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Abstract  
 
In this study, we describe a novel ‘radiomics’ approach to an echocardiography artificial intelligence system that enables the 
extraction of hundreds of thousands of motion parameters per echocardiography video. We apply this AI system to the clinical 
problem of predicting post-operative right ventricular failure (RV failure) in heart failure patients receiving implantable 
circulatory life support systems. Post-operative RV failure is the single largest contributor to short-term mortality in patients 
with left ventricular assist devices (LVAD); yet predicting which patient is at risk of developing this complication in the pre-
operative setting, has remained beyond the abilities of experts in the field. We report results on testing datasets using a 
standard 10-fold cross validation. The AUC for the AI system trained using the Stanford LVAD dataset was 0.860 (95% CI 0.815-
0.905; n = 290 patients) using pre-operative echocardiograms alone. We further show that our system outperforms board 
certified clinicians equipped with both contemporary risk scores (AUC 0.502 - 0.584) and independently measured 
echocardiographic metrics (0.519 – 0.598). 
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Introduction 
 
In recent years, artificial intelligence has enabled 
automated systems to meet or exceed the performance of 
clinical experts across a range of image analysis tasks.1–4 
Echocardiography video analysis poses both new challenges 
and opportunities – while the presence of a temporal 
dimension increases the complexity of the problem, the 
density of information in videos enables translation of 
artificial intelligence techniques to patient populations with 
comparatively limited datasets.3 All current automated 
echocardiography systems – much like human 
echocardiography reads – are inherently reductionist in 
nature; a complex sequence and pattern of cardiac 
contraction is reduced to an outline of one or more 
chambers, from which a few global metrics of heart function 
are then calculated.5,6 Extracting the subtle motion 
characteristics of the heart that may be predictive of 
diseased states thus requires a fundamental shift in 
approach to AI in echocardiography.  
 
Heart failure affects more than 6.5 million people in the 
United States alone, with an estimated 960,000 new cases 
diagnosed each year.7 A heart transplant remains the gold 
standard for treating patients with end-stage heart failure. 
Demand, however, far outpaces the supply of 
transplantable hearts.8,9  Left ventricular assist devices 
(LVADs) offer a mechanical alternative to transplantation, 
and the number of patients supported by these battery 
powered mechanical pumps have steadily grown since 
2008.10 In the contemporary era, an estimated 3500 LVAD 
implants are performed each year, with 10 year outcomes 
comparable to transplants.11,12 Unfortunately, 
approximately a third of all patients implanted with LVADs, 
develop a clinically significant degree of right ventricular 
failure (RV failure) soon after the procedure.13,14 Severe RV 
failure remains the single largest contributor to short-term 
mortality in this patient population.11,15,16  
 
Predicting which patient will go on to develop RV failure has 
so far remained beyond the abilities of experts in the field. 
A variety of clinical scoring systems have been developed 
with modest predictive power, with an area under curve 
(AUC) of the receiver operating (ROC) curve of 0.65 at best 
(Figure 1).13,17–20 Without reliable methods to predict RV 
failure in the pre-operative setting, we have neither the 
means to decide in whom to aggressively intervene, nor a 
way to randomize patients to trials that evaluate the 
efficacy of right ventricular treatment options. The gold 
standard for determining which patients should receive 
advanced right ventricular support devices thus remains a 
‘clinical gestalt’,21 involving the patients’ clinical course, lab 
parameters, and a qualitative assessment of myocardial 
function using a transthoracic echocardiogram.  
 
 

In this study, we describe a novel ‘radiomics’ approach to an 
echocardiography artificial intelligence system that enables 
the extraction of hundreds of thousands of motion 
parameters per ECHO. We then use this AI system for the 
prediction of post-operative RV failure in LVAD patients, 
using pre-operative ECHOs alone. We compare the 
predictions of our AI system to those of contemporary RV 
failure risk scores and further show that the performance of 
our system transcends human capabilities. Finally, we use a 
series of strategies to interpret and visualize how our 
algorithms function, drawing from them pathophysiological 
insights into RV failure in LVAD patients. Figure 1 details an 
overview of the project. 
 
Methods 
 
Data sources and study population: 
Data in the form of clinical outcomes and raw 
echocardiography DICOM files were sourced from the 
department of Cardiothoracic Surgery, Stanford University 
(IRB 52440). All patients aged 18-years or older with at least 
one pre-operative transthoracic echocardiogram as well as 
a complete pre-operative and post-operative assessment of 
RV failure during index-hospitalization as per the 
INTERMACS adverse events definitions (Interagency 
Registry for Mechanically Assisted Circulatory Support) 
were included (Supplementary Table 1).22 Apical 4 chamber 
views for trans-thoracic echocardiograms taken closest to 
the day of surgery were used for this study. Our total 
dataset comprised 290 patients. Raw data was anonymized 
and linked to clinical outcomes data via a unique study-ID. 
Post-operative RV failure was defined by INTERMACS 
defined criteria. As these definitions were standardized 
later in 2014, we manually reviewed each patient record for 
the duration of inpatient admission to collect pre-operative 
and post-operative clinical parameters following a pre-
determined and standardized protocol. This enabled 
grading of RV failure severity along with the calculations of 
the various RV failure risk scores. Clinical data was stored 
and managed in REDCap. 
 
Outcomes: 
The primary outcome of the study was the ability of the 
machine learning pipeline to identify and predict the 
likelihood of post-operative RV failure using only pre-
operative transthoracic echocardiograms as the input.  All 
patients with severe or higher grades of post-operative RV 
failure were included in the ‘RV failure’ group (n = 106 
patients; 36%); the remainder were kept as controls (n = 
184). Multiple ECHOs were available for each patient (297 
RV failure (34%); 569 normal). The performance was 
mathematically assessed by the area under curve (AUC) of 
the receiver operating characteristic (ROC) curve, precision-
recall curves, and balanced accuracy of the algorithm.  
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Data pre-processing: 
Echocardiograms were first de-identified by stripping all 
private health information (PHI) from file metadata and by 
obscuring any sensitive information in the videos. The 
complete removal of all sensitive information was verified 
manually on all videos before proceeding to downstream 
postprocessing. Areas outside of the scanning sector were 
masked to remove any miscellaneous markings in the video 
frames that may otherwise influence the neural networks. 
The videos were then normalized by dividing each pixel 
value by the pixel of maximal intensity. The processed 
videos at their original resolution were used for the 
improved dense trajectory pipeline. For the 3D conv-net 
pipeline, the frames of the processed videos were 
additionally down-sampled by bi-linear interpolation to a 
112x112 resolution for training. 
 
Machine learning pipeline: 
Our automated echocardiography analysis pipeline is a 
combination of two algorithms. The first algorithm is an 
improved dense trajectory system, originally developed for 
action recognition in large scale video datasets, that tracks 
motion features across short time intervals.23 The second is 
a 3-dimensional convolutional neural network,24 built using 
the Keras Framework with a TensorFlow (Google; Mountain 
View, CA, USA) backend and Python, that tracks motion 
features and structural features over multiple cardiac 
cycles. Improved dense trajectories were first described by 
Wang et al to densely sample thousands of feature points 
from each video, tracking them across time using optical 
flow. Six ‘trajectory descriptors’ representing information of 
shape, appearance, and motion are calculated for each 
tracked feature point. The totality of local spatiotemporal 

information is reduced to a bag-of-words representation 
using an unsupervised k-means clustering algorithm, 
following which a probabilistic prediction of RV failure 
outcome is produced by a supervised Gaussian Process 
Classifier.  
 
The 3-dimensional convolutional neural network consists of 
8 convolutional layers, 5 max-pooling layers, and 2-fully 
connected layers that culminate into a final softmax 
classifier for RV failure prediction (Fig 1.). All convolutional 
layers utilize a 3x3x3 kernel, except for the first 
convolutional layer which does not convolve over the 
temporal dimension. The network weights were initialized 
using the Xavier normal initializing scheme, and was 
optimized using the Adam algorithm.25,26 The network was 
trained for 25 epochs on a batch size of 8, with an initial 
learning rate of 1x10-5. Training was stopped early if the loss 
did not improve for 5 epochs. For each echocardiogram, 5 
random 64-frame clips of the full movie were subsampled 
and passed through the trained neural network. The 
average of the 5 outputs was calculated to predict RV 
failure. The predicted probabilities of RV failure from both 
the dense trajectory analysis and convolutional neural 
network were ensembled using a weighted soft-voting 
classifier. Here the probabilities for each outcome class is 
calculated for the two halves of the AI system, and an 
empirically derived weight is applied to each probability and 
then summed together. The outcome class with the highest 
weighted sum is outputted as the predicted label. The 
models were trained on servers, each with eight NVIDIA 
V100 GPUs, on the Stanford Sherlock Supercomputing 
Cluster.  
 

Fig. 1 Schematic of AI echocardiography pipeline. The input is an apical 4 chamber transthoracic echocardiogram, which is processed by 
two parallel algorithms: A supervised 3D convolutional neural network, and an unsupervised improved dense trajectory system paired with 
a supervised classifier for predicting the outcome of RV failure. The final prediction of RV failure is made by combining the predictions from 
each half of the pipeline with an ensemble model.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 11, 2020. ; https://doi.org/10.1101/2020.05.05.20092494doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.05.20092494


  Pg. 4 

Visualizations and interpretations 
We used an implementation of Layerwise relevance 
propagation to highlight regions of each ECHO being used 
to derive predictions of RV failure outcome when passed 
through the 3-dimensional convolutional neural network.27 
We additionally visualized the bag-of-words 
representations of improved dense trajectory descriptors 
using pairwise correlation heatmaps, for patients with and 
without RV failure.  
 
Statistical analyses: 
To evaluate the stand-alone performance of the AI system, 
ROC curves were calculated as empirical curves in the 
sensitivity and specificity space. AUCs for ROC curves were 
computed with trapezoids using the pROC package.28 AUC 
for the Precision-Recall curve was computed using the 
interpolation method described by Davis and Goadrich.29 To 
compare the performance of our AI system against clinical 

risk scores and manually calculated echo metrics, we 
calculated non-parametric confidence intervals on the AUC 
using DeLong’s method,30 following which p-values were 
computed for the mean difference between AUC curves. 
Statistical analyses were conducted in R (v3.6.2). 
 
AI performance and comparison with clinical risk scores: 
In order to evaluate the performance of our 
echocardiogram analysis pipeline, a standard 10-fold cross 
validation was performed. The dataset was split in a 90:10 
ratio into a training and test set, following which the 
pipeline was trained on the training set. The trained model 
was validated on the test set. This was repeated for a total 
of 10 trials, each time using a unique 90:10 split of the full 
dataset. The average performance on the test-datasets 
from each of these 10 trials was taken as the overall 
performance. The performance of the model was measured 
using balanced accuracy, area under curve (AUC) of the 

Fig. 2: Performance of the AI echocardiography system, clinical risk scores, and manually calculated right heart functional 
metrics. a. Receiver operating characteristic curve for the AI system; and b. Precision-Recall curve for the AI system (n = 290). c. 
The ROC curves of contemporary state of the art clinical risk scores (n = 229), and d. The ROC curve for the AI system compared to 
an independently calculated set of echo metrics for right heart function (n = 176). 
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receiver-operator characteristic, AUC of the precision-recall 
curve, and F1 score.  We further compared the predictive 
performance of our AI system against two contemporary 
risk scores used in for predicting post-operative RV failure - 
the CRITT score and Penn score. Missing data prevented the 
calculation of scores for 61 patients. As a result, further 
analyses were conducted on the remaining 229 patients. 
The variables used for calculating these scores are described 
in Supplementary Table 2.13,18   
 
Comparisons with manually calculated echocardiography 
metrics 
We compared the performance of AI based RV failure 
prediction to a set of manually derived echocardiographic 
measures of right ventricular function. These measures 
were independently calculated by two board certified 
cardiologists for 176 patients (n = 112 controls; n = 64 with 
RV failure) in our dataset, using metrics of RV function that 
they have described in the past.31 
 
Results:  
 
The ROC and Precision-Recall curve of the AI system on the 
Stanford LVAD dataset are shown in Fig 2a and b, The ROC 
AUC for the AI system was 0.860 (95% CI 0.815-0.905; n = 
290 patients). The AUCs calculated for the Penn score 
(0.502; 95% CI 0.423-0.582) and the CRITT score (0.584; 95% 
CI 0.509-0.653) for our dataset are similar to previously 
published reports (Fig 2c).13,20   Our AI system exceeded the 
performance of the best performing clinical risk score by a 
significant margin (change in area under curve (ΔAUC) = 
+0.278, 95% CI 0.262-0.304, p < 0.0001, n = 229).  
 
The AI system exceeded the performance of an 
independently calculated list of echocardiographic metrics 
of right ventricular load dependency. The AUCs of the 
manually extracted metrics ranged between 0.519 – 0.598. 
The AUC of the AI system on this subset of 176 patients was 
0.850 (95% CI 0.791-0.909), compared to the best 
performing manual echo metric with an AUC of 0.598 (95% 
CI 0.509-0.688; ΔAUC 0.251 (95% CI 0.221-0.282, p < 0.0001) 
(Fig 2d). 
 
Layerwise relevance propagation visualizations showed that 
for each patient, regions of activation for the 3d 
convolutional neural network were localized exclusively to 
the myocardium and valves. The cardiac chambers 
themselves showed no activation. Furthermore, motion 
characteristics of different regions of the heart contribute 
towards the prediction of RV failure at different phases of 
the cardiac cycle (Fig 3). 
 
Discussion: 
 
In this study we present a novel AI echocardiography system 
capable of extracting subtle myocardial motion aberrations 

for downstream clinical analyses. We utilize this system to 
predict the outcome of post-operative RV failure in 290 
heart failure patients considered for LVAD implant, and 
further show that our AI echocardiography system 
outperforms board certified clinicians equipped with both 
manually extracted echo metrics and state of the art clinical 
risk scores. In the current body of work, we predict a binary 
outcome of RV failure, though our methods can readily be 
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Fig. 3: Radiomics approach to echocardiography AI visualized. a.  
Representative input ECHOs for the 3d-convoutional neural 
network, and Layerwise relevance propagation visualizations for 
both systolic and diastolic phases of the cardiac cycle across 
patients with and without RV failure. b. Heatmaps generated for 
the ‘trajectory’ descriptor from the improved dense trajectory 
pipeline, visualizing the subtle motion features tracked in normal 
vs RV failure cases. 
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extended to predict either continuous or multi-class 
outcomes of interest.  
 
All contemporary echocardiography AI systems rely on 
various supervised segmentation algorithms to outline 
cardiac chambers. Most recently, Ouyang et al describe an 
automated segmentation based system to calculate 
ejection fraction using left ventricular tracings.6  Our 
methods offer a number of key improvements:  First, 
instead of cardiac chambers, our AI system extracts 
spatiotemporal information from cardiac musculature and 
valves by default - the principle regions of interest in all 
cardiac diseases. This enables the characterization of subtle 
regional aberrations in myocardial motion for downstream 
analyses, that traditional manually extracted 
echocardiographic measures fail to capture. Finally, our 
system can track features of importance with no additional 
human supervision in the form of outlines or labels. This 
enables rapid deployment of our methods to a diverse array 
of echocardiography-based problems, in an unbiased, and 
structure agnostic fashion.  
 
The poor predictive value of contemporary clinical risk 
scores is well documented, and many of the component 
parameters are consequences rather than true predictors of 
RV failure. Most risk scores were either developed without 
internal cross-validation, or uniformly falter when applied 
to new datasets.17,20,21,32 More recently, some have 
attempted to use Bayesian methods on larger clinical 
registries to predict post-operative RV failure.33 Critically, 
pervasive issues with missing data resulted in severe class 
imbalances (2.7% RV failure, vs 97.3% normal patients) 
leading to gross overestimations of predictive power when 
relying on performance metrics insensitive to changes in 
class distribution.34 Further strengthening our work is the 
use of the latest standardized definitions of post-operative 
RV failure.21,32 We chose to dichotomize our primary 
outcome of RV failure to include only ‘severe or greater’ 
grades of RV failure. This was based on the significantly 
higher risk of mortality in these patients compared to those 
with moderate and lower grades of disease.35 We repeated 
the analysis using our AI pipeline trained on data with 
‘moderate or greater’ grades of RV failure as the primary 
outcome. The performance remained similarly predictive, 
(AUC 0.855 (95% CI 0.812-0.899; n = 290 patients); 
Supplementary Fig. 1).  
 
One of the advantages of analyzing ECHOs rather than using 
clinical surrogate parameters, is that it allows for a direct 
assessment of the heart. The literature surrounding the 
predictive value of manually calculated metrics of cardiac 
function remains inconclusive.36,37 In our study we identify 
that our radiomics AI echocardiography approach far 
outperforms manually calculated metrics of myocardial 
function in predicting RV failure. This further supports our 
rationale for moving away from segmentation or outlining 

based approaches for echocardiography AI, as automated 
calculations of the same metrics are unlikely to be 
predictive of our outcome of interest.    
 
While our 10-fold cross validation demonstrated robust and 
stable performance of our AI system, our work in its present 
form is limited by the lack of a true external validation set. 
Our current efforts are directed at securing a large multi-
center clinical and echocardiographic dataset for patients 
receiving LVADs to generalize our methods.  Despite our 
relatively smaller sample size, making full use of the density 
of information in each video enables robust predictive 
performance. Prospective evaluations of predictive 
performance and integration with healthcare workflows are 
essential to understand the limitations of our technology in 
clinical practice. 
 
We envision that by integrating AI systems within pre-
operative clinical workflows, randomizing patients at high 
risk of developing post-op RV failure to various early right 
ventricular rescue strategies will finally be feasible. Our AI 
echocardiography tools may further serve as a clinical 
decision support system for instituting effective RV rescue 
treatments in this patient population.  Our methods are, to 
our knowledge, the first to describe radiomics profiling for 
echocardiography analyses. This approach may find use in 
the early detection of heart failure, disease phenotyping, 
and a multitude of cardiac clinical decision support 
applications where treatment is guided by qualitative 
echocardiography assessments.  
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Supplementary Appendix 
 
 

Right Ventricular Failure definitions: 

Right Atrial Pressure > 16mm Hg. 

AND  

Hepatic (total bilirubin > 2.0 mg/dl) or renal dysfunction (creatinine > 2.0 mg/dl) 

Severity Grade Index Admission INTERMACS Criteria 

Mild 

Meets both criteria for RV Failure plus: 
Post-implant inotropes, inhaled nitric oxide or intravenous vasodilators not 
continued beyond post-op day 7 following LVAD implant.  
AND 
No inotropes continued beyond post-op day 7 following LVAD implant 

Moderate 

Meets both criteria for RV Failure plus: 
Post-implant inotropes, inhaled nitric oxide or intravenous vasodilators 
continued beyond post-op day 7 and up to post-op day 14 following LVAD 
implant 

Severe 

Meets both criteria for RV Failure plus: 
Central venous pressure or right atrial pressure greater than 16mm Hg. 
AND 
Prolonged post-implant inotropes, inhaled nitric oxide or intravenous 
vasodilators continued beyond post-op day 14 following LVAD implant 

Severe Acute 

Meets both criteria for RV Failure plus: 
Central venous pressure or right atrial pressure greater than 16 mmHg 
AND 
Need for right ventricular assist device at any time following LVAD implant 
OR 
Death during the LVAD implants hospitalization with RHF as the primary cause. 

Supplementary table 1: INTERMACS definitions of RV failure. Updated RV failure definitions and index admission criteria for grading RV 
failure severity. 

 

Scoring System Pre-operative parameters 

CRITT Score 

Right atrial pressure (RAP) > 15 
Severe RV dysfunction (Qualitative ECHO report) 
Severe Tricuspid Regurgitation 
Tachycardia (HR > 100) 
Ventilator requirement 

Penn Score 

Cardiac Index (CI) ≤ 2.2 
RV stroke work index (RVSWI) ≤ 0.25 
Creatinine ≥ 1.9 mg/dl 
History of previous cardiac surgery 
Severe RV dysfunction (Qualitative ECHO report) 
Systolic blood pressure (SBp) ≤ 96 mm Hg 
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Supplementary table 2: Scoring parameters for CRITT and Penn Score. For each criterion listed, a score of ‘1’ is assigned and the CRITT 
score is calculated as the sum of all components. For example, a patient with RAP > 15, tachycardia, and severe tricuspid regurgitation 
would have a CRITT score of 3. The Penn score is calculated by similarly assigning a score of ‘1’ for each criterion listed, the calculation 
however is (18 x CI) + (18 x RVSWI) + (17 x Creatinine) + (16 x Previous cardiac surgery) + (16 x Severe RV dysfunction) + (13 x SBp).  

 
 

Supplementary Fig. 1: Performance of the AI echocardiography system, clinical risk scores, and manually calculated right heart functional 
metrics for RV failure outcome defined with a grade of ‘moderate or greater’. a. Receiver operating characteristic curve for the AI system; 
and b. Precision-Recall curve for the AI system (n = 290). The area under the ROC curve is 0.845 (CI = 0.803-0.893), this performance is 
similar to the AI system trained to predict ‘severe or greater’ grades of RV failure (p = 0.72) c. The ROC curve for the AI system compared 
to an independently calculated set of echo metrics for right heart function (n = 176) and d. the ROC curves of contemporary state of the 
art clinical risk scores (n = 229).  
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