
The case and control population co-morbidity profile is shown in Figure 1. 

 

Figure 1: Incidence of co-morbidities by ICD-10 code from UK Biobank in the sepsis dataset (n=13,663 split 6,843 cases and 6,820 controls) 

 
Figure 2: Age distribution of cases vs controls from UK Biobank in the sepsis dataset 

We used the precisionlife combinatorial multi-omics platform to identify sepsis associated SNPs and genes from the sepsis 

case:control dataset. precisionlife is a multi-omics (genomic, proteomic, transcriptomic, phenotypic) association platform that 

enables the hypothesis-free detection of high order disease associated combinations of features (e.g. SNP genotypes) at genome 

wide study scale15. It finds and statistically validates combinations of features (typically three to ten features in combination 

known as ‘signatures’) that together are strongly associated with a specific disease diagnosis or other clinical phenotype (e.g. 

fast disease progression or therapy response). It can combine genomic, transcriptomic and epidemiological data in its analyses. 

When used to analyze genomic data from patients, precisionlife can identify high-order epistatic interactions comprising multiple 

consistently co-associated SNP genotypes. This analytical mining platform has been validated in multiple disease 

populations16,17. 

The analysis and annotation of the sepsis associated combinatorial genomic signatures in this dataset using the precisionlife 

platform took less than a day, working hypothesis-free, running on a dual CPU, 4 GPU compute server.  

The sepsis disease signatures identified by the analysis were then annotated and disease-associated SNPs were mapped to the 

human reference genome18 in order to identify disease-associated and clinically relevant target genes. A semantic knowledge 

graph derived from multiple public and private data sources was used to annotate the SNPs and targets, providing sufficient 

contextual information to test the targets against the 5Rs criteria of early drug discovery19
 and forming strong, testable 

hypotheses for their mechanism of action and impact on the sepsis disease phenotype.  

We also applied a series of heuristics to the resulting sepsis risk-associated genes in order to identify novel sepsis targets with 

high potential either for drug development or drug repurposing. These criteria include a strong association of the target with the 

disease and its pathophysiological mechanisms, relevant tissue expression, tractability for novel disease targets amongst several 

others. Additional criteria used for prioritizing repurposing targets included known drugs, patent scope, favorable 

pharmacokinetic and toxicology profiles for repurposing targets.  
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We then sought to correlate these findings with COVID-19. From the UK Biobank, we currently have genotype data for 572 patients 

who have tested positive for COVID-19 in hospital and 97 patients who have tested positive but have not been hospitalized. 

Although there is as yet no additional clinical data available on these patients, given the way in which UK patients have been 

admitted and treated, we believe that hospitalization for the disease could be used as a surrogate indicator of having a relatively 

severe form of the disease. We compared the significant disease associated combinatorial signatures found in the sepsis cohort 

against these COVID-19 patients, in order to investigate if any of them are also present in the COVID-19 population.  

Results  

Conducting a standard PLINK20 GWAS analysis on the UK Biobank sepsis dataset that we generated revealed no significant SNPs 

(Figure 3). This is not an unexpected result as it replicates the findings of existing sepsis GWAS studies, which have yielded few 

results previously21,22. It is also consistent with the initial findings reported by the COVID-19 Host Genetics Initiative23 based on 

data from 917 COVID-19 cases. 

Figure 3: Manhattan plot generated using PLINK of genome-wide p-values of association for the UK Biobank sepsis dataset. The horizontal red 
and blue lines represent the genome-wide significance threshold at p<5e-08 and p<1e-05 respectively. 

In contrast with the single SNP association basis of PLINK, the precisionlife platform constructs high-order networks of co-

associated SNPs (signatures), which are associated in combination with the disease phenotype. Some of the component SNPs in 

these signatures will fall below the GWAS p-value threshold when evaluated individually across the whole population. However, in 

combination, the signatures can be proven to be highly significant using multiple discriminative statistical techniques.  

Running the same sepsis dataset using the precisionlife platform, we identified 1,446 combinations of SNP genotypes (disease 

signatures) representing different combinations of SNP genotypes within the sepsis patient population (Table 1). These 

signatures consisted mainly of 3 to 5 SNP genotypes in combination, where most of their constituent SNPs would not have been 

discovered using standard GWAS analyses. 

Table 1: Summary of precisionlife sepsis disease study run and results. Number of validated N-states, simple networks and critical SNPs 
identified in the sepsis study using a 5% False Discovery Rate and 250 cycles of fully random permutation. 

 Sepsis Study 

Dataset (542,245 SNPs) 
6,843 cases 

6,820 controls 

False Discovery Rate (FDR) 5% 

N-states  1,446  

Simple networks  145 

No. of unique SNPs in merged network 1,904 

RF scored SNPs 136 

Prioritized Genes 70 

Penetrance  
(cases containing critical SNPs from the disease N-
states) 

3,781 (55%) 

 

All of the SNP genotypes and their combinations were scored using a Random Forest (RF) algorithm based on a 5-fold cross-

validation method to evaluate the accuracy with which the SNP genotype combinations predict the observed case: control split. 

The majority of the critical SNPs were assigned a high RF score by the algorithm, thus confirming that they have a strong 

association with the disease (Figure 4A). The chromosomal distribution of the critical SNPs is shown in aggregate in Figure 4B 

and in detail in Figure 4C. 
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(A) (B) 

 
  (C) 

Figure 4: Distributions of (A) RF scores and (B) and (C) chromosomal locations for critical disease associated SNPs 

These SNP networks were clustered based on their co-occurrence in patients, which generated a complex disease architecture 

view showing the distinct patient sub-populations (Figure 5). The most critical (and predictive) SNP genotypes found at the center 

of the SNP networks shown in Figure 5 are found in 3,781 of the 6,843 cases (55%). 

Mapping the highest-scoring SNPs to genes revealed 70 genes that are strongly associated with the risk of developing sepsis. Of 

these genes, several have already been shown to be implicated in sepsis pathogenesis in the scientific literature, providing 

validation for the hypothesis-free combinatorial approach to analyzing complex disease populations. In contrast, a recent meta-

analysis reviewing all previous studies investigating genetic variants and sepsis risk found just 23 genes that were significantly 

associated with disease susceptibility24. 
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Figure 5: Disease architecture of the sepsis cohort generated by the precisionlife platform. Each circle represents a disease associated SNP 

genotype, edges represent co-association in patients, and colors represent distinct patient sub-populations or ‘communities’.  

Functional enrichment analysis of the highest-scoring genes indicated that a significant number of them are involved in 

processes such as stress response, leukocyte and immune system activation, cell adhesion and autophagy (Figure 6).  

Figure 6: Functional categories of genes defined by high-level Gene Ontology terms using ShinyGo.  

Of the 70 sepsis risk genes we identified, 13 of them are targeted by active chemical compounds. Seven of those genes are 

targeted by licensed drugs and could therefore represent potential drug repurposing opportunities. The specific genes and 

pathways are described in the Appendix and some are outlined further in the Discussion section. 

As shown in Figure 4B, there is a significant cluster of SNPs and genes associated with the X chromosome. It may be a 

coincidence that some of the key genes for COVID-19 infection (e.g. ACE2 and angiotensin II) are located on this chromosome, 

and that by having two copies of the X chromosome women might be offered some level of protection against the effects of the 

disease. There is a small possibility that it may also be related to the lack of complete sex matching of the controls. This 

observation will be the subject of further study. 
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Figure 7: Disease architecture of the sepsis cohort highlighting the SNPs found on the X chromosome (left in green) and showing SNP 

genotypes (right - homozygous major allele = blue, heterozygous = green, homozygous minor allele = gold).  

We focused our current analysis on the autosomal SNPs and searched for sepsis associated combinatorial signatures in 572 

patients who were hospitalized and tested positive for COVID-19. 51 of the 572 patients have at least one of the significant N-

states found in the sepsis population, indicating an element of autosomal genetic overlap between patients who are at risking 

developing sepsis and those who develop severe reactions to SARS-CoV-2. In total, 33 sepsis disease signatures were found in 

these patients that were not observed in COVID positive patients showing mild symptoms or any sepsis controls. We have 

described the likely functional impact of one of these disease signatures in the Discussion section. 

Discussion  

Many of the risk-associated genes found using the precisionlife platform can be grouped into one of four common biological 

pathways that can be linked to sepsis pathogenesis; immune-related genes, CNS signaling molecules, the PI3K/mTOR pathway, 

and targets relating to the endothelium.  

PI3K/AKT/mTOR Pathway 

Out of the 70 significant genes found, 21 of them have already been investigated in the context of cancer, ranging from in vitro 

and preclinical studies through to large clinical trials. The most common pathway these targets centered around was the 

PI3K/Akt/mTOR pathway, which is implicated in driving oncogenesis through its effects on cell proliferation and apoptosis25.  

We identified genes that are direct regulators of PI3K (phosphoinositide-3-kinase). Mutations in these classes of genes are 

associated with immune deficiency syndromes, resulting in chronic viremia, recurrent respiratory tract infections and defects in B 

cell development26,27. PI3K plays a key role in both the adaptive and innate immune response, as it plays a critical role in the 

development of regulatory natural killer (NK), memory T and B lymphocytes, as well as functional phagosome formation28. It is 

also crucial for the activation of the IL-12 negative feedback pathway that helps to resolve inflammation. In this way, we can 

hypothesize that the PI3K pathway is critical for regulating the immune response during the development of sepsis. This theory is 

supported by a study that demonstrated that activation of PI3K/Akt signaling attenuated pro-inflammatory markers, neutrophil 

infiltration and apoptosis in a model of sepsis-induced cardiac dysfunction29. 

However, there is some contradictory evidence surrounding the role of the PI3K pathway in sepsis, exemplified by a model of 

sepsis-induced myocardial dysfunction that showed selective inhibition of a PI3K isoform reduced the production of pro-

inflammatory cytokines and other pathological markers of sepsis30. This indicates that PI3K also plays a crucial role in the 

regulation of the immune system in the context of sepsis pathogenesis.  

We found two genes associated with mTOR (mammalian target of rapamycin) signaling. The mTOR pathway is a critical regulator 

of T-cell differentiation and function, with inhibition of mTOR activity resulting in increased autophagy, and sustained 

development of memory CD8+ cells and regulatory CD4+ cells31. Furthermore, a study found that patients with sepsis had higher 
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serum levels of key molecules in the mTOR signaling pathway32, indicating that high mTOR activity may play a role in driving key 

disease processes involved in sepsis.  

In addition to this, we also identified three genes that indirectly affect the PI3K/Akt/mTOR pathway through interaction with 

PTEN, one the main inhibitors of this pathway33.  

Our results indicate that whilst these apoptosis-related pathways are most commonly associated with oncogenesis, these cellular 

processes are also highly important in the regulation of the immune system and variants in these genes may also predispose 

patients to inflammatory diseases such as sepsis as well as cancer.  

Immune Response Genes 

As to be expected, our analysis found significant genes relating to both the innate and adaptive immune response. The 

identification of over 10 genetic variants in a range of different immunological targets indicates that many patients who develop 

sepsis may have inherent aberrations in their immune response system when challenged by an infectious agent. 

Of these targets, one gene encodes a T cell differentiation antigen that binds to key components of Gram-positive and Gram-

negative bacteria, causing agglutination and inhibiting their virulence factors. Infusion of this CD receptor in a mouse model of 

sepsis resulted in improved survival and reduced systemic inflammation, indicating that patients with variants in this gene likely 

have defective pathogen binding abilities and greater susceptibility to infection by sepsis-causing bacteria.  

We also identified several transcription factors involved in regulation of expression of certain classes of lymphocytes and MHC 

class II genes. One of these genes encodes a transcription factor that plays a role in regulating interferon-gamma induced genes, 

thereby modulating the duration of the inflammatory response, whilst a different gene we found is critical for class switch 

recombination (CSR) in activated B cells. Furthermore, we found a target encoding a transcription factor that is essential for the 

development of IL-17 producing T cells. High IL-17 is associated with a pro-inflammatory phenotype and increased risk of death 

in a mouse model administered with toxic shock syndrome toxin (TSS-1)34.  

In addition to this, we identified a gene encoding a serine protease that inhibits the function of furin, an enzyme that cleaves a 

variety of different pathogenic substrates, including SARS-CoV-2 coronavirus35. Furin is upregulated during the adaptive immune 

response, enhancing the virulence of pathogens through the cleavage of key sites and allowing viral entry into the host cells36. 

Administration of a furin inhibitor in a mouse model of atherosclerosis attenuated vascular endothelial injury and pro-

inflammatory cytokine expression, indicating that this could be a key target in several different facets of sepsis 

pathophysiology37. 

Endothelial Cell and Vascular Inflammation  

Endothelial dysfunction is a well-established mechanism that contributes to sepsis pathogenesis38. A recent GWAS identified two 

genes (FER and MAN2A1) that are implicated in the endothelial response to pathogens. Our study identified four more targets 

that are associated with the vascular endothelium.  

Two of these genes encode cell adhesion and ECM-interacting molecules that have been linked to endothelial inflammation and 

oxidative stress in models of atherosclerosis. One of these genes is inhibited by oxidized LDLs via the LOX-1 receptor, resulting in 

increased vascular inflammation and lipid accumulation. There is evidence that oxidized LDLs are upregulated in inflammatory 

conditions and inhibition of LOX-1 may help to attenuate the pro-inflammatory cascades seen in sepsis39. 

A different risk-associated gene is regulated by angiotensin II and has been implicated in the promotion of smooth muscle 

fibrosis, oxidative stress and endothelial dysfunction in this way.  

Furthermore, we have found a transcription factor that targets VEGF, a key regulator of angiogenesis and endothelial cell 

function. High levels of VEGF are observed in animal models of sepsis, where it potentiates the effects of TNF-α on endothelial 

cells and increases vascular permeability which is a key pathogenic event in severe sepsis40.  

Neuronal Signaling Mechanisms 

Finally, we identified several variants in genes associated with neurogenic signaling pathways. The CNS plays a key role in 

regulating the immune system and cytokine expression, as well as the systemic vascular response observed in sepsis patients41. 

One of these variants encoded a key enzyme involved in the production of GABA, the main inhibitory neurotransmitter in the CNS. 

Polymorphisms in this gene are associated with multiple neuropsychiatric disorders, including schizophrenia, epilepsy, bipolar, 

depression and anxiety. To the best of our knowledge, there is no evidence currently linking GABAergic signaling to sepsis, 

however studies have found increased levels of one of the targets that we identified in models of hippocampal inflammation and 

autoimmune conditions. Another target identified in our study encodes a G-protein-coupled receptor that regulates GABAB 
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neurons, indicating that polymorphisms affecting the function of genes involved in GABA signaling increase the risk of developing 

sepsis.  

Alongside the GABA related targets this study identified, we also found targets in a number of other common neurotransmission 

pathways, including regulation (activation) of kainate-type glutamate receptors and the adenosine receptor, as well as four other 

genes that are key to neuronal development and synaptic plasticity.  

One of the variants we found that was implicated in neurogenic signaling is located in ADORA1, which encodes for the adenosine 

A1 receptor. High levels of adenosine have already been found in the plasma of patients with septic shock and severe sepsis, 

indicating that it may play a key role in the development of the disease42. Furthermore, increased activation of adenosine A1 

receptors in the lung results in increased Gram-negative-induced tissue injury through increased pro-inflammatory mediators43. A 

study has now shown that using adenosine A1 antagonists attenuates sepsis pathophysiology and improves survival in a rat 

model of the disease44. 

Drug Repurposing Opportunities 

It is well-known that different diseases may share common pathways, and drugs that affect genes in these pathways may 

therefore be able to treat a variety of disease indications. The uniquely detailed disease architecture views generated by the 

combinatorial approach used in this study allow for the systematic repurposing of all known drugs against all the disease 

relevant targets identified. Mapping existing drugs onto the genetic and metabolic signatures identified for patient sub-groups 

indicates areas where there are already good clinical options, and also where trial use of existing therapeutics with good safety 

and tolerability profiles, with acceptable routes of administration, could have potential. For a given patient, their specific 

combination of SNPs will in large part determine which drug or combination of drugs are likely to benefit them personally. 

We used the precisionlife platform to identify drug repurposing candidates for key disease-associated targets by mapping all of 

the existing drug options onto the genes found in different subgroups of the patient population. Applying a series of heuristics 

that we have developed we can rapidly identify candidates that may be therapeutically beneficial for select subsets of the patient 

population and to identify and efficiently prioritize those with the greatest repurposing potential for further investigation. 

 
Figure 8: Network showing SNP signatures, risk-associated genes, and existing drug options in a sub-population of the sepsis disease 
architecture around a cluster containing an ADORA1 related SNP. 

Of the 70 sepsis risk genes we identified, 13 of them are targeted by active chemical compounds found in DrugBank45 or 

ChEMBL46 and could therefore represent potential drug repurposing opportunities. In total there are 59 known active drugs 

identified for the 13 targets, which could form the basis for a repurposing screen. The graph in Figure 8 shows the drugs and 

other research compounds known to be active at the adenosine A1 receptor (ADORA1), one of the targets described above. The 

remaining drug repurposing candidates identified in the study are described further in the Appendix. 
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COVID-19 OVERLAP 

For the signatures observed in sepsis and severe COVID-19 patients there are a number that are specific to sepsis, but the 

majority (43 of 71 – 61%) are shared both in sepsis and severe COVID-19 patients. 

 

Figure 9: Venn diagram showing overlap of n-state signatures identified as sepsis risk factors in severe COVID-19 patients. 

We found 33 sepsis disease signatures composed of autosomal SNPs that were present in patients who tested positive for 

COVID-19 and showed severe symptoms but were not observed in any COVID-19 positive patients showing mild symptoms or any 

sepsis controls. 

One of the SNP genotypes combinations (signatures) found in both sepsis and severe COVID-19 patients, but not in sepsis 

controls or patients with mild (non-hospitalized) COVID-19 disease, contained three SNPs that mapped to six genes (Table 2). 

Two of the SNPs have been previously linked to cardiovascular and hypertension in phenotype-wide association studies 

(PheWAS) studies47,48 and functional annotations of the genes revealed that several of them are involved in neutrophil 

degranulation, leukocyte activation and immune effector processes. This disease signature was also observed in only 1,137 of 

the other 480,000 UK Biobank participants who are likely to suffer from complications in their immune responses because of this.  

We will continue investigating the likely functional impacts of all the sepsis disease signatures found in severe COVID-19 patients 

in a further study. As more clinical and COVID-19 data become available in UK Biobank and other patient data sources, we will be 

able to analyze the clinical impact of these disease signatures in patients.  

 

Figure 10: Venn diagram showing overlap of the UK Biobank participants that have the sepsis disease signature implicated in neutrophil 
degranulation, leukocyte activation and immune effector processes in the sepsis cases, severe COVID-19 patients and mild COVID-19 patients.  

Table 2: Table showing SNP genotypes in a sepsis disease signature found both in sepsis and severe COVID-19 patients, but not in mild COVID-
19 patients, with risk-associated SNPs and mapped genes. 

Autosomal SNP Genotypes Sepsis + Severe COVID-19 SNPs Gene Mappings 

Homozygous Minor Allele (2)  
Homozygous Major Allele (0) 
Heterozygous (1) 

rs12026838 
rs11924446 

rs117984853 

SMYD3 
CNST 
ACPP 

DNAJC13 
AL357992.1 
AL031056.1 
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Conclusion 

Using only genetic data from the UK Biobank, we have identified 70 sepsis risk-associated genes that would not have been found 

using conventional GWAS approaches using the same dataset. We have further identified 59 drug repurposing candidates for 13 

of these targets that have the potential to be directly effective in improving survival rates in sepsis. We found several other genes 

with strong mechanism of action hypotheses connected to existing drug targets that may form the basis of more novel drug 

discovery strategies.  

We will be using these new insights into the disease to investigate several novel therapeutic strategies that may help to reduce 

the high mortality rates currently observed in patients who develop sepsis both within and without the context of COVID-19.  

We continue to investigate the overlap between these sepsis-associated genetic signatures and those seen in COVID19-positive 

patients who present with life-threatening symptoms, including the development of viral sepsis. As more data from COVID-19 

patients becomes available this may help to gain greater understanding into the mechanisms of late-stage disease and apparent 

clinical differences in patient responses to the SARS-CoV-2 virus.  

New datasets may help elucidate links to observed epidemiological risk factors such as ethnicity, blood group and smoking. As 

these data become available for direct study, they may also provide new directions to search for effective therapies for patients 

outside of the antiviral space based on a better understanding of the host responses. 
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Appendix 

Dataset Generation Details  

CASE CRITERIA 

Cases to include at least one of the following ICD-10 codes: 

 

 

 

 

 

 

CONTROL CRITERIA 

1. Controls to exclude any patients with the following ICD-10 codes:  

 

 

 

 

 

 

2. Controls to include at least one of the following ICD-10 codes: 

ICD-10 Disease 

J12-J18 Pneumonia 

J20-J22 Lower respiratory infection  

B95 Streptococcus 

B95 Staphylococcus  

 

3. Controls to include least one of the following ICD-10 codes: 

ICD-10 Disease 

E10-E14 Diabetes 

N00-N19 Kidney Disease 

K70-K77 Liver Disease 

J40-J44 COPD 

 

  

ICD-10 Disease 

A02.1 Salmonella septicemia 

A22.7 Anthrax septicemia 

A40.x Streptococcal septicemia 

A41.x Other septicemia 

B37.7 Candidal septicemia  

O35 Puerperal sepsis  

R57.2 Septic shock  

ICD-10 Disease 

A02.1 Salmonella septicemia 

A22.7 Anthrax septicemia 

A40.x Streptococcal septicemia 

A41.x Other septicemia 

B37.7 Candidal septicemia  

O35 Puerperal sepsis  

R57.2 Septic shock  
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GENE CHROMOSOME RF SCORE  

AL627095.1 1 35.80 

AC069421.1 3 31.30 

BX890604.1 X 16.24 

TFDP3 X 12.38 

RPS27AP17 X 10.01 

ELAVL3 19 4.99 

ZNF177 19 3.67 

DSC2 18 3.36 

RBMX X 2.55 

NFX1 9 2.26 

RPL10 X 2.24 

DNASE1L1 X 2.24 

GAD1 2 2.12 

RASEF 9 1.92 

BZW2 7 1.80 

PIK3R1 5 1.62 

CYP39A1 6 1.61 

LINC01285 X 1.59 

MTOR 1 1.54 

KIAA1324L 7 1.51 

FIRRE X 1.50 

MYH7 14 1.49 

CD6 11 1.49 

TYRP1 9 1.45 

PYROXD1 12 1.40 

HACD2 3 1.40 

ZNF787 19 1.39 

SNX25 4 1.33 

ADGRG2 X 1.28 

ZNF559-
ZNF177 

19 1.22 

GNAO1 16 1.18 

SIDT1 3 1.15 

PUM1 1 1.13 

SAMD3 6 1.10 

   

GENE CHROMOSOME RF SCORE  

SYT14 1 1.06 

LAMP2 X 1.03 

MTMR1 X 1.01 

SYTL5 X 1.01 

LINC00632 X 0.96 

ADORA1 1 0.96 

NR5A2 1 0.93 

ZNF831 20 0.89 

SH3KBP1 X 0.83 

Z93403.1 X 0.81 

NMT2 10 0.79 

RPP38 10 0.79 

AIG1 6 0.79 

RABGEF1 7 0.75 

SUPT3H 6 0.68 

ARSB 5 0.67 

SHROOM4 X 0.56 

SERPINB8 18 0.52 

NETO1 18 0.44 

CEP128 14 0.43 

UST 6 0.42 

DIAPH2 X 0.38 

TPK1 7 0.38 

RBBP8 18 0.35 

MEAK7 16 0.35 

OFCC1 6 0.32 

FRMPD4 X 0.27 

PKD1L1 7 0.27 

FAT3 11 0.26 

CCDC85A 2 0.25 

SOX13 1 0.24 

PIEZO2 18 0.22 

AUTS2 7 0.17 

AFF2 X 0.16 

DMD X 0.12 

MACROD2 20 0.04 

Table 3. Table showing sepsis associated genes with chromosomal location and RF score 
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ChEMBL ID DrugBank ID Drug Dev Phase Molecule Type 

CHEMBL1743033 
 

itolizumab 1 Antibody 

CHEMBL2109485 
 

oncolysin cd6 2 Antibody 

CHEMBL592445 DB11896 gedatolisib 2 Small molecule 

CHEMBL1079593 
 

vs-5584 1 Small molecule 

CHEMBL1234354 DB11974 pf-04691502 2 Small molecule 

CHEMBL1236962 DB12703 omipalisib 1 Small molecule 

CHEMBL1258517 
 

pki-179 1 Small molecule 

CHEMBL1334033 
 

perhexiline maleate 4 Small molecule 

CHEMBL1801204 DB12774 azd-8055 1 Small molecule 

CHEMBL1879463 DB11651 dactolisib 2 Small molecule 

CHEMBL1922094 DB12180 apitolisib 2 Small molecule 

CHEMBL2103839 DB06233 ridaforolimus 3 Small molecule 

CHEMBL2141712 DB12812 palomid-529 1 Small molecule 

CHEMBL2326966 
 

sf-1126 2 Small molecule 

CHEMBL2331680 DB13072 rg-7603 1 Small molecule 

CHEMBL2336325 DB11925 vistusertib 2 Small molecule 

CHEMBL3120215 DB12387 osi-027 2 Small molecule 

CHEMBL3544963 
 

ds-3078a 1 Small molecule 

CHEMBL3545006 
 

pwt-33587 1 Small molecule 

CHEMBL3545096 
 

bgt-226 2 Small molecule 

CHEMBL3545097 DB11836 sapanisertib 2 Small molecule 

CHEMBL3545151 
 

cc-223 2 Small molecule 

CHEMBL3545248 
 

ds-7423 1 Small molecule 

CHEMBL3545322 
 

panulisib 1 Small molecule 

CHEMBL3545323 
 

pwt-33579 1 Small molecule 

CHEMBL3545366 DB12400 voxtalisib 2 Small molecule 

CHEMBL3545426 
 

cc-115 2 Small molecule 

CHEMBL4297181 DB12167 samotolisib 2 Small molecule 

CHEMBL1800955 DB11816 omecamtiv mecarbil 3 Small molecule 

CHEMBL411907 DB12601 sonolisib 2 Small molecule 

CHEMBL521851 DB11663 pictilisib 2 Small molecule 

CHEMBL586701 
 

zstk-474 2 Small molecule 

CHEMBL592445 DB11896 gedatolisib 2 Small molecule 

CHEMBL1079593 
 

vs-5584 1 Small molecule 

CHEMBL1234354 DB11974 pf-04691502 2 Small molecule 

CHEMBL1236962 DB12703 omipalisib 1 Small molecule 

CHEMBL1684984 DB13051 pa-799 1 Small molecule 

CHEMBL1879463 DB11651 dactolisib 2 Small molecule 

CHEMBL1922094 DB12180 apitolisib 2 Small molecule 

CHEMBL2017974 DB11666 buparlisib 3 Small molecule 

CHEMBL2165191 DB14980 azd-6482 1 Small molecule 

CHEMBL2219421 
 

recilisib 1 Small molecule 

CHEMBL2326966 
 

sf-1126 2 Small molecule 

CHEMBL2387080 DB12108 taselisib 3 Small molecule 

CHEMBL3360203 DB11772 pilaralisib 2 Small molecule 

CHEMBL3544966 DB11962 gsk-1059615 1 Small molecule 

CHEMBL3545006 
 

pwt-33587 1 Small molecule 

CHEMBL3545088 
 

puquitinib 1 Small molecule 
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CHEMBL3545096 
 

bgt-226 2 Small molecule 

CHEMBL3545248 
 

ds-7423 1 Small molecule 

CHEMBL3545322 
 

panulisib 1 Small molecule 

CHEMBL3545324 
 

rg-7666 2 Small molecule 

CHEMBL3545366 DB12400 voxtalisib 2 Small molecule 

CHEMBL3545385 
 

wx-037 1 Small molecule 

CHEMBL4297181 DB12167 samotolisib 2 Small molecule 

CHEMBL2109124 
 

dorlimomab aritox 1 Antibody 

CHEMBL2108734 
 

flanvotumab 1 Antibody 

DB04768 DB04768 
   

CHEMBL1547 DB00152 thiamine 4 Small molecule 

  

Table 4. Table showing drug repurposing candidates for 13 target genes identified as being sepsis and COVID-19 related 
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Mining Terminology and Example 

The overall process of mining, validation and scoring is shown below.  

 

Figure 11: Stages of the precisionlife mining, scoring and analysis process 

In the small dataset approach 1,000 cycles of fully random permutation are used in the validation of the simple networks.  

GLOSSARY 

n-states: combinations of SNP genotypes (or other markers) significantly overrepresented in cases vs 

controls 

Simple networks: a set of n-states sharing at least one SNP genotype (the “critical SNP genotype”). These networks 

are validated with a certain FDR threshold, and sometimes known as “validated simple networks”. 

Critical SNP genotypes: validated SNP genotypes (SNP genotypes defining validated simple networks) 

Merged networks: the union of n-states from one or more networks 
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