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Abstract  

Objective: In vivo functional changes in white matter during the progression of Alzheimer’s disease (AD) have not 

been previously reported. Our objectives are to measure changes in white matter functional connectivity (FC) in an 

aging population undergoing cognitive decline as AD develops, to establish their relationship to neuropsychological 

scores of cognitive abilities, and to assess their performance as predictors of AD. 

Methods: Analyses were conducted using resting state functional MRI (rsfMRI) and neuropsychological data from 

383 ADNI participants, including 136 cognitive normal (CN) controls, 46 with significant memory concern, 83 with 

early mild cognitive impairment (MCI), 37 with MCI, 46 with late MCI, and 35 with AD dementia. We used novel 

analyses of whole brain rsfMRI data to derive FC metrics between white matter tracts and discrete cortical volumes, 

as well as FC metrics between different white matter tracts, and their relationship to 6 cognitive measures. We then 

implemented supervised machine learning on white matter FCs to classify the participants and evaluated the 

performance.    

Results: Significant decreases were found in white matter FCs with prominent, specific, regional deficits appearing 

in late MCI and AD dementia patients relative to CN. These changes significantly correlated with behavioral 

measurements of impairments in cognition and memory. The sensitivity and specificity for distinguishing AD 

dementia and CN using white matter FCs were 0.83 and 0.81 respectively.   

Conclusions and Relevance: The white matter FC decreased in late MCI and AD dementia patients compared to 

CN participants, and the white matter FC correlates with cognitive measures. White matter FC based classification 

shows promise for differentiating AD patients from CN. It is suggested that white matter FC may be a novel 

imaging biomarker of AD progression.    

Key words: White matter, functional connectivity, Alzheimer’s disease, cognitive decline, fMRI, machine learning  
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Introduction 

Alzheimer’s disease (AD) is the most common progressive neurodegenerative disorder, which begins at a pre-

symptomatic stage before subjects exhibit increasingly severe cognitive impairments and ultimately, dementia [1, 2]. 

Histopathological evidence of degeneration during this progression has been observed in human brains in both gray 

matter (GM) and white matter (WM) [3, 4]. While there has been considerable emphasis on cortical changes, 

pathological alterations of WM post mortem have also been reported not only in late stages of AD (associated with 

loss of axons and oligodendrocytes [5] and concomitant with vascular abnormalities [6, 7]), but also in earlier, pre-

clinical stages, probably related to amyloid toxicity [8]. Moreover, tissue shrinkage has been found to be even more 

prominent in WM than in GM in early stage disease [3]. Potentially, therefore, appropriate measures of changes 

within WM may be valuable biomarkers of neurodegeneration in AD. However, to date there have been no studies 

of functional changes in WM in AD, and there remain no imaging metrics from any modality that reliably reflect 

behavioral or cognitive changes in the progression towards AD. 

 Functional magnetic resonance imaging (fMRI) has been previously used to detect functional alterations arising 

in AD [9-11] but to date such studies have been almost exclusively focused on GM, with very limited exceptions [12, 

13]. FMRI detects changes in MRI images caused by variations in blood volume and/or oxygenation (blood 

oxygenation level dependent (BOLD) effects) that in cortex correspond to changes in neural activity. Correlations 

across time between fluctuations in MRI signals from different cortical regions in a resting state are interpreted as 

indicators of functional connectivity (FC) between them. BOLD signals are expected to be much smaller in WM 

than in GM and are usually excluded from image analyses. However, recently we demonstrated that BOLD 

fluctuations in WM share common features with those from GM and they correlate significantly with BOLD signals 

from specific cortical regions to which they connect [14, 15]. Relationships between WM tracts and GM regions 

may be summarized by a functional correlation matrix (FCM) of their pair-wise correlations at rest, while different 

WM tracts can be inter-related using a similar approach. 

 In this study, we extended these new findings and analyses, originally described in reference [14, 16], to 

quantify changes in WM fMRI metrics during the progression to AD. We measured the differences in the FCMs for 

WM-GM correlations (FCMWG) and WM-WM (FCMWW) between a healthy group and each of five participant 

groups at different stages of cognitive impairments. We also subsequently evaluated the correlations between these 

FC metrics and behavioral measures of cognition and memory. Finally, we explored the use of machine learning to 
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differentiate between the controls and patients at different AD stages to evaluate how well WM FC alone can 

classify subjects.   

Materials and Methods  

Data used in this study were all obtained from the database of the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) (adni.loni.usc.edu).  

Participants 

The participant selection criteria were that 1) baseline rsfMRI images were available in ADNI-2 or ADNI-3 (if the 

participant was available in both ADNI-2 and ADNI-3, then data in ADNI-3 were selected); 2) participants were 

aged 60-90 years; 3) multi-band rsfMRI acquisitions were excluded and 4) the data survived MRI processing. 

The participants were grouped as cognitive normal (CN), significant memory concerns (SMC), early mild 

cognitive impairments (EMCI), mild cognitive impairments (MCI), late MCI (LMCI) and AD dementia (ADD). The 

full criteria for clinical classifications are described in the ADNI manual [17].  

MRI  

3T rsfMRI and T1-weighted (T1w) data, acquired at multiple institutions with the same imaging protocol, were 

preprocessed using the toolbox DPARSFA [18]. First, the rsfMRI images were corrected for slice timing and head 

motion. Twenty-four motion parameters [19] and mean CSF signal were regressed out. The resulting rsfMRI data 

were filtered (passband=0.01-0.1Hz), coregistered to a common space [20], detrended, and then normalized voxel-

wise into a time-course with zero mean and unit variance. Next, WM, GM, and cerebrospinal fluid (CSF) were 

segmented using the T1w images [21] and their tissue probability maps were normalized to the common space. 

Calculation of Functional Correlation Matrix (FCM) 

The calculations of correlations for each participant were restricted to WM and GM regions of interest (ROIs, listed 

in Table 1) that  were defined by the Eve atlas [22] (48 WM tracts, see S1 Fig in Supplement) and PickAtlas [23] 

(82 Brodmann areas) and were further constrained within masks generated by thresholding the WM and GM 

probability maps at 0.8. The preprocessed time-courses were averaged over the voxels within each ROI and for each 

pair of WM and GM ROIs they were then cross correlated, excluding any time points with large motions (framewise 

displacement [24] >0.5). The resulting 48x82 correlation coefficients formed an FCM of WM-GM pairs (FCMWG). 

Similarly, the mean time-courses for each pair of WM ROIs were cross correlated and the 48x48 correlation 
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coefficients formed an FCM of WM-WM pairs (FCMWW). Meanwhile, we generated FCM of GM-GM pairs 

(FCMGG) to confirm the validity of our processing pipeline. The possible influences of age, gender, years of 

education and acquisition-site were regressed out from FCM using a generalized linear model.  

Table 1. List of WM and GM ROIs 

White Matter (WM) ROIs  Gray Matter (GM) ROIs 

CST:      Corticospinal Tract 
ML:       Medial Lemniscus 
ICP:       Inferior Cerebellar Peduncle 
SCP:      Superior Cerebellar Peduncle 
CP:        Cerebral Peduncle 
ALIC:     Anterior Limb of Internal Capsule 
PLIC:     Posterior Limb of Internal Capsule 
RLIC:     Retrolenticular Limb of Internal Capsule 
ACR:      Anterior Corona Radiata 
SCR:      Superior Corona Radiata 
PCR:      Posterior Corona Radiata 
PTR:      Posterior Thalamic Radiation (include OR) 
SS:         Sagittal Stratum (include inferior longitudinal 
fasciculus and fronto-occipital fasciculus) 
EC:         External Capsule 
CGG:     Cingulum (Cingulate Gyrus) 
CGH:     Cingulum (Hippocampus) 
FXC:      Fornix (Cres) 
SLF:       Superior Longitudinal Fasciculus 
SFO:      Superior Fronto-Occipital Fasciculus 
UF:        Uncinate Fasciculus 
TAP:      Tapetum 
MCP:     Middle Cerebellar Peduncle 
PCT:       Pontine Crossing Tract 
GCC:      Genu of Corpus Callosum 
BCC:      Body of Corpus Callosum 
SCC:      Splenium of Corpus Callosum 
FX:         Fornix 

 

 BA1:   Primary Somatosensory Cortex 1 
BA2:   Primary Somatosensory Cortex 2 
BA3:   Primary Somatosensory Cortex 3 
BA4:   Primary Motor Cortex 
BA5:   Somatosensory Association Cortex 
BA6:   Premotor and Supplementary Motor  
BA7:   Visuo-Motor Coordination 
BA8:   Frontal Eye Fields 
BA9:   Dorsolateral Prefrontal Cortex 
BA10: Anterior Prefrontal Cortex 
BA11: Orbitofrontal Area 
BA13: Insular Cortex 
BA17: Primary Visual Cortex (V1) 
BA18: Secondary Visual Cortex (V2) 
BA19: Associative Visual Cortex (V3-5) 
BA20: Inferior Temporal Gyrus  
BA21: Middle Temporal Gyrus 
BA22: Superior Temporal Gyrus 
BA23: Ventral Posterior Cingulate Cortex 
BA24: Ventral Anterior Cingulate Cortex 
BA25: Subgenual Area 
BA26: Ectosplenial Portion of Retrosplenial Region  
BA27: Piriform Cortex  
BA28: Ventral Entorhinal Cortex 
BA29: Retrosplenial Cingulate Cortex 
BA30: Part of Cingulate Cortex 
BA32: Dorsal Anterior Cingulate Cortex 
BA34: Dorsal Entorhinal Cortex 
BA35: Perirhinal Cortex 
BA36: Ectorhinal Area 
BA37: Occipitotemporal Area (part of fusiform gyrus 
and interior temporal gyrus 
BA38: Temporopolar Area 
BA39: Angular Gyrus 
BA40: Supramarginal Gyrus  
BA41: Auditory Cortex 1 
BA42: Auditory Cortex 2 
BA43: Primary Gustatory Cortex 
BA44: Pars Opercularis 
BA45: Pars Triangularis 
BA46: Dorsolateral Prefrontal Cortex 
BA47: Pars Orbitalis 
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Neuropsychological Testing 

Neuropsychological scores included the scores of the Mini-Mental State Examination (MMSE), Clinical Dementia 

Rating (CDR) global, CDR sum of boxes (CDR-SOB), Global Deterioration Scale (GDS), functional assessment 

questionnaire (FAQ) total, Wechsler memory scale-logical memory II subscale (WMS-LMII), Alzheimer’s Disease 

Assessment Scale-Cognitive (ADAS-Cog) and  Hachinski scale, which are the most commonly used for clinical 

assessment and AD studies.  

Statistical Analysis 

The characteristics of the six subject groups were summarized, and the differences among groups were tested by 

one-way ANOVA or chi-squared test.  

The FCMs within each clinical group were averaged to produce a mean matrix (mFCM). Differences in the  

mFCM values, and the effect sizes of these differences [25] between the CN group and every other group were 

calculated. Permutation tests (10,000 permutations) were conducted for each FCM element across all participants 

within any two comparison groups. The resulting P-values were corrected for multiple comparisons using a false 

discovery rate [26], denoted as PFDR. To estimate the overall connectivity of each WM tract, the FCM elements 

corresponding to each WM ROI were averaged. The mean and standard deviation of each WM-tract-wise FC across 

participants within each group were then calculated. The WM-tract-wise FC in the CN group were compared with 

every other group using unpaired-sample t-tests.   

To measure the general trend of WM related functional connectivity as disease progresses, all the elements of 

each mFCM were averaged, providing a metric of overall-connectivity for each participant, and then the group mean 

and standard deviation of the overall-connectivity for each subject group were estimated and finally normalized by 

linear scaling.  

The associations between each single FCM element and neuropsychological scores were evaluated by 

calculating the linear correlation coefficients between the element and each score across all participants. To gauge 

the overall correlation of a WM tract’s connectivity with the score, significant correlation coefficients along the 

same WM tract were summed.  

To further evaluate the associations between combined FCM elements and each neuropsychological score, a 

random forest (RF) regression model was trained to predict the score after feature selection from all FCM elements. 
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The value of goodness of fit, R2 was calculated based on comparing true and predicted scores.  

Machine Learning Classification  

A support vector machine (SVM) with a radial-basis function kernel was used to classify the CN group and different 

combinations of groups of impaired subjects (i.e., ADD alone; LMCI and ADD together; MCI, LMCI and ADD 

together; EMCI, MCI, LMCI and ADD together; and SMC, EMCI, MCI, LMCI and ADD together). We used all 

FCMWG and FCMWW elements as initial features and implemented an RF algorithm to select those features that 

provided more accurate classifications [27]. In detail, the number of trees for the RF classifier was chosen to be 200 

as it was observed that increasing the number of trees further resulted in no significant reduction of classification 

error. The splitting criterion for RF was based on the GUIDE algorithm [28]. Individual feature importance was 

computed by measuring how much the predictive accuracy of the RF classifier deteriorated when the feature’s 

values were randomly permuted 2. The idea is that altering the value of an important feature will degrade the 

performance of a classifier. After obtaining the importance of each feature individually, the features that did not 

improve performance at all were at first removed from the set. The remaining features were arranged in descending 

order of their importance. Features were added sequentially, and classification error was noted for this cumulative 

feature set. The optimal feature set was taken to be the one, which provided the lowest classification error. A similar 

method was used for feature selection in the case of regression analysis abovementioned. There were 5064 WM 

functional connectivities in this study, so the features, which were arranged in descending order of importance, were 

added five at a time sequentially to reduce the computational load. In the case of the classification task, SVM with a 

radial-basis function (RBF) kernel was optimized with respect to C and Gamma, the two hyper-parameters. C 

regularized the classifier, and Gamma denoted variance of the RBF kernel and controlled the width of the kernel. 

Mean squared error of a 10-fold cross-validation (CV) was calculated to measure the classification error. More 

specifically, the data were split into 10 subsets. The SVM model was trained on 9 subsets and then evaluated on the 

remaining subsets. This process was repeated 10 times, with a different subset as testing data each time. One error 

was estimated at each time and the final error was the average of the 10 errors. Also, the penalty involved for 

misclassification of the disease group versus control group was manually varied so that data imbalance between the 

groups did not tilt the model accuracy towards one group [29]. Moreover, the receiver-operating characteristic (ROC) 

analysis was performed and the area under curve (AUC), sensitivity, and specificity were noted.  

Subjects that did not have any behavioral scores were removed from the regression study.   
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Results   

Participant characteristics  

Table 2 shows characteristics of all 383 participants, grouped into CN (n=136), SMC (n=46), EMCI (n=83), MCI 

(n=37), LMCI (n=46) and ADD (n=35), in order of disease severity. Among these groups, no significant differences 

in age (P=0.93), sex (P=0.22), handedness (P=0.99), years of education (P=0.23), brain volume (P =0.41) or 

Hachinski scale (P =0.25) were observed. The scanner vendor breakdown, CSF amyloid beta, CSF Tau, CSF p-tau, 

FDG-PET, MMSE, CDR global, CDR-SOB, GDS, FAQ, WMS-LMII and ADAS-Cog scores did differ significantly 

among groups (P <0.007).     

Table 2. Baseline Participant Characteristics.   

Characteristics CN  
(n=136) 

SMC 
(n=46) 

EMCI 
(n=83) 

MCI 
(n=37) 

LMCI 
(n=46) 

ADD 
(n=35) 

P-value 
(ANOVA or 
chi-square) 

Age, mean (SD), y 74.5 (7.1)  75.3 (5.8) 74.5 (7.0)  74.3 (7.2) 74.6 (6.8) 75.6 (6.8) 0.93 
Female sex, No. (%) 82(60) 26(57) 42 (51) 15 (41) 21 (46) 16 (46) 0.22 
Handedness, No. (%) 126 (92) 42 (91) 76 (92) 34 (92) 42 (91) 33 (94) 0.99 
Education, mean (SD), y 16.8 (2.3) 16.8 (2.6) 16.0 (2.7) 16.3 (2.5) 16.4 (2.9) 16.2 (2.7) 0.23 
Scanner vendor (S:G:P) 86:27:24 18:15:13 31:11:41 18:9:10 19:6:21 6:3:26 <0.001 
Brain volume (SD) X105 10.6 (0.9) 10.7 (0.9) 10.6 (2.2) 10.4 (1.0) 10.4 (1.1) 10.2 (1.2) 0.41 
CSF Amyloid beta (SD) X102 13.5 (4.3) 13.8 (3.3) 11.6 (4.6) 11.4 (2.5) 10.5 (4.0) 6.7 (2.8) <0.001 
CSF Tau 261 (104) 223 (78) 273 (139) 237 (113) 275 (132) 355 (130) 0.007 
CSF p-Tau 23.9 (10.6) 19.9 (8.1) 25.7 (15.5) 23.2 (12.1) 26.3 (14.3) 34.6 (13.3) 0.004 
FDG-PET 1.34 (0.09) 1.34 (0.09) 1.30 (0.10) 1.28 (0.13) 1.26 (0.12) 1.09 (0.14) <0.001 
MMSE score, mean (SD) 29.1 (1.7) 29.1 (1.0) 27.4 (2.9) 28.0 (1.5) 25.8 (5.6) 22.4 (3.2) <0.001 
CDR global score, mean (SD) 0.0 (0.2) 0.1 (0.2) 0.4 (0.3) 0.5 (0.0) 0.6 (0.5) 0.8 (0.2) <0.001 
CDR-SOB score, mean (SD) 0.3 (1.0) 0.1 (0.4) 1.7 (2.2) 1.2 (0.8) 2.6 (3.2) 4.7 (1.5) <0.001 
GDS score, mean (SD) 0.8 (1.5) 1.3 (1.3) 1.8 (2.0) 1.5 (1.3) 1.8 (2.3) 1.5 (1.3) <0.001 
FAQ score, mean (SD) 1.0 (3.7) 0.4 (0.8) 4.2 (6.5) 3.1 (4.4) 6.5 (8.7) 14.6 (6.2) <0.001 
WMS-LMII score, mean (SD) 15.4 (3.3) 15.4 (3.0) 12.4 (5.1) 9.2 (3.8) 9.7 (5.0) 4.5 (3.1) <0.001 
ADAS-Cog score, mean (SD) 9.6 (4.4) 8.2 (3.1) 12.0 (6.0) 12.3 (3.4) 14.0 (8.3) 22.7 (7.4) <0.001 
Hachinski scale, mean (SD) 0.5 (0.7) 0.6 (1.0) 1.0 (1.2) 0.8 (1.2) 0.7 (0.9) 0.9 (0.9) 0.25 

Note: S=Siemens; G=GE Medical Systems; P=Philips Medical System and Philips Healthcare. FDG-PET: average FDG-PET of 
angular, temporal, and posterior cingulate.  

WM functional connectivity at baseline  

Fig 1ac shows the mean FCMWG (mFCMWG) and mean FCMWW (mFCMWW) for each clinical group. The overall 

patterns of mFCMWG or mFCMWW appear similar across the six groups. The mean correlation coefficient of each 

WM tract across GM ROIs or WM ROIs is illustrated in Fig 1bd, showing that cingulum (cingulate gyrus) (CGG), 

external capsule (EC) and internal capsule (IC) have higher correlations averaged over GM ROIs, and IC, splenium 

of corpus callosum (SCC), superior longitudinal fasciculus (SLF), and middle cerebellar peduncle (MCP) have 
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higher WM-averaged correlations.  

Comparisons between mFCMWW (Fig 1c) and the group mean of GM-GM FCM (mFCMGG, S2 Fig in 

Supplement) shows a generally lower level of WM-WM correlation, with a relative decrease of 25-30% in overall 

average of FCM for every study group.    

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.05.05.20091892doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.05.20091892


10 
 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.05.05.20091892doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.05.20091892


11 
 

Fig 1. Mean of WM-GM and WM-WM functional correlation matrices (mFCMWG and mFCMWW) as well as GM-averaged and 

WM-averaged correlation coefficients of WM tracts for each group were analyzed. Mean of FCMWG (A) or FCMWW (C) across all 

participants within group of CN, SMC, EMCI, MCI, LMCI or ADD. Each element in mFCMWG (or mFCMWW) is the group mean 

correlation coefficient of the averaged BOLD time-courses between one WM region and one GM (or WM) region. GM-averaged 

(B) and WM-averaged (D) correlation coefficients of WM tracts for each group. Group mean (red bar) and standard deviation 

(black error bar) for each WM tract are shown. Full names of WM ROIs and GM ROIs are listed in Table 1.   

WM functional connectivity deficits in progression to AD 

In LMCI or ADD patients, significant FC decreases were observed in a number of WM-GM pairs (Fig 2a, f) and 

WM-WM pairs (upper triangle in Fig 2d, i) compared with CN participants (PFDR<0.05) and there are obvious 

horizontal patterns in the difference matrices, corresponding to specific WM tracts. In particular, the corpus 

callosum (CC, including GCC, BCC and SCC), SLFlr, CGGlr, sagittal stratum (SSlr), posterior thalamic radiation 

(PTRlr) and corona radiata (CRlr, including ACR, SCR and PCR) show profound declines in WM-GM connectivity 

in the ADD groups relative to the CN group (Fig 2g), consistent with previous findings showing microstructural 

degeneration detected by diffusion MRI in CC, SLF, CGG, SS, PTR and CR in ADD patients[30]. The SSlr, fornix 

(cres) (FXClr), SLFlr, right hippocampal cingulum (CGHr), ECr, PTRr and PCRr show significant decreases in WM-

GM connectivity in the LMCI group relative to CN group (Fig 2b). The CC, SLFlr, CGHlr, CGGlr, ECr, SSlr, PTRlr, 

PCRlr, SCRlr, ACRl, RLIClr and PLIClr show significant declines in inter-tract FC in both the LMCI and ADD 

groups relative to the CN group (Fig 2e, j). Moreover, the effect sizes of group deficits with PFDR<0.05 were mostly 

larger than 0.3 (Fig 2c, h and lower triangle in Fig 2d, i).  

By contrast, no significant changes in FCMWG or FCMWW between CN and any of the early disease groups (i.e., 

SMC, EMCI and MCI) were observed at the same P-value threshold. But their mean PFDR were 0.99, 0.65, and 0.22, 

respectively, suggesting a progression towards significant differences. By contrast, previous studies on brain 

microstructure reported alterations in a few selected WM regions in MCI participants, involving cingulate bundle, 

inferior FOF and parahippocampal subgyral fibers [31, 32], where connectivity deficits were found in our LMCI and 

ADD cases.   
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Fig 2. Significant differences of mFCMWG and mFCMWW between controls and impaired groups. (a, f) Difference of subtracting 

mFCMWG of LMCI (a) or ADD (f) from mFCMWG of CN group. The P-value for each element was derived from permutation-test 

(10,000 permutations) across all participants within groups, and then adjusted using an FDR. Those elements with PFDR >0.05 

were set to be zero. (b, g) GM-averaged correlation coefficients of WM tracts in CN group (green) and LMCI group (red) (b) and 

in CN group (green) and ADD group (red) (g). Mean and standard deviation for each WM tract are shown, and black asterisks (*) 

denote p <0.05 calculated by unpaired-sample t-test of mean correlation coefficients. (c, h) Effect size of the mFCMWG 

difference between CN and LMCI (c) or ADD (h), thresholded by PFDR. (d, i) Difference of mFCMWW between CN and LMCI or ADD 

(upper triangle) and effect size of the mFCMWW difference (lower triangle). (e, j) WM-averaged correlation coefficients of WM 

tracts in CN group (green) and LMCI group (red) (e) and in CN group (green) and ADD group (red) (g). 

Correlation between WM functional connectivity and neuropsychological scores   

The normalized group means of overall-connectivity decreased gradually until the MCI stage, and then fell rapidly 

to very low values as MCI progressed to LMCI and ADD stages (Fig 3a), a behavior which conforms to current 

hypothetical models of AD evolution [33]. The corresponding normalized overall trends in 7 behavioral measures 

across groups (Fig 3b) show a striking similarity with this overall-connectivity trend. 

 

Fig 3. Normalized overall-connectivity and neuropsychological scores for each clinical group in AD progression. (a) Normalized 

group mean (gray square) and standard deviation of mean (gray bar) of the overall-connectivity for each clinical group. The six 

clinical groups are CN, SMC, EMCI, MCI, LMCI and ADD groups. (b) Normalized mean (colored square) and standard deviation 

(colored bar) of the neuropsychological scores for each clinical group.  

Fig 4a-d shows correlation coefficients between elements in FCMWW or FCMWG and neuropsychological scores 
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which are significantly different from zero (PFDR<0.05). No significant correlations were found between any element 

in FCM and the Hachinski scale or GDS score. 

FCMWG and FCMWW elements within SSlr, CGGlr, CGHl, FXClr, SCC, PTRlr, and bilateral cerebral spinal tract 

(CSTlr) showed significant positive associations with MMSE scores [34] (Fig 4a-d), indicating reduced WM FC 

corresponds to more severe cognitive impairment. A previous ADNI study found that MMSE scores were strongly 

associated with a DTI index [35] in SSlr, CGGl, CGHlr, FXC, and SCC. Another study demonstrated WM micro-

structural damage was correlated with MMSE, most strongly in temporal lobe [36] where the CGH, FXC and part of 

SS reside. On the other hand, the lower WM functional connectivity might be also due to damage to GM regions to 

which the WM tracts connect, including cellular pathology [4] and gross atrophy [37]. GM loss was reported to be 

strongly correlated with decreases in MMSE in all regions that showed prominent GM atrophy in AD [38]. 

The CDR-global [39] and CDR-SOB scores are indicators of dementia severity [40]. The sum of negative 

correlations along WM tracts between FCM and CDR-global was strong in SSlr, CGGlr, FXClr, SLFr, SCC, GCC, 

FX, PCRlr, PTRlr, ALICl, and CSTlr (Fig 4a-d). For the linkage between FCM elements and CDR-SOB score, clear 

negative correlations were found in SSlr, CGGlr, FXCl, PTRlr, PCRlr, GCC, SCC, ALICl, RLICl, and CSTr. A 

previous study found that diffusivity measures were strongly associated with CDR-SOB in SSlr, CCGl, FXCl, PTRl, 

PCRl and the entire CC [35].   

Negative correlations were dominant in SSlr, CGGlr, PTRlr, PCRlr, SLFr, ALICl, PLICl, GCC and SCC between 

FCM and FAQ [41] that describe the level of performance of daily function activities  (Fig 4a-d).  

CGGlr showed the most significant negative correlations between FCMWG and the ADAS-Cog [42] score, the 

overall degree of cognitive decline (Fig 4a-d). GCC, SCC, FX, PTRlr, PCRl, CGGl, SSl, showed significant 

correlation between FCMWW and ADAS-Cog (Fig 4cd). A previous study found that diffusivity measures were 

strongly correlated with ADAS-Cog in GCC, SCC, FXCl, PTRlr, CGGl, and SSlr, among others [35].    

SCC, GCC, SSlr, ALICl, PTRr, and CGGl showed stronger positive correlations between FC and the WMS-

LMII [43] score, a measure of episodic memory (Fig 4a-d). CGG and CGH constitute the major pathways between 

the hippocampal regions and posterior cingulate cortex (PPC). The intrinsic FC between hippocampus and PPC has 

been reported to be closely associated with WMS-LM scores in elderly people [44]. A portion of SS connects to 

temporal lobe and prefrontal cortex which are also engaged in episodic memory processing [45]. Moreover, WM 

tracts in left hemisphere appear to correlate with WMS-LMII scores more widely and strongly (Fig 4a-d), consistent 
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with previous findings that verbal memory tasks are more sensitive to left hemisphere dysfunction [46] and damage 

to left temporal lobe has consistently been associated with an impairment of verbal memory [47].           

 

Fig 4. Correlations between WM functional connectivity and neuropsychological scores across all subjects. (a or c) Matrix of 

Pearson’s correlation coefficients between single elements in FCMWG or FCMWW and MMSE score, CDR-Global score, CDR-SOB 

score, FAQ score, ADAS-Cog score, or WMS-LMII score. Each correlation coefficient with PFDR > 0.05 was set to be zero. (b or d) 

Sum of significant correlation coefficients along each WM tract in a or c. See Table 1 for the lists of WM and GM ROIs. (e) Group 
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means and standard deviations of true scores and predicted scores using RF regression model with all WM functional 

connectivity as initial features. The r, R2 and P in each plot are the Pearson’s correlation coefficient between true scores and 

predicted scores across all subjects, R-square value and P-value, respectively.     

Correlation between combined WM functional connectivities and neuropsychological scores   

The correlation coefficients between the true and RF-predicted scores of ADAS-Cog, CDR-Global, CDR-SOB, 

FAQ and MMSE were 0.39-0.47 with highly significant P-value (<0.001) (Fig 4e). The R2 values in Fig 4e indicate 

that 15%-22% of the variances of those individual scores could be explained by the variance of the overall combined 

WM functional connectivities, and vice versa.  

Prediction of AD stages  

The performance of the SVM classification using WM FC features was best for distinguishing ADD from CN group 

with sensitivity of 0.83 and specificity of 0.81 (AUC=0.87). The performance using optimized features reduced 

monotonically with addition of patients from earlier stages to the ADD group (Fig 5). Also, feature selection helped 

to improve performance in all the classifications.  

 

Fig 5. ROC curves of SVM classifications and a summary of their CV errors, AUC, sensitivity and specificity. (a) ROC curves of 

SVM algorithm for distinguishing patients from CN. Difference color represents different cumulative group of patients. (b) The 

errors of 10-fold CV and ROC related indices-AUC, sensitivity and specificity for the classifications.   

Discussion  

In conventional rsfMRI studies, correlations in BOLD signals between GM regions are interpreted as revealing FC. 

Extending this concept, we investigated the FC between WM and GM regions or between WM regions for 383 

ADNI participants from six subject groups. We mainly found that: 1) LMCI and ADD have significant deficits in 
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regional WM FC relative to CN, 2) regional WM FC is significantly associated with neuropsychological scores (i.e., 

MMSE, CDR, FAQ, ADAS-Cog and WMS-LMII), and 3) WM FC can be used to distinguish between patients and 

controls. To the best of our knowledge, this is the first investigation of novel measures of functional connectivity 

and degeneration in WM throughout the evolution of AD pathology. Our findings indicate that FC of WM from 

MRI may serve as a novel in vivo biomarker to identify changes in brain in AD.     

In our analyses, we constrained ROIs to GM or WM only in order to avoid partial volume averaging effects 

which potentially could overestimate the correlation of time-courses between regions. These correlations of WM 

with GM or other WM volumes are unlikely caused by drainage effects from adjacent GM because cortical drainage 

occurs outwards, towards the brain surface while deeper WM veins drain inwards to sub-ependymal veins near the 

lateral ventricles, so there is no direct vascular communication between them [48]. In our analyses we did not 

regress out global signals because there is growing evidence that they may contain valuable information [49, 50]. 

Other physiological noises (such as that caused by variations in heart rate and respiration) were, however, regressed 

out. With these factors in mind, we believe that the WM FC we measured is neither noise effect nor simply a 

reflection of GM changes.        

From a pathophysiological perspective, the decreases in WM FC metrics observed in late AD stages may be 

directly attributable to GM abnormalities, WM degeneration, metabolic changes and/or cerebrovascular changes. 

GM abnormalities in AD include the appearance of neurofibrillary/senile plaques, neuronal loss, cell shrinkage, 

reduced dendritic density and synaptic losses [51, 52]. The consequent neural dysfunction could lead to less 

engagement of WM in transmission of neural information. WM degeneration during AD progression [53-55] 

includes demyelination [56] and axonal damage [57], which may also weaken the ability of WM to transfer neural 

signals between regions. WM degeneration has been reported as a direct consequence of amyloid deposition and tau 

phosphorylation in GM, and of damage to oligodendrocytes, possibly initiated by ischemia, excitotoxicity, oxidative 

stress and/or iron overload [58]. Cerebral hypometabolism is found in MCI and AD patients throughout limbic 

structures, involving hippocampal complex, medial thalamus, mammillary bodies and posterior cingulate. AD 

patients may also have hypometabolism in amygdala, temporoparietal and frontal association cortex [59, 60]. 

Cerebral hypoperfusion defects in AD are severe [61], and atherosclerosis that leads to cerebral hypoperfusion is 

significantly correlated with AD severity. Both hypometabolism and hypoperfusion may have direct effects on 

BOLD signals in GM and WM. Further studies to understand the relationship between the GM changes and 
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decreases in WM connectivity in AD are clearly needed and may reflect a combination of factors including direct 

causes and effects, comorbidities and mutual dependences.  

The performances of our SVM classifications indicate that it is feasible to differentiate between CN and AD 

patients objectively using WM connectivity metrics only. The performance decreases as patients at earlier stages of 

AD are included sequentially, because there are smaller reductions in WM connectivity early in the disease. The 

decrease in classification errors using an optimal feature set emphasizes the importance of removing redundant 

features in the analysis i.e. those WM connectivities that do not contribute new information for the classification. It 

will be interesting to study in future those specific WM tracts that provide complementary information for maximal 

differentiation between groups.  

Conclusions 

The present study indicates that WM functional connectivities 1) decline regionally in LMCI and ADD groups 

relative to a CN group, 2) are significantly related to cognitive scores, and 3) can serve as machine learning features 

for distinguishing between AD patients and CN with an acceptable sensitivity and specificity. These findings 

suggest the potential of WM FC, which has been largely overlooked to date, as a novel neuroimaging biomarker to 

assess AD progression.  
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