rates in general. The U-shaped relationship between UV index 
and transmission may help more temperate regions during summer, but higher risks in 
equatorial regions with very high UV exposure.  

Most of the effects we found are consistent with theoretical mechanisms thought to link 
environmental factors to transmission: the negative temperature effect on transmission, boosted 
at higher temperatures, is consistent with virus survival rates in experimental work (12); the 
positive effects of wind and precipitation could result from people spending more time indoors 
where transmission is more likely than outdoors; and the impact of air pollutants may be related 
to increased susceptibility in more polluted environments (14). Nevertheless, we are mindful that 
our study design and data cannot tease out such mechanisms empirically. For example, we 
hypothesized a UV exposure to reduce transmission (due to both stimulating vitamin D 
production and UV’s disinfecting effects). Our estimates have the expected sign in the low 
ranges of UV, but also reveal an unexpected increase in the high ranges of UV. The latter effect 
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may be due to a shift of social interactions into higher risk, indoor, settings when UV levels are 
very high; but we cannot test such explanations here.  

Methodologically, we show that accounting for the distribution of the delay between infection 
and detection is important. Many prior studies did not fully account for this delay, or its 
distribution, which may partially explain inconsistent prior results. We also showed (in S5.2.2) 
that our methods and results are robust to significant under-counting of cases in official data, as 
well as to changes in test coverage over time, both major concerns in using official case data.  

Nevertheless, estimates of Re are imperfect, leading to conservative overall estimates for 
various effects, a fact that should be noted in using our projections. Other limitations include: the 
lack of reliable transmission data in some regions of the world; oversampling from U.S. 
locations; limited data with high temperature and UV in our estimation sample, which reduce 
confidence for projections when either is very high; use of last year’s weather data to project 
next year’s outcomes; and use of correlational evidence to inform out-of-sample projections.  

Despite these limitations, consistent results using various conservative specifications and 
placebo and validation tests provide promising indications of the true impacts of weather 
conditions on transmission. The estimated impacts suggest summer may offer partial relief to 
some regions of the world. However, given a highly susceptible population, the estimated 
impact of summer weather on transmission risk is not large enough in most places to quell the 
epidemic in 2020, indicating that policymakers and the public should remain vigilant in their 
responses to the pandemic. In fact, much of the variation in reproduction number in our sample 
is explained by location-specific fixed effects and responses, not weather; and most regions that 
can expect reduced risk in summer will face increased risks in the fall. Ultimately, weather more 
likely plays a secondary role in the control of the pandemic. 
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1. Data and replication instructions 
All code and data for this research are available at https://github.com/marichig/weather-
conditions-COVID19.  

Case and coordinate data were first taken from JHU’s published case reports, available at 
https://github.com/CSSEGISandData/COVID-19, which covered all locations (counties) in the 
United States and 258 of the 590 locations from outside the U.S., including breakdowns for 
Canada into 10 states/territories, and Australia into 8 states. The remaining locations include 
301 Chinese cities and 31 Iranian states; for these, case and coordinate data were taken from 
the Chinese Center for Disease Control and Prevention, Provincial Health Commissions in 
China, and Iran’s state level reports.  

Some locations included in the U.S. case reporting data were dropped from the main analysis. 
Namely:  

‐ Cases from the cruise ships Diamond Princess, Grand Princess, and MS Zaandam were 
discarded. 

‐ Cases labelled as “Out of [State]” or “Unassigned, [State]” were discarded. 
‐ Cases from Michigan Department of Corrections and Federal Correctional Institute, 

Michigan were dropped since they reflect unique spread dynamics and carried no 
coordinate data. 

‐ Cases attributed to the Utah Local Health Departments (Bear River, Central Utah, 
Southeast Utah, Southwest Utah, TriCounty, and Weber-Morgan) were discarded; as of 
4/22/2020, only 291 cases were reported from these sources compared to 3154 from all 
Utah counties. These health departments span several counties and reporting from them 
only began on 4/19/2020. 

Errors in the reported coordinate data were also identified and resolved manually. (For instance, 
Congo-Brazzaville was reported to have the same coordinates as Congo-Kinshasa.) With this 
coordinate data, weather data is collected primarily through World Weather Online (WWO), 
which provides an API for data collection – the Python “wwo-hist” package 
<https://pypi.org/project/wwo-hist/> was used to access this API. Historical weather data were 
collected for each day between 1/23/2019 thru 4/22/2020, with data from 2019 being used for 
future projection. Pollution data are collected from the European Centre for Medium-Range 
Weather Forecasts (ECMWF)’s CAMS-Near Real Time service from 1/1/2019 – 4/22/2020, with 
solely 2019 data used for projection, since 2020 data is not representative due to disruption of 
human activity from the pandemic. 

The following weather variables were collected: maximum daily temperature (degrees Celsius 
(°C)), minimum daily temperature (°C), average daily temperature (°C), precipitation 
(millimeters), humidity (percentage (%)), atmospheric pressure (millibars), windspeed 
(kilometers per hour (km/h)), sun hours (i.e., hours of sunshine received), total snowfall, 
(centimeters) cloud cover (percentage) ultraviolet (UV) index (measured within one hour of noon 
local time), moon illumination (%) (i.e., percentage of moon face lit by the sun), local sunrise 
and sunset time; local moonrise and moonset time; dew point (°C), "Feels Like" (°C), wind chill 
(°C) wind gust (i.e., peak instantaneous speed) (km/h), visibility (kilometers), and wind direction 
degree, clockwise degrees from due north. The pollutant variables collected were ozone (parts 
per billion volume (ppb (v)), nitrogen dioxide (ppb (v)), sulfur dioxide (ppb (v)), and particulate 
matter of diameter less than 2.5 micrometers, micrograms per cubic meter. Descriptions of the 
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weather variables are available at 
<https://www.worldweatheronline.com/developer/api/docs/historical-weather-api.aspx>. The 
ultraviolet (UV) index data were not consistently reported from WWO, and were instead 
gathered using OpenWeatherMap <https://openweathermap.org/> and the Python “pyowm” 
package <https://pypi.org/project/pyowm/>.  

We interpolated over any missing entries in the temperature, UV, and pollution data provided. 
The reported temperature data were missing for most (but not all) locations for a handful of 
days: 9/15-17/2019, 10/22/2019, 11/27/2019, and 12/15/2019, which were then interpolated 
using five-day moving averages. UV data were missing for less than 0.1% of date-location pairs, 
with the main gaps occurring on 6/2/2019, 8/13/2019, 12/2/2019, 2/18/2020, and 2/21/2020, 
which were interpolated using three-day moving averages. The averaging of temperature and 
UV data should not impact the analysis given that most of the above dates fall outside the 
pandemic’s date-range. Furthermore, across all pollution variables, less than 0.1% of date-
location pairs were interpolated for US locations, and less than 0.2% of pairs were interpolated 
for global locations. 

For countries or provinces with cities of population larger than 500,000 reported by 
Demographia, weather and pollution aggregates were produced by performing a weighted 
average of variables over all cities in the country to avoid data from sparsely populated areas. 
This affected 137 out of 590 locations from the global dataset (mostly countries). For the 
remaining global locations, as well as for all US counties, data were drawn from the coordinate 
of the centroid of that location, which we think is representative of the region given that the vast 
majority of these locations are sufficiently small and weather variables would not vary 
significantly within the location. 

Population density data was sourced from Demographia (Cox., W, Demographia World Urban 
Areas, 15th Edition, The Public Purpose), which provided data for urban areas with population 
greater than 500,000; the United States Census (U.S. Census Bureau, data.census.gov/cedsci); 
the Iran Statistical Centre; the United Nation’s Projections; City Population (citypopulation.de); 
and official published estimates for countries not covered by these sources. For data sourced 
from Demographia, population densities reported are urban densities, whereas other sources 
primarily reported overall density (spanning urban and non-urban areas). The urban and overall 
densities are largely on different orders, which weakens the inclusion of population density as 
an independent variable. 
 

2. Estimating the detection delay distribution 
Reported data on daily detected COVID-19 infections do not reflect the true infection rate on a 
given day; rather, it lags behind the true infections due to both the incubation period (during 
which patients are asymptomatic and less likely to be tested) and the delays between onset of 
symptoms, testing, and incorporation of test results into official data. We need estimates for the 
true infection rates for each day to calculate the daily reproduction number (i.e., 𝑅෠ሺ𝑡ሻ), therefore 
identifying the lag structure between measured infection (𝐼ெ) and true infection (𝐼ே), which we 
call “detection delay” is key to back-tracking from measured infection to estimates of true 
infection rate. 

Prior research has provided several estimates for subsets of overall detection delay. Incubation 
period, the time between infection to onset of symptoms, has been estimated by several teams. 
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Li and colleagues (1), using data from 10 early patients in China, find the mean incubation 
period to be 5.2 days, and the delay from onset to first medical visit to be 5.8 days for those 
infected before January 1st and 4.6 days for the later cases. Lauer and colleagues (2) use data 
from 181 cases to estimate incubation period with mean of 5.5 and median of 5.1, and offer 
fitted distributions using Lognormal, Gamma, Weibull, and Erlang specifications. In a 
supplementary graph, they also provide a figure that includes the lags from the onset of 
symptom to official case detection. Guan et al. (3) use data from 291 patients and estimate 
median incubation period of four days with interquartile range of 2 to 7 days. Linton and 
colleagues (4) use data from 158 cases to estimate the incubation period with a mean (standard 
deviation) of 5.6 (2.8) days. This delay goes down to 5 (3) when Wuhan patients are excluded. 
They also report onset to hospital admission delay of 3.9 (3) days for living patients (155 cases). 
They provide their full data in an online appendix, where we calculated the onset to case report 
lag with mean of 5.6 days, median of 5, and standard deviation of 3.8 days. A New York Times 
article (5) reports that the Center for Disease Control estimates the lag between onset of 
symptoms to case detection to be four days. Finally, a Bayesian estimation of the detection 
delay using abrupt changes in national and state policies by Wibbens and colleagues find the 
mode of the delay to be 11 days and ranging between 5 and 20 days (6).  

Overall, these findings are consistent and point to an incubation period of about 5 days and an 
onset to detection lag of about the same length. We use Lauer et al. estimates for a Lognormal 
incubation period with parameters 1.62 and 0.418 (leading to mean (standard deviation) of 5.51 
(2.4) days), and another Lognormal distribution with parameters 1.47 and 0.52 (resulting in 5 
(2.8) days) for onset to detection delay. Combining these two distributions using 10 million 
Monte-Carlo simulations, we generate the following detection delay lag structure that is used in 
the analysis. The code calculating this distribution is found at 
<https://github.com/marichig/weather-conditions-COVID19/>. 
 

 
Figure S4: Distribution of Detection Delay 
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3. Algorithmic estimation of true infection rate 
Here we develop an algorithm that provides a more accurate estimation of true exposure than a 
fixed shift in reported data or averaging data over a time period. We later compare our 
algorithm’s performance with simpler, more common, methods. We find that accurate estimation 
of effects of weather variables hinges directly on accurately estimating true infections, making 
the algorithm in this section key to overall estimation.   

Using the delay structure specified in the previous section, one can estimate true infection rates 
using various methods. The most common solution is to just shift the official infections based on 
the average, median, or mode of the detection delay (9 to 11 days). This approximation may 
suffice in steady state but becomes less accurate when estimating time series with exponential 
growth; the detected infections today are more likely to be from (the many more) recent 
infections than (the fewer) 10 days ago.  

The main objective of our algorithm is to find better estimates for the true infection. This can be 
seen as deconvolution of detection delay from true infection, when together they produce the 
observed data. We first calculate the expected number of daily detected cases, given a series of 
actual infections unknown in the real world. Given the actual infection on day 𝑡, 𝑋ሺ𝑡ሻ, and the 
detected infections on day 𝑡, 𝐼ሺ𝑡ሻ. The following equation would relate the two constructs: 

𝐸ሺ𝐼ሺ𝑡ሻሻ ൌ ∑ 𝑋ሺ𝑡 െ 𝑑ሻ𝑝ሺ𝑑ሻ௅
ௗୀଵ    

Where 𝐸ሺ. ሻ takes the expectation on detected infections, 𝑝ሺ. ሻ is the probability distribution for 
the detection delay estimated in section 2 of appendix, and the index 𝑑 ranges between 1 to 𝐿 ൌ
17 days to account for different delay lengths. This equation does not account for test coverage, 
but as discussed below test coverage cancels out of the final reproduction number calculations, 
and as such only impacts variability of outcomes, otherwise having limited impact on results. 
Note that this equation is under-specified; for one value of the known measure 𝐼, one has to find 
up to 𝐿 values of the unknown 𝑋 (in our case, no detection is expected in the first 4 days, so L-
4=13 values of 𝑋 contribute to a value of 𝐼 (Figure S4)). However, given the overlap on 𝑋’s 
determining subsequent 𝐼 values, the system of equations connecting 𝐼 and 𝑋 values for 𝐼 time 
series extending over 𝑇 days would include 𝑇 known values (for 𝐼) and 𝑇 ൅ 𝐿 unknown 𝑋 values. 
Different approaches could then be pursued to find approximate solutions for this system of 
equations.  

Using exact Maximum Likelihood suffers from intractability of specifying the Likelihood for highly 
correlated Poisson distributions (Poisson is a natural alternative in this case). We compared two 
alternatives, one using Normally distributed approximations for 𝐼 as a function of 𝑋, and another 
using a direct minimization of the gap between 𝐼 values and their expectation. The latter proves 
both simpler conceptually and more accurate in synthetic data, so we picked that for the main 
analysis: 

𝑋 ൌ 𝐴𝑟𝑔𝑚𝑖𝑛ሺ෍ ൭𝐼ሺ𝑡ሻ െ ෍ 𝑋ሺ𝑡 െ 𝑑ሻ𝑝ሺ𝑑ሻ
௅

ௗୀଵ

൱

ଶ

ሻ

்

௧ୀଵ

 

Given the underspecification of original system of equations, this optimization will include many 
solutions. To identify a more realistic solution from that set, we add a regularization term that 
penalizes the gap between subsequent values for 𝑋. Specifically, we use the following 
optimization: 
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𝑋 ൌ 𝐴𝑟𝑔𝑚𝑖𝑛ሺ෍ ൭𝐼ሺ𝑡ሻ െ ෍ 𝑋ሺ𝑡 െ 𝑑ሻ𝑝ሺ𝑑ሻ
௅

ௗୀଵ

൱

ଶ்

௧ୀଵ

൅ 𝜆 ෍ ൫𝑋ሺ𝑡 െ 1ሻ െ 𝑋ሺ𝑡ሻ൯
ଶ

்

௧ୀି௅ାଵ

ሻ 

𝑠. 𝑡. 𝑋ሺ𝑡ሻ ൒ 0 

The solution to this optimization can be found using standard quadratic programming methods, 
allowing for fast and scalable solutions. We conducted sensitivity analysis to find the 
regularization parameter, λ, offering the best overall ability of the algorithm to find true infections 
in synthetic data. The algorithm that works well is with λ values in the 0.1 to 0.5 range and not 
very sensitive to exact value; we used a value of 0.2 in our analysis. An implementation of this 
code in MATLAB is available from <https://github.com/marichig/weather-conditions-COVID19/>. 

For each location in our dataset, we used this algorithm to estimate the true infections (𝐼መேሺ𝑡ሻ ൌ
𝑋ሺ𝑡ሻ), on a daily basis, starting from 17 days before the first detected infection, and stopping 5 
days before the last day with data (because only infections from 5 days or further back could be 
found in current measures of infection; see the detection delay distribution (Figure S4)). These 
values were then used to create the dependent variable, 𝑅෠ሺ𝑡ሻ, as discussed in the body of the 
article: 

 𝑅෠ሺ𝑡ሻ ൌ
ூመಿሺ௧ሻఛ

∑ ூመಿሺ௦ሻ ೞస೟షభ
ೞస೟షഓషభ

 

We recognize that not all infections are reported, and a large fraction may remain unknown. 
Assuming that only a fraction f (0 ≤ f ≤ 1) of actual infections are reported, IM would be f of total 
infections that could have been detected on a given day, and estimated 𝐼መேሺ𝑡ሻ will be the fraction 
f of true infections as a result. While these underestimations are likely very significant if we 
cared about absolute values of 𝐼መேሺ𝑡ሻ, note that 𝐼መேሺ𝑡ሻ values show up both in the numerator and 
denominator of 𝑅෠ሺ𝑡ሻ equation. Therefore, multiplying both by a fixed constant makes no 
difference in the estimated 𝑅෠ሺ𝑡ሻ.  

We also recognize that, early on during the infection, f may increase with expanding test 
capacity until reaching a steady state value. Therefore, as later discussed, we drop the first few 
data points for each region and check the sensitivity of the result to dropping fewer or more 
days. Finally, our synthetic analysis (section 5.2.2.3, Experiment 10) shows results are robust to 
various trajectories for f over the course of epidemic.  

 

4. Statistical sensitivity analyses and robustness checks 
In our main specification we included weather predictors that are (a) of theoretical interest and 
(b) do not cause a collinearity issue when included together (correlations among main weather 
variables are reported in Table S2). Here we report eight different sets of sensitivity tests that 
assess the robustness of our findings to various assumptions, boundary conditions and 
inclusion of other weather variables.1 Here is a summary of the results, before we go into the 
details: (1) In our main specification we used a delay of τ=20 days from exposure to virus to 

                                                            
1 Similar to the main analysis, all models tested here use log(R0) as the outcome and include location fixed effects, 
location‐specific linear trends and day of the week effect. All models excluded days with new infections <1 and first 
20 days since new infection exceeds 1 for the first time in each location unless specified otherwise. 
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resolution (recovery or death) to calculate reproduction number R0. Here we tested the 
robustness of our results over a spectrum of reasonable durations of delay from 15 to 25 days, 
finding no major impact on the results. (2) We tested our main specification under five additional 
exclusion criteria and specifications: exclusion of the last few days of data (for which true 
infection estimates may be less reliable), exclusions of top 1% R0 of our sample (which may be 
generated due to reporting issues), exclusions of non-US sample, inclusion of date fixed effects 
(to control for the possible global events impacting outcomes) and inclusion of location-specific 
quadratic trend effects (to control for the possible non-linearity in each location’s response over 
time). The key results on mean temperature, ultraviolet index and precipitation are robust across 
all specifications. (3) In our main specification we excluded the first 20 days since new infection 
exceeds 1 for each location to account for early-on changes in test coverage and to get stable 
estimates for reproduction number. Here we tested the robustness of our results to other 
exclusion periods, ranging from first 10 days to 30 days, finding no major impact on the key 
results. (4) To exclude the possibility that our results are driven by mechanical features of our 
variable construction and model specification, we used a set of placebo weather variables, 
which are randomly permuted across locations and shifted over a specific number of days, and 
re-estimated our main models using these placebo weather variables. We found few significant 
effects under these placebo tests. (5) In our main specification we chose a linear spline effect of 
mean temperature with a knot at 25 degrees. Here we tested how our results are sensitive to 
different choices of knots, finding the 25 degree provides the best fit. (6) In our main 
specification we found a somewhat counterintuitive U-shaped effect of ultraviolet index. To 
ensure the effect is not driven by observations with extremely large UV indices, we excluded 
observations with top 5% and 10% UV index values in our sample and repeated our analysis. 
The U-shaped effect of UV is robust to these exclusions. (7) We report analyses that include 
several interaction terms, as well as some additional weather variables of interest (e.g., absolute 
humidity, NO2 and PM2.5). Our main results are robust to these inclusions and we did not find 
significant effects of these additional weather variables. (8) Finally, we assess the overall 
robustness of projections of relative predicted risk (CRW) using a series of different 
specifications, from using US-only samples, to subsets of specifications reported in other 
analyses. Projections using these different measures are highly consistent across these 
specifications (with correlations above 0.9 in most cases).    
 

Table S2. Correlations among weather variables in the main specification  

 SO2 (log) O3 (log) 
Windspeed 

(log) 
Pressure 

Precipitation 
(log) 

Relative 
Humidity 

Mean 
temperature 

UV index 
Diurnal 

temperature 

Sulfur dioxide (log) 1.00         

Ozone (log) -0.51 1.00        

Windspeed (log) -0.23 0.27 1.00       

Pressure 0.19 -0.14 -0.29 1.00      

Precipitation (log) -0.14 0.08 0.16 -0.36 1.00     

Relative Humidity -0.16 -0.07 -0.01 -0.18 0.53 1.00    

Mean temperature 0.13 -0.07 -0.06 -0.31 0.01 -0.05 1.00   

UV index 0.04 0.00 -0.05 -0.22 0.08 0.01 0.79 1.00  

Diurnal temperature -0.02 -0.03 -0.29 0.10 -0.28 -0.27 0.07 0.10 1.00 
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4.1. Sensitivity to duration of disease (15, 20, 25) 
Table S3 presents the results using our main specification with R0 calculated from 15, 20 and 25 
days of delay respectively. The coefficients and significance level for each weather variable are 
largely unchanged and consistent across different durations, especially for ozone, precipitation, 
mean temperature and ultraviolet index. 

Table S3. Regression results with various duration of delay to calculate R0  
 R0 calculated 

from 
R0 calculated 

from 
R0 calculated 

from 

 15 days 20 days 25 days 
    
Sulfur dioxide (log) 0.0260** 0.0301** 0.0286** 
 (0.00960) (0.00937) (0.00926) 
Ozone (log) 0.0304** 0.0349*** 0.0324*** 
 (0.00983) (0.00959) (0.00948) 
Wind speed (log) 0.0454*** 0.0323** 0.0219 
 (0.0128) (0.0125) (0.0123) 
Air pressure 0.00209* 0.00217* 0.00172* 
 (0.000891) (0.000870) (0.000859) 
Precipitation (log) 0.0278*** 0.0265*** 0.0246*** 
 (0.00507) (0.00495) (0.00489) 
Humidity -0.000855 -0.000602 -0.000481 
 (0.000459) (0.000448) (0.000442) 
Mean temperature below 25 -0.00253 -0.00399** -0.00409** 
 (0.00136) (0.00132) (0.00131) 
Mean temperature above 25 -0.0342*** -0.0377*** -0.0366*** 
 (0.00955) (0.00932) (0.00920) 
Ultraviolet index 0.00391 0.00886 0.00783 
 (0.00898) (0.00877) (0.00866) 
Ultraviolet index^2 0.00565*** 0.00533*** 0.00595*** 
 (0.00146) (0.00142) (0.00141) 
Diurnal Temperature 0.00449** 0.00421** 0.00378* 
 (0.00158) (0.00154) (0.00152) 
Observations 19,222 19,221 19,216 
R-squared 0.691 0.740 0.770 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

4.2. Sensitivity to exclusion criteria and including additional controls  
Table S4 presents the results when we excluded the last 4 days of our data (19% of the total 
sample in our main specification), top 1% R0, used a US-only sample, or included date fixed 
effects or location-specific quadratic trend effects. Across specifications we observed robust and 
consistent estimates of the positive effect of precipitation, linear spline effect of mean 
temperature, and U-shaped effect of ultraviolet index. Other weather effects are somewhat less 
robust; the positive effects of air pollutants (i.e., SO2 and O3), while robust to excluding last 4 
days of data, extreme R0, and the inclusion of date fixed effects, went away when we only used 
US locations or with the inclusion of location-specific quadratic trends. The positive effect of 
wind speed, while robust to both exclusion criteria, is no longer significant with additional 
controls. The positive effects of air pressure and diurnal temperature are only robust to using 
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US data and excluding extreme R0, but not to other tests. We note that including a quadratic 
trend term adds another location-specific parameter, which would further absorb variations in 
weather and air-pollutants in each location, and as such is expected to attenuate the parameter 
estimates further.  

Table S4. Regression results with various exclusion criteria and specifications 
      
 Exclude last 4 

days of data 
Exclude top 1% 

R0 

Only using US 
sample 

Including date 
fixed effects 

Including 
location-specific 
quadratic trend 

      
Sulfur dioxide (log) 0.0276** 0.0287** 0.00756 0.0302** 0.0149 
 (0.00998) (0.00928) (0.0112) (0.00931) (0.00804) 
Ozone (log) 0.0234* 0.0367*** 0.0163 0.0287** 0.0148 
 (0.00991) (0.00953) (0.0112) (0.00948) (0.00822) 
Wind speed (log) 0.0422** 0.0348** 0.0455** 0.00555 0.00541 
 (0.0132) (0.0124) (0.0146) (0.0126) (0.0107) 
Air pressure 0.00175 0.00261** 0.00308** -0.00138 -0.00109 
 (0.000948) (0.000867) (0.00103) (0.000905) (0.000799) 
Precipitation (log) 0.0322*** 0.0258*** 0.0312*** 0.0155** 0.0195*** 
 (0.00531) (0.00491) (0.00531) (0.00496) (0.00428) 
Humidity -0.000836 -0.000464 6.02e-05 -0.000221 -0.000814* 
 (0.000489) (0.000444) (0.000488) (0.000459) (0.000395) 
Mean temperature below 25 -0.000286 -0.00406** -0.00533*** -0.00577*** -0.00269* 
 (0.00144) (0.00131) (0.00143) (0.00145) (0.00117) 
Mean temperature above 25 -0.0374*** -0.0371*** -0.0555*** -0.0384*** -0.0275*** 
 (0.00999) (0.00928) (0.0134) (0.00913) (0.00805) 
Ultraviolet index -0.00523 0.00952 -0.000405 0.00199 0.00288 
 (0.00988) (0.00868) (0.00985) (0.00904) (0.00772) 
Ultraviolet index^2 0.00519*** 0.00528*** 0.00882*** 0.00467** 0.00540*** 
 (0.00155) (0.00142) (0.00233) (0.00142) (0.00128) 
Diurnal Temperature 0.00302 0.00425** 0.00553*** 0.00304 0.000710 
 (0.00168) (0.00153) (0.00160) (0.00157) (0.00132) 
Observations 15,595 19,031 13,953 19,216 19,221 
R-squared 0.771 0.730 0.720 0.778 0.840 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

4.3. Sensitivity to shifting the data start date after first exposure 
Table S5 presents the results when we excluded first 10, 15, 20, 25, and 30 days since new 
infection exceeds 1 for the first time in each location. Overall, we observed robust and 
consistent estimates of the positive effect of precipitation, U-shaped effect of UV index, and 
linear spline effect of mean temperature, except when we excluded the first 30 days of data for 
each location, where we would lose more than half of our sample as compared to the main 
specification (first 20 days excluded). It is possible that by constraining our estimation on later 
periods, we are focusing on periods when lockdown and social distancing are fully in effect and 
thus there are few variations left in R0 that can be explained by environmental factors. However, 
the coefficients for these effects are still consistent and have the same sign. For example, with 
the first 30 days excluded, we estimated that with a one degree increase in mean temperature 
after 25 degrees, the estimated R0 will still decrease by ~2%. The positive effects of SO2, O3, 
wind speed, air pressure, and diurnal temperature were less robust and no longer significant 
when we excluded the first 25 or 30 days. 
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Table S5. Regression results with various exclusion criteria for initial periods  
      
 Exclude first 10 

days 
Exclude first 15 

days 
Exclude first 20 

days 
Exclude first 25 

days 
Exclude first 30 

days 
      
Sulfur dioxide (log) 0.00558 0.0185* 0.0301** 0.0220* 0.0169 
 (0.00777) (0.00858) (0.00937) (0.0106) (0.0128) 
Ozone (log) 0.00977 0.0192* 0.0349*** 0.0317** 0.0217 
 (0.00780) (0.00872) (0.00959) (0.0110) (0.0129) 
Wind speed (log) 0.0935*** 0.0853*** 0.0323** 0.00949 -0.00411 
 (0.0100) (0.0112) (0.0125) (0.0143) (0.0175) 
Air pressure 0.00853*** 0.00652*** 0.00217* 0.000893 0.00164 
 (0.000696) (0.000786) (0.000870) (0.000989) (0.00119) 
Precipitation (log) 0.0325*** 0.0345*** 0.0265*** 0.0181** 0.0216** 
 (0.00390) (0.00441) (0.00495) (0.00572) (0.00704) 
Humidity -0.000526 -0.000740 -0.000602 -9.62e-05 -0.000353 
 (0.000360) (0.000403) (0.000448) (0.000515) (0.000637) 
Mean temperature below 25 -0.000714 -0.00316** -0.00399** -0.00434** -0.00215 
 (0.00108) (0.00120) (0.00132) (0.00153) (0.00192) 
Mean temperature above 25 -0.0208* -0.0299** -0.0377*** -0.0370*** -0.0190 
 (0.00873) (0.00919) (0.00932) (0.00990) (0.0110) 
Ultraviolet index 0.0135 0.00740 0.00886 0.0125 0.00677 
 (0.00712) (0.00793) (0.00877) (0.00990) (0.0119) 
Ultraviolet index^2 0.00731*** 0.00789*** 0.00533*** 0.00639*** 0.00826*** 
 (0.00121) (0.00132) (0.00142) (0.00158) (0.00183) 
Diurnal Temperature 0.00661*** 0.00707*** 0.00421** 0.00389* 0.00241 
 (0.00123) (0.00138) (0.00154) (0.00177) (0.00219) 
Observations 32,232 25,913 19,221 13,670 9,071 
R-squared 0.699 0.705 0.740 0.779 0.814 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

 

4.4. Placebo tests (random shifts of weather data) 
Placebo tests allow us to ensure that mechanical features of the statistical estimation method 
are not driving any of the results. The basic intuition is simple: if we feed to the algorithm 
independent variables that are not matched correctly to the estimated exposure rates, we 
should not observe any major correlations. To implement, we first randomly permuted weather 
variables across locations in our data, and then shifted all weather variables in each location to 
earlier periods by a specific number of days, where the number is randomly drawn from a 
uniform distribution U(0,300). We then performed the statistical analysis using these placebo 
weather variables. As shown in Table S6, most of the weather effects are completely gone, 
especially in our main specification where first 20 days are excluded. The only exception is 
when we observe a negative and significant linear effect of ultraviolet index when first 10 days 
are excluded. A single “significant” effect at p=0.05 out of over 50 estimated coefficients is 
expected based on chance alone.  

We also note the relatively large R-squared values in these placebo tests: fixed effects and 
location trends provide much explanatory power regardless of weather and pollution. This 
observation informed our choice to focus our statistical models on simpler and more 
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interpretable linear forms rather than using cross-validation or other prediction-driven methods 
to specify terms and functional forms for statistical models. 

 

Table S6. Regression results using placebo weather with various exclusion criteria for initial 
periods 

      
 Exclude first 10 

days 
Exclude first 15 

days 
Exclude first 20 

days 
Exclude first 25 

days 
Exclude first 30 

days 
      
Sulfur dioxide (log) -0.00579 -0.00289 0.00508 -0.00214 -0.00534 
 (0.00778) (0.00859) (0.00937) (0.0105) (0.0128) 
Ozone (log) 0.00329 0.000774 -6.36e-05 -0.00873 0.000387 
 (0.00664) (0.00731) (0.00799) (0.00891) (0.0107) 
Wind speed (log) -0.00340 0.00409 0.00783 0.00136 0.00333 
 (0.00920) (0.0102) (0.0111) (0.0124) (0.0151) 
Air pressure 0.000218 0.000262 0.000335 -0.000282 0.000121 
 (0.000592) (0.000655) (0.000713) (0.000802) (0.000970) 
Precipitation (log) 0.00620 0.00337 0.00746 0.00870 0.00791 
 (0.00358) (0.00395) (0.00433) (0.00488) (0.00596) 
Humidity -8.39e-05 -0.000273 -0.000598 -0.000460 -0.000287 
 (0.000317) (0.000349) (0.000381) (0.000429) (0.000514) 
Mean temperature below 25 0.00118 0.000771 0.00138 0.000351 0.000741 
 (0.000837) (0.000924) (0.00101) (0.00114) (0.00138) 
Mean temperature above 25 -0.00154 -0.00176 -0.00447 -0.000397 0.00193 
 (0.00325) (0.00360) (0.00387) (0.00433) (0.00529) 
Ultraviolet index -0.00585* -0.00424 -0.00302 0.000873 -0.000631 
 (0.00273) (0.00300) (0.00327) (0.00367) (0.00449) 
Ultraviolet index^2 0.000218 -1.41e-05 0.000483 0.000401 0.000547 
 (0.000448) (0.000495) (0.000545) (0.000621) (0.000766) 
Diurnal Temperature 0.000695 0.000196 -0.000915 -0.000931 -0.000288 
 (0.00118) (0.00130) (0.00142) (0.00159) (0.00195) 
Observations 32,232 25,928 19,286 13,760 9,137 
R-squared 0.695 0.701 0.738 0.777 0.812 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

4.5. Different knot for linear spline effect of mean temperature 
In the main specification we used a linear spline effect of mean temperature with a knot at 25 
degrees as it provides better fit than linear or quadratic effect of temperature. Here we test the 
sensitivity of our results to the choice of knots over a wide range of mean temperatures from -15 
degrees to 30 degrees. As shown in Table S7, the temperature effect after the knot is 
statistically significant and much larger at 25 degrees (-.0377, p<.001) than knots at other 
degrees. Hence, we chose the knot at 25 degrees as our main specification. Given the limited 
number of locations with temperature above 30 in our estimation sample, increasing the knot 
beyond that level is not supported by our data.  
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Table S7. Regression results with different knots for linear spline effect of mean temperature 
 (1) (2) (3) (4) (5) 
 Knot at -15 Knot at -10 Knot at -5 Knot at 0 Knot at 5 
      
Sulfur dioxide (log) 0.0308** 0.0306** 0.0309*** 0.0311*** 0.0312*** 
 (0.00937) (0.00937) (0.00937) (0.00937) (0.00939) 
Ozone (log) 0.0362*** 0.0360*** 0.0363*** 0.0366*** 0.0367*** 
 (0.00959) (0.00959) (0.00959) (0.00959) (0.00960) 
Wind speed (log) 0.0302* 0.0300* 0.0298* 0.0302* 0.0307* 
 (0.0125) (0.0125) (0.0125) (0.0125) (0.0125) 
Air pressure 0.00206* 0.00202* 0.00205* 0.00210* 0.00216* 
 (0.000870) (0.000870) (0.000870) (0.000870) (0.000875) 
Precipitation (log) 0.0266*** 0.0266*** 0.0268*** 0.0269*** 0.0269*** 
 (0.00495) (0.00495) (0.00495) (0.00495) (0.00496) 
Humidity -0.000525 -0.000515 -0.000491 -0.000470 -0.000486 
 (0.000447) (0.000447) (0.000447) (0.000449) (0.000450) 
Mean temperature below 25 0.166* 0.0518** 0.0177* 0.00194 -0.00282 
 (0.0823) (0.0186) (0.00873) (0.00526) (0.00325) 
Mean temperature above 25 -0.00498*** -0.00528*** -0.00541*** -0.00525*** -0.00517*** 
 (0.00131) (0.00131) (0.00132) (0.00134) (0.00140) 
Ultraviolet index 0.00909 0.00958 0.00950 0.00888 0.00850 
 (0.00877) (0.00877) (0.00877) (0.00877) (0.00878) 
Ultraviolet index^2 0.00462** 0.00464*** 0.00464*** 0.00466*** 0.00472*** 
 (0.00141) (0.00141) (0.00141) (0.00141) (0.00142) 
Diurnal Temperature 0.00418** 0.00434** 0.00438** 0.00430** 0.00420** 
 (0.00154) (0.00154) (0.00154) (0.00154) (0.00154) 
Observations 19,221 19,221 19,221 19,221 19,221 
R-squared 0.740 0.740 0.740 0.740 0.740 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

Table S6 (Cont’d). Regression results with different knots for linear spline effect of mean 
temperature 

 (1) (2) (3) (4) (5) 
 Knot at 10 Knot at 15 Knot at 20 Knot at 25 Knot at 30 
      
Sulfur dioxide (log) 0.0314*** 0.0306** 0.0296** 0.0301** 0.0308** 
 (0.00938) (0.00937) (0.00938) (0.00937) (0.00937) 
Ozone (log) 0.0372*** 0.0363*** 0.0349*** 0.0349*** 0.0363*** 
 (0.00961) (0.00959) (0.00961) (0.00959) (0.00959) 
Wind speed (log) 0.0322* 0.0324** 0.0338** 0.0323** 0.0303* 
 (0.0125) (0.0126) (0.0125) (0.0125) (0.0125) 
Air pressure 0.00228** 0.00222* 0.00225** 0.00217* 0.00210* 
 (0.000879) (0.000875) (0.000872) (0.000870) (0.000870) 
Precipitation (log) 0.0270*** 0.0266*** 0.0262*** 0.0265*** 0.0267*** 
 (0.00495) (0.00495) (0.00495) (0.00495) (0.00495) 
Humidity -0.000450 -0.000475 -0.000498 -0.000602 -0.000522 
 (0.000450) (0.000449) (0.000447) (0.000448) (0.000448) 
Mean temperature below 25 -0.00244 -0.00351* -0.00344* -0.00399** -0.00482*** 
 (0.00213) (0.00164) (0.00142) (0.00132) (0.00130) 
Mean temperature above 25 -0.00614*** -0.00709*** -0.0130*** -0.0377*** -0.00916 
 (0.00160) (0.00215) (0.00363) (0.00932) (0.0333) 
Ultraviolet index 0.00736 0.00791 0.00825 0.00886 0.00873 
 (0.00882) (0.00879) (0.00877) (0.00877) (0.00877) 
Ultraviolet index^2 0.00508*** 0.00509*** 0.00536*** 0.00533*** 0.00461** 
 (0.00145) (0.00145) (0.00144) (0.00142) (0.00141) 
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Diurnal Temperature 0.00408** 0.00403** 0.00401** 0.00421** 0.00417** 
 (0.00154) (0.00154) (0.00154) (0.00154) (0.00154) 
Observations 19,221 19,221 19,221 19,221 19,221 
R-squared 0.740 0.740 0.740 0.740 0.740 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

4.6 Excluding observations with high ultraviolet index 
Table S8 and Table S9 report the estimates of UV index effects when excluding observations in 
the top 5% (13.25) and top 10% (10.66) UV index in our sample. Results show that the U-
shaped effect of UV index is significant and consistent across specifications and largely robust 
to the exclusion of observations with large UV index, showing that our results are not solely 
driven by extreme values. In fact, if anything, the curvature of UV impact becomes sharper 
(more positive) when we exclude those extreme values. While we lack a theoretically strong 
justification for the increasing part of the U-shaped effect, one could speculate that it relates to 
shift of social interactions to riskier indoor environments when UV index is very high. We cannot 
directly test this or other alternative hypotheses in our data.  
 

Table S8. Regression results excluding observations with top 5% UV index under various 
exclusion criteria for initial periods 
      
 Exclude first 10 

days 
Exclude first 15 

days 
Exclude first 20 

days 
Exclude first 25 

days 
Exclude 
first 30 
days 

      
Sulfur dioxide (log) 0.00194 0.0144 0.0249** 0.0180 0.0117 
 (0.00788) (0.00874) (0.00962) (0.0110) (0.0133) 
Ozone (log) 0.00564 0.0147 0.0323** 0.0310** 0.0202 
 (0.00791) (0.00888) (0.00985) (0.0114) (0.0135) 
Wind speed (log) 0.0950*** 0.0879*** 0.0339** 0.0116 0.000673 
 (0.0100) (0.0112) (0.0125) (0.0145) (0.0177) 
Air pressure 0.00857*** 0.00665*** 0.00228** 0.000923 0.00177 
 (0.000692) (0.000782) (0.000868) (0.000990) (0.00119) 
Precipitation (log) 0.0351*** 0.0372*** 0.0281*** 0.0191** 0.0229** 
 (0.00393) (0.00446) (0.00503) (0.00584) (0.00725) 
Humidity -0.000653 -0.000850* -0.000701 -0.000116 -0.000441 
 (0.000360) (0.000403) (0.000450) (0.000519) (0.000643) 
Mean temperature 
below 25 

-0.000564 -0.00285* -0.00364** -0.00406** -0.00186 

 (0.00108) (0.00119) (0.00132) (0.00152) (0.00192) 
Mean temperature 
above 25 

-0.0455*** -0.0479*** -0.0478*** -0.0439*** -0.0194 

 (0.0100) (0.0104) (0.0104) (0.0109) (0.0120) 
Ultraviolet index 0.0196** 0.00976 0.00809 0.00777 0.00290 
 (0.00734) (0.00814) (0.00901) (0.0102) (0.0124) 
Ultraviolet index^2 0.0117*** 0.0106*** 0.00594** 0.00466* 0.00774** 
 (0.00163) (0.00180) (0.00199) (0.00223) (0.00270) 
Diurnal 
Temperature 

0.00714*** 0.00753*** 0.00451** 0.00426* 0.00334 

 (0.00123) (0.00138) (0.00154) (0.00178) (0.00221) 
Observations 30,871 24,738 18,259 12,915 8,477 
R-squared 0.706 0.711 0.743 0.780 0.816 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S9. Regression results excluding observations with top 10% UV index under various 
exclusion criteria for initial periods 
      
 Exclude first 

10 days 
Exclude first 

15 days 
Exclude first 

20 days 
Exclude first 

25 days 
Exclude first 

30 days 
      
Sulfur dioxide (log) 0.0243* 0.0243* 0.0243* 0.0144 0.0122 
 (0.00994) (0.00994) (0.00994) (0.0114) (0.0140) 
Ozone (log) 0.0319** 0.0319** 0.0319** 0.0289* 0.0188 
 (0.0101) (0.0101) (0.0101) (0.0118) (0.0141) 
Wind speed (log) 0.0309* 0.0309* 0.0309* 0.0120 -0.00624 
 (0.0128) (0.0128) (0.0128) (0.0147) (0.0180) 
Air pressure 0.00256** 0.00256** 0.00256** 0.00140 0.00199 
 (0.000877) (0.000877) (0.000877) (0.000994) (0.00120) 
Precipitation (log) 0.0309*** 0.0309*** 0.0309*** 0.0229*** 0.0284*** 
 (0.00516) (0.00516) (0.00516) (0.00599) (0.00749) 
Humidity -0.000810 -0.000810 -0.000810 -0.000296 -0.000769 
 (0.000457) (0.000457) (0.000457) (0.000526) (0.000655) 
Mean temperature 
below 25 

-0.00335* -0.00335* -0.00335* -0.00370* -0.00179 

 (0.00133) (0.00133) (0.00133) (0.00153) (0.00193) 
Mean temperature 
above 25 

-0.0657*** -0.0657*** -0.0657*** -0.0507** -0.0414* 

 (0.0168) (0.0168) (0.0168) (0.0178) (0.0204) 
Ultraviolet index 0.0104 0.0104 0.0104 0.00857 0.0104 
 (0.00948) (0.00948) (0.00948) (0.0108) (0.0132) 
Ultraviolet index^2 0.00709** 0.00709** 0.00709** 0.00531* 0.0106*** 
 (0.00231) (0.00231) (0.00231) (0.00261) (0.00320) 
Diurnal 
Temperature 

0.00477** 0.00477** 0.00477** 0.00477** 0.00371 

 (0.00157) (0.00157) (0.00157) (0.00180) (0.00225) 
Observations 17,290 17,290 17,290 12,115 7,843 
R-squared 0.740 0.740 0.740 0.779 0.813 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

4.7 Inclusion of interaction terms and additional variables 
Table S10 presents the results of including additional weather effects and interaction terms in 
our main specification. We first included additional weather effects of absolute humidity, 
nitrogen dioxide, particulate matter, visibility, wind direction, cloud cover, snow, and moon 
illumination. We did not observe significant effects of these additional weather variables, except 
for moon illumination, where we observed a significant negative effect. But most of our main 
results are robust to the inclusion of additional variables, except for wind speed and air 
pressure, which are no longer significant with the inclusion of moon illumination. We then 
explored some interaction effects between weather variables. We found a significant negative 
interaction between the quadratic term of UV index and precipitation, indicating the U-shaped 
effect of UV index will be dampened with the increase of precipitation. We also found a positive 
and significant interaction between mean temperature above 25°C and sulfur dioxide, indicating 
the negative effect of temperature will be attenuated by increased sulfur dioxide level. Finally, 
we observed a negative and significant interaction between particulate matter and air pressure, 
indicating the positive effect of particulate matter will attenuate with higher air pressure. While 
we do not have good theoretical explanations for the moon illumination effect and these 
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interaction effects, we reported them here to show other weather effects are robust to this 
additional inclusion and point to possible avenues for further investigation. 

Table S10. Regression results including additional interaction terms and weather effects 
 Include 

additional 
weather 
effects 

Include 
absolute 
humidity 

Include 
moon 

illumination 

Include 
interaction 

between UV 
and 

precipitation 

Include 
interaction 
between 

mean 
temperature 

and SO2 

Include 
interaction 
between 

PM2.5 and 
air 

pressure 
       
Sulfur dioxide (log) 0.0284* 0.0311*** 0.0292** 0.0306** 0.00623 0.0319*** 
 (0.0114) (0.00937) (0.00933) (0.00937) (0.0155) (0.00938) 
Ozone (log) 0.0352*** 0.0362*** 0.0332*** 0.0326*** 0.0310** 0.0350*** 
 (0.0103) (0.00956) (0.00956) (0.00961) (0.00963) (0.00961) 
Wind speed (log) 0.0333* 0.0346** 0.0160 0.0295* 0.0338** 0.0324** 
 (0.0131) (0.0123) (0.0125) (0.0125) (0.0125) (0.0125) 
Air pressure 0.00211* 0.00233** 0.000543 0.00232** 0.00240** 0.00805*** 
 (0.000879) (0.000862) (0.000879) (0.000875) (0.000874) (0.00173) 
Precipitation (log) 0.0272*** 0.0239*** 0.0231*** 0.0377*** 0.0259*** 0.0252*** 
 (0.00555) (0.00465) (0.00494) (0.00557) (0.00495) (0.00496) 
Relative Humidity -0.000421  -0.000686 -0.000814 -0.000539 -0.000633 
 (0.000517)  (0.000446) (0.000451) (0.000448) (0.000448) 
Mean temperature 
below 25 

-0.00423** -0.00339 -0.00162 -0.00393** -0.00470** -0.00441** 

 (0.00141) (0.00193) (0.00134) (0.00133) (0.00155) (0.00136) 
Mean temperature 
above 25 

-0.0377*** -0.0362*** -0.0365*** -0.0437*** -0.0733*** -0.0396*** 

 (0.00935) (0.00953) (0.00928) (0.00941) (0.0129) (0.00933) 
Ultraviolet index 0.00798 0.00663 0.00449 0.00836 0.00765 0.0112 
 (0.00888) (0.00861) (0.00874) (0.00886) (0.00877) (0.00878) 
Ultraviolet index^2 0.00540*** 0.00545*** 0.00595*** 0.00717*** 0.00542*** 0.00544*** 
 (0.00143) (0.00144) (0.00142) (0.00147) (0.00142) (0.00142) 
Diurnal Temperature 0.00371* 0.00446** 0.00345* 0.00405** 0.00439** 0.00405** 
 (0.00165) (0.00154) (0.00154) (0.00154) (0.00154) (0.00155) 
Absolute Humidity  -0.00109     
  (0.00284)     
Moon illumination   -0.0018***    
   (0.000160)    
Nitrogen dioxide (log) 0.00260      
 (0.0118)      
Particulate Matter 
(log) 

0.00299     0.0514*** 

 (0.00596)     (0.0136) 
Visibility -0.00332      
 (0.00466)      
Wind direction -1.59e-05      
 (4.75e-05)      
Cloud cover -0.000269      
 (0.000234)      
Snow (log) -0.00730      
 (0.0140)      
Ultraviolet 
index*Precipitation 

   -0.000456   

    (0.00171)   
Ultraviolet    -0.0016***   
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 Include 
additional 
weather 
effects 

Include 
absolute 
humidity 

Include 
moon 

illumination 

Include 
interaction 

between UV 
and 

precipitation 

Include 
interaction 
between 

mean 
temperature 

and SO2 

Include 
interaction 
between 

PM2.5 and 
air 

pressure 
index^2*Precipitation 
    (0.000384)   
Mean temperature 
below 25*Sulfur 
dioxide 

    0.00110  

     (0.000897)  
Mean temperature 
above 25*Sulfur 
dioxide 

    0.0248***  

     (0.00634)  
Particulate Matter*Air 
pressure 

     -0.0032*** 

      (0.000807) 
Observations 19,221 19,221 19,221 19,221 19,221 19,221 
R-squared 0.740 0.740 0.742 0.741 0.741 0.741 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

4.8  Overall robustness of projections to various specifications. 
Our last test focuses on the overall robustness of projections to alternative specifications. To do 
this we constructed a sample independent from estimation data consisting of 1072 cities and 
calculated their relative predicted risk (based on weather and air pollution vector from January 
23 2019 to January 23, 2020) relative to the median of predicted risk in our estimation sample 
across 9 alternative specifications. These predictions are similar to CRW measures we report 
with two notable caveats: first, we use daily, rather than 15-day, averages for this set of 
projections. The use of much more variable daily inputs will significantly increase the variance in 
predictions and elicit any differences between alternative models more clearly. Second, we use 
the median, rather than 95th percentile of the estimation sample, to normalize these measures 
so that the comparisons are centered around the same point at the value of 1. 

We then calculate correlations and mean absolute errors (MAE) between projections from 
several alternative models and report them in Table S11 (see the model specifications 
compared below the table). Results show that there are high correlations (average correlation 
=.945, SD=.034) and low MAEs (average MAE=.047, SD=.023) across various CRWs, showing 
that risk projections and our results are robust to different exclusion criteria and inclusion of 
additional variables.   
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Table S11. Correlation and mean absolute error of relative risk projection for 1072 urban cities 
over 1 year across 9 specifications (correlation reported in lower diagonal (blue), MAE between 
specifications in upper diagonal (green), MAE against a constant value of 1 on the diagonal 
(white)) 
 

 A B C D E F G H I 

A 
.10 
(.113) 

 .007 
(.007) 

 .010 
(.007) 

 .032 
(.032) 

 .055 
(.050) 

.080 
(.068) 

.017 
(.018) 

.031 
(.041) 

.036 
(.029) 

B 0.997 
 .101 
(.106) 

.010 
(.007) 

.036 
(.032) 

.055 
(.050)  

 .079 
(.066)  

 .019 
(.018) 

 .031 
(.041)  

.037 
(.029) 

C 0.996 0.997 
.101 
(.104) 

 .040 
(.035) 

.056 
(.052) 

.076 
(.064) 

.017 
(.017) 

 .030 
(.039)  

 .039 
(.030) 

D 0.966 0.955 0.947 
 .109 
(.130)  

 .044 
(.039) 

 .095 
(.074) 

 .041 
(.039) 

.052 
(.061)  

.034 
(.030)  

E 0.946 0.941 0.941 0.952 
 .139 
(.155) 

.072 
(.063) 

 .056 
(.050)  

.061 
(.071) 

(.058) 
(.051) 

F 0.942 0.948 0.961 0.873 0.922 
.169 
(.175)  

.065 
(.059) 

.080 
(.076) 

.094 
(.077)  

G 0.995 0.993 0.993 0.946 0.932 0.956 
 .112 
(.121) 

.032 
(.044)  

.045 
(.042) 

H 0.929 0.932 0.937 0.859 0.878 0.906 0.932 
.103 
(.104)  

.053 
(.051) 

I 0.961 0.957 0.956 0.960 0.941 0.936 0.953 0.877 
 .092 
(.101) 

*A: main specification as reported in the main text 
 B: main specification + additional weather variables (Table S10 column 1)  
 C: main specification + absolute humidity (Table S10 column 2) 
 D: main specification with top 5% R0 excluded 
 E: main specification with first 15 days excluded (Table S5 column 2) 
 F: main specification with US-only sample 
 G: main specification with top 5% UV index excluded (Table S8 column 3) 
 H: main specification + interaction between UV index and precipitation (Table S10 column 4) 
 I: main specification with location-specific quadratic trend (Table S4 column 5) 

 

5. Specification and validation using synthetic data 
We conducted extensive synthetic analyses to inform the selection of a reliable statistical 
method and to build confidence in our final estimation method. These analyses could be divided 
into those focused on specifying the estimation method (5.2), and those designed to validate our 
method in a study wherein the analyst was blinded to the true specification (5.3). After providing 
an overview in 5.1, we explain these two sets of analyses. Detailed codes are available at 
<https://github.com/marichig/weather-conditions-COVID19/>. 

5.1. Summary of our approach and findings 
Before providing the details of the analysis, we review the main objectives, approach and 
findings of this test. We then provide more details about the analysis in sections 5.2 and 5.3.  

 Approach: To build and validate our method and examine its sensitivity to different 
assumptions, we created synthetic data from simulated epidemics with several different 
assumed temperature effects on infection. The true exposure, exact detection delays, and 
temperature functions were hidden from our estimation method to objectively assess the 
method’s success. Our objectives were two-fold and we created a task allocation among 
researchers to meet those objectives. First, investigator HR used the iterations of this 
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process to improve our statistical estimation method and ensure that it was able to find 
temperature functions under various assumptions (Section 5.2.2). Second, we used a more 
realistic individual-level model of infection (stochastic agent-based model) built by two other 
investigators (NG and MG) not involved in the first synthetic data analysis (used for method 
design) to assess if our statistician (RX), who was unaware of true functional forms or the 
second model structure, could correctly identify effects in this different simulation 
environment (section 5.3). This design addressed the risk that a method fine-tuned on 
synthetic data may perform well under the assumed simulation setting but fail in other 
environments.  

 Results: The key finding from these experiments (further elaborated below) include: 1) Our 
preferred model specification could accurately identify correct weather impacts if true 
infection was observable; 2) In the absence of data on true exposure (which is the case in 
COVID-19 due to testing delays), however, estimation of weather impact becomes 
complicated, and many intuitive specifications used in other studies fail to recover true 
impacts. This challenge may afflict many attempts to identify the link between weather and 
COVID-19 transmission; 3) Our algorithm for uncovering the true exposure and the 
specification we selected offer a potentially conservative but qualitatively informative view of 
the true underlying impacts; 4) Our preferred specification is robust to a few key 
uncertainties that may vary between simulated numbers and the actual epidemic; and 5) A 
statistician blinded to true data generating process was able to use this method to identify 
true weather effects from synthetic data generated from a different, more detailed, agent-
based model of COVID-19 epidemics. Given these results from the analysis of the synthetic 
data, we can have more confidence in the analysis using the actual data.  

 

5.2. Statistical specification using synthetic data 
Our approach consists of building a simulation model of the epidemic to generate synthetic data 
(with known weather impact functions) followed by estimating various statistical specifications to 
assess their ability in identifying the true functional forms.  

5.2.1. Simulation model 
We used a simple SIR-based simulation model to generate synthetic epidemics. This model 
was applied across various locations (with different vectors of weather variables (𝑊ሺ𝑡ሻ) 
impacting epidemic curve based on 𝑔ሺ𝑊ሺ𝑡ሻሻ) to generate the raw data going into alternative 
statistical methods to identify the function 𝑔 below. Equations of the simulation model are 
presented in Table S12. 

Table S12. Equations of the SIR-based stochastic simulation model of epidemics 
 

Iterates daily until epidemic ends or until t=50 is reached. 
𝐼ேሺ𝑡ሻ

ൌ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 ൭
𝑏𝑆ሺ𝑡ሻ𝐶ூሺ𝑡ሻ

𝑆ሺ0ሻ
𝑝ሺ𝑡ሻ𝑔൫𝑊ሺ𝑡ሻ൯൱ 

New infections assumed Poisson based on susceptible stock 
(𝑆), Infectious stock (𝐶ூ), force of infection (𝑏), impact of 
distancing policies (p(t)), and weather effect (g(W(t))). We 
focused on mean temperature as the variable going into the g 
function. 

𝑝ሺ𝑡ሻ ൌ 𝑀𝑖𝑛൫1, 𝑒ି௦ሺ௧ି௧బሻ൯  Distancing policies reduce risk of infection by a fixed fraction (s) 
per day, beginning the first day with a confirmed case (t0). 
Parameter s is drawn uniformly from 0.03-0.05 range. 

𝑆ሺ𝑡 ൅ 1ሻ ൌ 𝑆ሺ𝑡ሻ െ 𝐼ேሺ𝑡ሻ Updating susceptible stock for next period 
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𝑅ሺ𝑡 ൅ 1: 𝑡 ൅ 21ሻ൅
ൌ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙ሺ𝐼ேሺ𝑡ሻ, 𝐷ோ௖௩ሻ 

 

Adding to future daily recovery rates (𝑅) to incorporate the 
recovery of all those infected today using a multinomial 
distribution. 𝐷ோ௖௩ is the recovery delay distribution, assumed 
Poisson with mean of 20 days. The “+=” operator adds to the 
existing vector on the left-hand side values on the right hand. 

𝐼ெሺ𝑡 ൅ 1: 𝑡 ൅ 18ሻ൅
ൌ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙ሺ𝑟𝑜𝑢𝑛𝑑ሺ𝐼ேሺ𝑡ሻ
∗ 𝑓ሻ, 𝐷஽௧௖ሻ 

  

Adding to future measurement of detected cases (𝐼ெ) to 
incorporate fraction f of those infected today in future detection 
data. A multinomial distribution is used following the Detection 
Delay lag structure (𝐷஽௧௖; see section 2 of Appendix). In our 
baseline model we use 𝑓 ൌ 0.1, and test more complex 
functional forms where f increases over time from zero to a 
maximum of 0.3 in response to measured infections in 3 
different scenarios. 

𝐶ூሺ𝑡 ൅ 1ሻ ൌ 𝐶ூሺ𝑡ሻ ൅ 𝐼ேሺ𝑡ሻ െ 𝑅ሺ𝑡ሻ Updating next period stock of infectious based on recovery and 
new infections. Initial infectious population of 3 is assumed so 
that few epidemics die out due to stochasticity. 

 

Initialization and functional assumptions  
𝑆ሺ0ሻ
ൌ 𝑀𝑎𝑥൫1000, 𝑁𝑜𝑟𝑚𝑎𝑙ሺ5𝑒5,2𝑒5ሻ൯ 

   

For different simulated locations we initialize the susceptible 
population to vary a wide range. In lieu of explicit response 
mechanisms, these different sizes represent different slow down 
trajectories in the new infections over time.  

𝑏 ൌ
4

20
𝑁𝑜𝑟𝑚𝑎𝑙ሺ1,0.3ሻℎሺ𝑊ሻ 

For different simulated locations the baseline force of infection is 
drawn from a normal distribution, set to have an expected basic 
reproduction number of 4, and to be potentially correlated with 
weather variables (using ℎሺ𝑊ሻ term) to ensure robustness of 
results to such correlations. Note that parameter b is a daily 
factor, and thus divided by 20 to capture the expected duration 
of illness. 

𝑔ሺ𝑊ሻ We use different g functions, including quadratic and linear 
forms. We focus on temperature as the primary 𝑊 variable that 
is read from data and input into the synthetic data.  

ℎሺ𝑊ሻ In our main synthetic analysis, we use:  

ℎሺ𝑊ሻ ൌ
40 ൅ 𝑀𝑒𝑎𝑛൫𝑊ሺ1: 50ሻ൯

50
  

This creates a positive correlation of 0.47 between temperature 
that affects transmission rates and the reproduction number for 
a specific location. 

𝑊 We use mean daily temperature data from a start date uniformly 
picked between January 23rd 2019 and March 25th 2019 for t=1 
for each location, and continue accordingly. 2019, rather than 
2020, temperature data are used to ensure sufficient data are 
available for full epidemic to unfold. 
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Using these specifications, we then conducted multiple experiments to identify a viable 
specification. In each experiment we simulated the model for 20 iterations (with different random 
realizations) for a sample of 500 locations randomly drawn from our 3,739 locations with their 
actual temperature data. Temperature data started from a random day between January and 
March, and then were fed into 𝑊.  

We summarize the results from each experiment using a graph of the shape of the estimated 
relationship between temperature and natural logarithm of estimated reproduction number, as 
we do in our main statistical analysis. This estimate is then compared with the true relationship 
(𝑙𝑛ሺ𝑔ሺ𝑤ሻሻ; the thick dashed line in figures below). The success measure for our method is to 
have the estimated relationship from our method close to the thick dashed line. Effects falling 
between the true curve and the horizontal line at zero would be conservative, and those falling 
outside this range may be misleading. Our actual temperature data in the simulation period are 
bounded to smaller ranges (90% of data falls between -10 and 20 degree Celsius) than reported 
in these figures. Therefore, extrapolations outside this range are not necessarily indicated by 
the data, rather, emerge from the estimated functional forms. Nevertheless, we graph a much 
wider temperature range (-30 to 50) to highlight the errors of such extrapolation. We also report 
the means of estimated parameters for 𝑙𝑛ሺ𝑔ሺ𝑤ሻሻ, 95% confidence interval, coefficient of 
determination (r2), and sample size for each experiment.   

 

5.2.2. Synthetic experiments 
In the rest of this section, unless specified in the top row of a figure, we focus on quadratic 
equations for 𝑙𝑛ሺ𝑔ሺ𝑤ሻሻ. The main specification uses 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑤 െ 0.002𝑤ଶ. We also 

conduct sensitivity analysis to other functional forms for 𝑙𝑛൫𝑔ሺ𝑤ሻ൯. We summarize the results of 
these synthetic analyses under 10 experiments, which could be categorized in three subsets. 
Experiments 1 to 3 (sections E1-E3 below) introduce the main challenges in correctly 
associating weather with reproduction number, concluding that while not an impossible task, the 
best one can expect from similar efforts may be to find estimates that are conservative but not 
misleading. Next, in experiments E4 to E6 we show support for the chosen statistical 
specification against other plausible alternatives. Finally, experiments E7 to E10 show the 
robustness of the preferred specification to a variety of assumptions. 

 

 

5.2.2.1. The complexity of inferring the true impact of weather conditions 
 

E1) Endowed with true, deterministic infections, the method finds the correct impact of 
weather. Relaxing either assumption deteriorates results. 

In Figure S5, we compare three different scenarios. In the first two (A and B), the estimation 
method is provided with the actual true infections (rather than those estimated using the method 
discussed above). Moreover, the first experiment (A) also assumed deterministic infection rate 
(that is, 𝐼ேሺ𝑡ሻ ൌ 𝐸ሺ𝐼ேሺ𝑡ሻሻ in Table S12). Plot C shows results using our baseline specification: 
estimating true infections using quadratic programming, including location-specific trend lines 
and fixed effects, dropping days with estimated exposure below 1, as well as the first 20 days 
after the estimated exposure first reaches 1, and excluding the outlier estimated reproduction 
numbers (those above 95%). The two assumptions on using deterministic infection and true 
infections in the first two experiments are not realistic. Instead, they reassure us that the 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.05.20092627doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.05.20092627
http://creativecommons.org/licenses/by-nd/4.0/


34 
 

method, given correct exposures, would find the true functional forms. Moreover, they inform the 
challenges to unbiased estimation of reproduction number due to stochasticity of infections 
(comparing plots A and B) and estimation of true infections from reported data (comparing plots 
B and C).  

Inspection of these results reveals two major challenges to estimating reproduction number: i) 
Randomness in infection rate leads to weaker identified effects. ii) The imperfect identification of 
true infections from reported cases significantly reduces the magnitude of estimated effects. 
Both of these effects generate a bias towards null estimated effects, even when true effects are 
very significant. As the experiments reported in the following sections show, our baseline model, 
despite its conservative estimates, might be among the best available options to find estimates 
for the impact of weather on transmission rates.  

Note that the true linear and square terms in 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ are reported in the title for each panel in 
the following figures. 

(A) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ (B) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ (C) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.01213 -0.01162 -0.0111

Quadratic -0.00197 -0.00194 -0.00192

Mean N 9742.85 Mean r2 0.982204
 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.01349 -0.01167 -0.00985
Quadrati

c -0.00172 -0.00163 -0.00154

Mean N 12088.7 Mean r2 0.771026
 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00328 0.000939 0.005162 
Quadrati

c -0.00096 -0.00073 -0.00051 

Mean N 5275.05 Mean r2 0.696298 
 

Figure S5: Impact of stochasticity in infections and imperfect estimation of true infections on 
quality of estimated parameters.  

 

E2) Using true infections offers reliable, and slightly conservative, estimates for a range 
of functions. 

Before focusing on the main specification, we report another set of experiments that show the 
performance of estimation method with true infections under three other functional forms (Figure 
S6). The main observation in this set of experiments is that true infection rates, even including 
randomness in infection, would offer close estimates for the underlying impacts of temperature 
on reproduction number across a range of functional forms. So, the statistical method in use is 
fundamentally sound. 
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(A) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ 0.05𝑇 (B) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.05𝑇 (C) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ 0.004𝑇ଶ 

 

Mean 

(2.5%) 
Mean 
Estimate 

Mean 
(97.5%) 

Linear 0.041662 0.043575 0.045488

Quadrati
c 0.000159 0.000241 0.000322

Mean N 16405.5 Mean r2 0.933976

 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.05111 -0.04922 -0.04734

Quadratic 0.000203 0.000298 0.000392

Mean N 11622.1 Mean r2 0.839987
 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00402 -0.001690.000644

Quadratic0.003983 0.0040880.004194

Mean N 15802.6 Mean r2 0.90471
 

Figure S6: Performance of estimation method in identifying different functional relationships 
between weather and reproduction number when provided with true infections. 

 

E3) Using proposed estimation method provides conservative, but largely consistent, 
estimates. 

In the next set of experiments, we test the main estimation method, which uses estimated 
exposures, to find the effect of temperature under the different functional forms introduced in 
E2. In these experiments, we continue to use the same inclusion criteria used in experiment 1. 
Overall, estimated effects, as shown in Figure S7, are qualitatively consistent with the true 
functional forms, but also show important deviations: i) The results include some biases in 
estimated parameters when the estimated functional form differs from the true function (e.g., 
including quadratic terms that are not in the true function). This is a general feature of estimating 
mis-specified functions. ii) Results are generally conservative (pointing towards null effects) in 
the regions of the temperature actually covered by W data. Based on these observations, the 
use of the estimation method should include appropriate caution. The results may undervalue 
the true magnitudes of weather effects, and if more complex functional forms are estimated, 
spurious results may be found. For this reason, in our main specification we limit the use of 
more complex interaction terms.  

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.05.20092627doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.05.20092627
http://creativecommons.org/licenses/by-nd/4.0/


36 
 

 (A) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ 0.05𝑇 (B) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.05𝑇 (C) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ 0.004𝑇ଶ 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear 0.02771 0.03373 0.03975

Quadratic -0.0008 -0.00057 -0.00033

Mean N 12876.35 Mean r2 0.807183
 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.02432 -0.02119 -0.01806 

Quadratic 0.000103 0.000277 0.000452 

Mean N 5523.05 Mean r2 0.800788 
 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00194 0.0025240.006988

Quadratic0.001067 0.001260.001453

Mean N 13029.55 Mean r20.799828
 

Figure S7: Performance of preferred estimation method with realistically available data in 
identifying different functional relationships between weather and reproduction number. 

 

5.2.2.2. Comparing with a few alternative specifications 
 

E4) Results with simple shifting of infections 

Our preferred specification uses the estimated infections based on the quadratic programming 
method discussed in section S3. Here we compare those results against a simpler specification 
that shifts back detected infections each day by 10 days to infer the true infection rate on each 
day. Results are shown in Figure S8. We assess this alternative under the same functional 
forms discussed in experiment 3 (E3) and thus results are directly comparable with that 
experiment. In short, the simple shift method offers results that are comparable with the 
preferred specification but more conservative (e.g., Panel C) and in some cases more biased 
(e.g., stronger, incorrect, quadratic term in Panel A). In a few other experiments with other 
simulation model setups, we found that this intuitive specification (simple shifting) may 
significantly underperform our calculated exposure method when behavioral responses are 
more complex.  

 

(A) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ 0.05𝑇 (B) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.05𝑇 (C) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ 0.004𝑇ଶ 
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Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear 0.031187 0.036978 0.042768

Quadratic -0.00128 -0.00106 -0.00084

Mean N 14108.85 Mean r2 0.839037
 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.01445 -0.01117 -0.00789

Quadratic -8.1E-05 9.83E-05 0.000278

Mean N 5294.75 Mean r2 0.819517
 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.0002 0.004002 0.0082

Quadratic0.000339 0.0005070.000675

Mean N 14726 Mean r20.826531
 

Figure S8: Impact of using a simple shift of measured infections on performance of estimation 
under various functional forms.  

 

E5) Using other combinations of location specific effects 

In this experiment, we compare three settings in which we exclude fixed effects but keep 
location specific trends (Figure S9, panel A), exclude trends but include fixed effects (panel B), 
and exclude both fixed effects and trends (panel C). These experiments are directly comparable 
with our preferred specification where both trends and fixed effects are included (Panel C in 
Figure S5).  

The overall performance deteriorates significantly when location specific trends are removed 
(e.g., panels B or C compared with baseline results). This should be expected; the positive trend 
in temperature during the spread of epidemic in late winter and early spring likely correlates with 
behavioral and other responses that temper the spread in each location. Thus, excluding 
location trends would lead regression results to pick up that spurious correlation and inflate the 
impact of temperature, creating illusory and misleading results. Thus, including location specific 
trends is a necessity. 

The results of excluding fixed effects but including location-specific trends are comparable with 
our baseline findings and somewhat stronger (closer to true effects) in this experiment (but also 
in some other experiments not reported here). Therefore, one could argue for inclusion of only 
location-specific trends rather than both fixed effects and location-specific ones. The theoretical 
logic for such recommendation is that two different location-specific parameters absorb much of 
the variations in weather between and within locations, and combined with errors in the 
identification of true infections from reported data, very modest signal remains to estimate the 
weather function leading to weak coefficients.  

The risk with excluding fixed effects is that we would not be able to provide appropriate controls 
for a host of unobserved location-specific characteristics, from cultural norms in interaction and 
eating, to public transportation use, comorbidities, and age distribution, which may conceivably 
interact with transmission and be correlated with some of our weather and pollution variables 
(thus introducing unknown biases). Moreover, R-squared drops substantially in panel A in 
comparison to the baseline of Panel C in Figure S5 (with fixed effect and location-specific trend 
effect), showing that there are cross-regional variations missed if we don’t control for fixed-effect 
variation. We therefore decided to select the more conservative specification (with both fixed 
effects and location specific trends) as our primary model.  
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(A) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ (B) 𝐿𝑙൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ (C) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.01027 -0.0073 -0.00433

Quadratic -0.00092 -0.00073 -0.00053

Mean N 5155.4 Mean r2 0.586775
 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.06042 -0.05548 -0.05054

Quadratic -0.00043 -0.000150.000135

Mean N 5215.2 Mean r20.222102
 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.02965 -0.02605 -0.02244 

Quadratic -0.00028 -4.6E-05 0.000189 

Mean N 5251.4 Mean r2 0.074705 
 

Figure S9: Comparing the use of only trend effects (A), only fixed effects without trends (B), and 
no location specific fixed or trend effects (C). 

 

E6) Weighting data points in regression do not improve performance. 

One potential issue in the current specification is that locations with larger outbreaks are 
weighted the same way as locations with smaller outbreaks. The data from larger outbreaks 
may well be more reliable, and the estimates of R calculated from that data thus more reliable. 
We assess if a correction for this issue can improve estimation results. To do so we use 
simulations to estimate how the variance in the dependent variable 𝑙𝑛ሺ𝑅ሻ scales with the 
number of estimated daily true infections and use that estimated variance to conduct weighted 
least square regressions. Results, reported in Figure S10-panel A (panel B showing baseline 
replicated from experiment 1), show more conservative outcomes and dispersion compared to 
the unweighted regressions and no significant improvements. Hence, we do not pursue this 
correction in our main specification.  

(A) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ (B) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ 

  

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00196 0.000775 0.003506

Quadratic -0.00102 -0.00084 -0.00067

Mean N 5140.15 Mean r2 0.645874
 

 
Mean 
(2.5%) Mean Estimate Mean (97.5%) 

Linear -0.00328 0.000939 0.005162

Quadratic -0.00096 -0.00073 -0.00051

Mean N 5275.05 Mean r2 0.696298
 

Figure S10: Impact of using weighted regression (A) vs. unweighted (B) 
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5.2.2.3. Robustness to various features of data 
E7) Results are robust to variance in susceptible population. 

In the baseline simulations, the location-specific population size, which partially controls the 
speed of spread, is normally distributed with mean of 500,000 and standard deviation of 
200,000 (with 1,000 population minimum). In Figure S11, we compare that baseline (panel B) 
against standard deviation of 0 and 400,000. The impacts are largely negligible, suggesting that 
the variance in speed by which the spread slows down due to herd immunity does not impact 
the findings much. This is largely expected, as in most simulated epidemics the transmission 
halts as a result of behavioral response and not herd immunity dynamics. 

(A) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ (B) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ (C) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00141 0.002697 0.006801

Quadratic -0.00096 -0.00074 -0.00053

Mean N 5258.8 Mean r2 0.692384
 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00328 0.000939 0.005162
Quadrati

c -0.00096 -0.00073 -0.00051

Mean N 5275.05 Mean r2 0.696298
 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00258 0.00178 0.006138

Quadratic -0.0009 -0.00067 -0.00044

Mean N 4921.55 Mean r2 0.699527
 

Figure S11: Impact of various variances in population size per location. (A) No variance (mean 
is 1e5). (B) Baseline (Standard deviation of 200,000). (C) Standard deviation of 400,000. 

 

E8) Variations in basic reproduction number do not impact the findings. 

In the baseline simulations (E1), the location-specific basic reproduction number had a mean of 
4 and variance of 1.2 (normally distributed with a minimum of 0; but also positively correlated 
with average temperature in the location). In Figure S12, we compare that baseline (reproduced 
in panel B) against standard deviations of 0 (Panel A) and 2 (Panel C) across locations. The 
impacts are largely negligible, suggesting that the variance in speed by which the spread grows 
does not impact the findings.  
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(A) 𝐿𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ (B) 𝐿𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ (C) 𝐿𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00417 -0.00023 0.00372

Quadratic -0.00069 -0.00047 -0.00024

Mean N 4950.15 Mean r2 0.643934
 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00328 0.000939 0.005162
Quadrati

c -0.00096 -0.00073 -0.00051

Mean N 5275.05 Mean r2 0.696298
 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00185 0.002454 0.006756

Quadratic -0.00102 -0.00081 -0.00059

Mean N 5747.8 Mean r2 0.717136
 

Figure S12: Impact of different variances in basic reproduction number. (A) Standard deviation 
of basic reproduction number is 0, with mean of 4. (B) Standard deviation of basic reproduction 
number is 1.2. (C) Standard deviation of basic reproduction number is 2. 
 

E9) Correlation between basic reproduction rate and temperature has limited impact on 
results. 

Another variant on the distribution of basic reproduction number considers its correlation with 
the temperatures informing the weather function. In the baseline specification and all the 
experiments so far, we used a correlated version of that relationship (with a correlation of 0.47 
between basic reproduction number and average temperature; see simulation model 
specification in Section 5.2.1). Here we compare that setup (reproduced in Figure S13, Panel B) 
with the uncorrelated version where basic reproduction number is independently drawn for each 
location with a mean of 4 and standard deviation of 1.2 (Panel A). Results have limited 
sensitivity to this potential correlation. 

(A) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ (B) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ 

  

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00267 0.001664 0.005999

Quadratic -0.00094 -0.00071 -0.00047

Mean N 4582.9 Mean r2 0.688808
 

 
Mean 
(2.5%) Mean Estimate Mean (97.5%) 

Linear -0.00328 0.000939 0.005162

Quadratic -0.00096 -0.00073 -0.00051

Mean N 5275.05 Mean r2 0.696298
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Figure S13: Impact of including correlation between basic reproduction number and average 
location-specific temperature (baseline; reproduced in Panel B) vs. having no correlation (panel 
A). 

 

E10) Changes in test coverage do not change the results. 

The simulation model so far assumed a constant test fraction of f = 0.1, that is, in expectation 
only 10% of infections were detected. This ratio may change over time as test capacity ramps 
up in response to infection measures in practice. Here, we explore results under three such 
ramp-up scenarios. In Figure S14 panels A-C, the following ramp-up scenarios are assumed as 
a function of confirmed infections (IM): A) 𝑓 ൌ 𝑀𝑖𝑛ሺ0.2,0.001𝐼ெሻ; B) 𝑓 ൌ 𝑀𝑖𝑛൫0.2,0.05Logଵ଴ሺ𝐼ெ ൅

1ሻ൯; and C) 𝑓 ൌ 𝑀𝑖𝑛ሺ0.2,0.01ඥ𝐼ெሻ. Overall, results are rather insensitive to these very different 
test fraction numbers, suggesting robustness to this consideration.  

 

(A) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ (B) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ (C) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ െ0.01𝑇 െ 0.002𝑇ଶ 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear 0.003626 0.010222 0.016818

Quadratic -0.00145 -0.00112 -0.00079

Mean N 4865 Mean r2 0.780333
 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00044 0.004366 0.009169

Quadratic -0.00118 -0.00093 -0.00069

Mean N 5568.25 Mean r2 0.73142
 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear 0.004246 0.0098240.015403

Quadratic -0.00144 -0.00116 -0.00088

Mean N 5221.65 Mean r20.754417
 

Figure S14: Impact of three different test coverage functions. 

 

5.2.2.4. Summary of Synthetic Experiments 
The key finding from these experiments include: 1) The model specification we use could 
identify correct weather impacts if true infection were observable; 2) In the absence of that data 
estimation of weather impact becomes complicated, and many intuitive specifications fail to 
recover true impacts. This may be a general challenge afflicting any attempt to identify the link 
between weather and COVID-19 transmission; 3) The specification we selected offers a 
conservative but qualitatively sound view of the true underlying impacts. For example, in most 
estimations the quadratic term is estimated at about half its true value; and 4) This specification 
is largely robust to the key uncertainties that may vary between simulated numbers and the 
actual epidemic. 
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5.3. Blinded study specification and results 
 

In this last step of synthetic data analysis, our objective was to use a more detailed individual-
level model of infection (stochastic agent-based model) of interacting individuals to create 
synthetic data of reported cases, distort the outcome with a delay function to represent 
test/report, and examine whether our statistical methods are still capable of finding our weather 
functions. Two of our co-authors (NG and MG) created synthetic data and hid their assumed 
temperature effect functions from our statistician (RX), whose task was to discover the assumed 
temperature effect function.  

To that end, we created an agent-based simulation model of infection and simulated the model 
for 100 hypothetical towns of different populations, different R0s (potentially due to different 
contact rates and population density), different start days of infection, and different 
temperatures. We started from the generic individual model of infection (available on the 
NetLogo library) that is consistent with the basic SIR model at individual level. We modified the 
model using parameter values that are more consistent with COVID-19, and included several 
features needed to import and export data to the model. We modified the infection function to 
include the temperature effect on the probability of infection. We used three major scenarios for 
temperature effect (inverse U-shaped effect, linear increasing effect, and no effect (placebo)). 
The scenarios included actual temperature values coming from a sample of 100 regions from 
the real-world data. The ABM model’s output was generated using a detection delay with 
Poisson distribution with mean of 10 days. These data were used to estimate true infections 
with the method discussed in section 3. The model codes are available at 
https://github.com/marichig/weather-conditions-COVID19/. Figure S15 shows an example of 
creating synthetic data (scenario 1, explained in the following) with Panel A showing the true 
cumulative infections and panel B showing the reported values. 

A B 

  

Figure S15: An example of the synthetic data generation process with an assumed temperature 
effect function hidden from our statistician. True cumulative cases (A) and cumulative number of 
confirmed cases (B).   

The tests (scenarios) included quadratic (S1), no effect (S2), and positive linear effect (S3). For 
all scenarios we tested models both including fixed and trend effects (Si1) and those with only 
trend effects (Si2). In non-fixed-effect tests, in order to make a control variable consistent with 
our main regression, we added one extra variable, a hypothetical variable of “population 
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density,” to represent variations in locations correlated with basic reproduction number. In this 
setup, population density was correlated with the basic reproduction number excluding 
temperature-related factors (𝜌 ൌ .8). Our statistician did not know the true temperature function, 
so he used both linear and quadratic terms to map the predicted temperature effect in all cases, 
even when the effect was linear.  

Results are graphically summarized in Figure S16; for each scenario the results are compared 
with the “true” function of temperature (darker lines). Overall our statistician was able to 
correctly estimate the sign and magnitude of temperature effect in all cases, while the effect was 
generally underestimated further supporting the proposition that the method offers conservative 
estimates (e.g., in Figure S16, left panel, compare S11, and S12 curves with the true effect of 
“S1-true effect”). Also, in line with the previous section, we find that including fixed effects may 
lead to somewhat more conservative estimates than excluding it, but results are less prone to 
other biases. Higher R-squared values were obtained with fixed-effect models. 

 

(A) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ 1 െ ሺ
்ାହ

ଵହ
ሻଶ (B) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ 0 (C) 𝑙𝑛൫𝑔ሺ𝑤ሻ൯ ൌ 0.03𝑇 

   

S11 - With fixed-effect S21 - With fixed-effect S31- - With fixed-effect 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.0173 -0.0064 0.0045
Quadrati

c -0.0022 -0.0017 -0.0011

N 1382 R2 0.912
 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear 0.0028 0.0112 0.0195
Quadrati

c -0.0005 -0.0002 0.0001

N 2496 R2 0.893
 

 
Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear 0.0152 0.0223 0.0294
Quadrati

c -0.00003 0.0003 0.0005

N 2206 R2 0.881
 

S12 - No fixed-effect S22- - No fixed-effect S32- - No fixed-effect 

  (2.5%) Estimate  (97.5%) 

Linear -0.0348 -0.0238 -0.0128
Quadrati

c -0.0037 -0.0032 -0.0027

N 1382 R2 0.683
 

  (2.5%) Estimate  (97.5%) 

Linear -0.0239 -0.0158 -0.0078
Quadrati

c 0.0009 0.0012 0.0015

N 2496 R2 0.766
 

  (2.5%) Estimate  (97.5%) 

Linear 0.0062 0.0121 0.018
Quadrati

c 0.0008 0.0011 0.0014

N 2206 R2 0.73
 

Figure S16: A comparison of assumed functions in the agent-based model (dark lines) and the 
outcome of our regression analysis (dashed lines). Y-axis is change in R in comparison to 
average R. Note: Sij represents results from Scenario i under conditions of fixed-effect (j=1), and 
no fixed effect regressions (j=2).  

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.05.20092627doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.05.20092627
http://creativecommons.org/licenses/by-nd/4.0/


44 
 

6. Global projections over time 
In this section we report graphs of projected Covid-19 Risk Due to Weather (CRW) at 4 different 
time periods in the coming year (Figure S17-Figure S20). These projections use a 15-day 
moving window to average different weather and pollution variables in the previous year (2019-
2020) (for weather) or 2019 (for pollution, since pollution in 2020 is affected by COVID-19 
related behavioral changes) and use those averages as the predictor for the coming year (2020-
2021). Daily projections year-round for these global locations, the largest 1072 cities across the 
world, and US counties are available at: https://projects.iq.harvard.edu/covid19. 

The main drivers of changes observed include temperature and UV effects, which in some 
regions and times of the year pull the estimates in opposite directions (with U-shaped effect for 
UV, high values of UV lead to more transmission while that is also often correlated with higher 
temperature). This interaction creates some of the higher risks in summer for the regions close 
to the equator. 

 
Figure S17: Projected Relative COVID‐19 Risk Due to Weather (CRW), averaged for the first half of June 
2020 
 

Jun 1‐15, 2020 
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Figure S18: Projected Relative COVID‐19 Risk Due to Weather (CRW), averaged for the first half of 
September 2020 
 

 
Figure S19: Projected Relative COVID‐19 Risk Due to Weather (CRW), averaged for the first half of 
December 2020 

Sep 1‐15, 2020 

Dec 1‐15, 2020 
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Figure S20: Projected Relative COVID‐19 Risk Due to Weather (CRW), averaged for the first half of March 
2021 
 
 

References 
1.  Q. Li et al., Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected 

Pneumonia. New England Journal of Medicine,  (2020). 
2.  S. A. Lauer et al., The Incubation Period of Coronavirus Disease 2019 (COVID‐19) From Publicly 

Reported Confirmed Cases: Estimation and Application. Ann Intern Med,  (2020). 
3.  W. J. Guan et al., Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med,  

(2020). 
4.  N. M. Linton et al., Incubation Period and Other Epidemiological Characteristics of 2019 Novel 

Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case 
Data. J Clin Med 9,  (2020). 

5.  N. Popovich, in The New York Times. (New York, 2020). 
6.  P. D. Wibbens, W. Koo, A. M. McGahan, Projected COVID Infections, Deaths, and Local Social‐

Distancing Restrictions. Deaths, and Local Social‐Distancing Restrictions (April 17, 2020),  (2020). 

 

 

Mar 1‐15, 2021 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.05.20092627doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.05.20092627
http://creativecommons.org/licenses/by-nd/4.0/

