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Optimal control of an SIR epidemic through finite-time
non-pharmaceutical intervention

David I. Ketcheson*

May 3, 2020

Abstract

We consider the problem of controlling an SIR-model epidemic by temporarily reduc-
ing the rate of contact within a population. The control takes the form of a multiplicative
reduction in the contact rate of infectious individuals. The control is allowed to be ap-
plied only over a finite time interval, while the objective is to minimize the total number
of individuals infected in the long-time limit, subject to some cost function for the control.
We first consider the no-cost scenario and analytically determine the optimal control and
solution. We then study solutions when a cost of intervention is included, as well as a
cost associated with overwhelming the available medical resources. Examples are stud-
ied through the numerical solution of the associated Hamilton-Jacobi-Bellman equation.
Finally, we provide some examples related directly to the current pandemic.

AMS subject classification. 92D30, 34HO05, 49N90, 92-10, 49L.12

1 Problem description and assumptions

The classical SIR model of Kermack & Mckendrick [13] is

' (t) = —yooy(t)=(t) (1a)
y'(t) = yooy(t)z(t) — vy(t) (1b)
(2(0),4(0)) € D := {(z0,%0) : o > 0,90 > 0,20 + yo < 1}, (1c)

where z(t), y(t) represent the susceptible and infected populations respectively, while the
recovered population is z(t) = 1 — x(t) — y(¢). The region D is forward-invariant and a
unique solution exists for all time [10]. While the temporal dynamics of (1) depend on
both oy and ~, the set of trajectories depends only on the basic reproduction number .
Dynamics for two values of og are shown in Figure 1.

The system (1) is at equilibrium if y(¢) = 0. This equilibrium is stable if and only if
z(t) < 1/0¢, a condition referred to as herd immunity. If this condition is not satisfied
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Figure 1: Dynamics of the SIR model (1) for two values of the basic reproduction number. The
critical value z = 1/0 is shown with a dashed line.

at the initial time, then y(¢) will first increase until it is, and then decrease, approaching
zero asymptotically. The SIR model assumes that recovery confers permanent immunity:.

For many diseases affecting humans, herd immunity is achieved through vaccination
of a sufficient portion of the population. Herein we assume a vaccine is unavailable, so
that herd immunity can only be achieved through infection and recovery. Our goal is to
minimize 2z = limy_, o 2(t), or equivalently (since yo, = 0) to maximize the long-time
limit of the susceptible fraction: o, = lim;_,o z(t). This has the effect of minimizing the
number of eventual deaths, which would be proportional to zs.

This is equivalent to minimizing the number of deaths, if we assume that some fixed
fraction of the recovered population z(t) dies from the disease. From the foregoing it is
clear that o, < 1/0¢. The difference 1/0¢—x is referred to as epidemiological overshoot.
For COVID-19, a review of early estimates of oy can be found in [16, Table 1], with mean
3.28 and median 2.79. In accordance with these estimates, we use a value o = 3 in most
of the examples in this work. With this value, the SIR model implies that eventually at
least two-thirds of the world population will eventually have COVID-19 antibodies; this
number is likely to be significantly higher in reality due to epidemiological overshoot. For
instance, it can be seen from Figure 1(a) that, starting from a fully susceptible population
and a small number of infected individuals, in the absence of control the SIR model
predicts that over 90% of the population would be infected.
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This overshoot can be reduced through non-pharmaceutical intervention (NPI), which
is simply a means to reduce contact between infected and susceptible individuals; re-
ductions of this kind occurred for instance as a result of NPIs imposed during the 1918
flu pandemic [3]. We model a NPI control via a time-dependent reproduction number
o(t) € [0,00] with the system

a'(t) = —yo(t)yx (2a)
Y (t) =vo(t)yz — vy (2b)
(2(0),y(0)) € D := {(x0,y0) : zo > 0,90 > 0,20 +yo < 1}. (2¢)

A temporary reduction in o can account for both population-wide interventions and in-
terventions specific to identified infectious (or possibly infectious) individuals. The SIR
model with a time-dependent reproduction number (or equivalently, a time-dependent
contact rate) has been considered before, for instance in [3, 22].

Typically, an epidemic does not result in substantial permanent change in the contact
rate of a population. We therefore assume

o(t) =09 fort > T, (3)

i.e., that intervention can only be applied over a finite interval ¢ € [0,T]. Since zo, = 1/09
only at the single point (x = 1/09,y = 0), and since the y = 0 axis cannot be reached in
a finite time, (3) implies that any solution must have z, < 1/0y.

We state the control problem as follows:

Given (z9,y0) € D,00 > 0,T > 0,

choose an admissible control o(t) : [0,T] — [0, o¢] to minimize

T (4)
J(xz(t),y(t),o(t)) = — lim x(t) +/0 L(x(t),y(t),o(t))dt

t—o00

subject to (2).

Here J is the objective function that accounts for the desire to minimize infections as
well as a running cost of imposing control. We assume throughout that L is convex with
respect to q(t) =1 — o/oyp.

There is a large body of work on compartmental epidemiological models and control
for such models; see e.g. [10, 15] and references therein. A number of works focus on
optimal control through vaccination; see e.g. [12]. Other works, such as [25, 20, 1] focus
on explicit modeling of and/or control through quarantined and isolated individuals. A
review of work on optimal control in compartmental epidemiological models is presented in
[21], along with the formulation of necessary conditions (based on Pontryagin’s maximum
principle) for various extensions of the SIR model. For modeling and control based on
even more detailed models incorporating spatial spread and human networks, see e.g. [4].

1.1 Objectives and contributions

The modeling and assumptions in the present work are motivated by the current COVID-
19 epidemic, which so far is being managed through broad NPIs and without a vaccine.
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In order to understand the effects of NPIs imposed on an entire population, we stick to
the simple model (2) rather than explicitly modeling quarantined individuals. Since such
population-wide measures cannot be maintained indefinitely, we invoke the finite-time
control assumption (3). This assumption is not new (see e.g. [7]), but unlike previous
works our objective function is still based on the long-term outcome (rather than the
outcome at time T'). This drastically changes the nature of optimal solutions.

Although the broad motivation for this work comes from the current epidemic, our
primary objective is to understand general properties of optimal controls for the variable-o
SIR system (2). To this end, we also investigate solutions in certain asymptotic regimes
(such as when there is little or no cost associated with the control). Nevertheless, the
values of the key parameters v and og for all examples are chosen to fall in the range of
current estimates for COVID-19.

One novel aspect of this work is that the problem is posed in terms of the infinite-
time limit, but formulated in a way that only requires solution over a finite time inter-
val. Indeed, without this reformulation we found that the problem was extremely ill-
conditioned; this reformulation is also needed in order to compute approximate solutions
via a Hamilton-Jacobi-Belmman equation. This reformulation is presented in Section 2.
The main theoretical result is an exact characterization of the optimal control when L = 0,
given as Theorem 3 in Section 3.

Typical results in the literature on control of compartmental epidemiological models
are numerical and are based on Pontryagin’s weak maximum principle, which gives only
necessary conditions for optimality. At best, uniqueness is shown for small times; see e.g.
[14, 5, 11, 25, 12, 21]. In contrast, here the main result includes a proof of optimality
for arbitrarily large times. In Section 4 we explore the behavior of optimal solutions for
L # 0 under various interesting cost functions and parameter regimes. Here the results
are based on solutions of the relevant Hamilton-Jacobi-Bellman equation, which is both
necessary and sufficient for optimality. In Section 5 we consider direct application to the
COVID-19 pandemic. Some conclusions are drawn in Section 6.

2 Formulation over a finite time interval

In this section we reformulate the control problem (4) in terms of the solution over a finite
time interval [0,7]. This reformulation is necessary both to facilitate the exact solution
in Section 3 and to arrive at a numerically-tractable problem for computing approximate
solutions, as described in Section 4.

In general, the solution of (2) depends on the initial data (xg,yo), the control o(t),
and time ¢, so it is natural to write z(¢; 0 (t), xo,yo). In what follows it will be convenient
to make a slight abuse of notation and write z(¢;0(t)) or x(t) when there is no chance of
confusion.

For a fixed reproduction number, the asymptotic susceptible fraction x,, can be ob-
tained from the solution z(t), y(t) at any time ¢, since solutions of (1) move along contours
of Too. Thus we will write zo(z,y) or zoo(x,y, 00p).
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2.1 A formula for z.,

In this subsection we review the solution of the SIR model without control (1). It can be
shown that z(t) satisfies (see [8, 18] and [13, pp.707-708])

z(t)e?0* ) = gge70%0,
Since z =1 —x — y we define
(w(z,y, 00) := x(t)e"70@O+y®)

which is constant in time for any solution of (1). The trajectories in Figure 1 are thus
also contours of p. Since yoo = 0, we have

Loo—TO0— x
oo = Tpe@2 7Y = (3, g, 079) €70
Setting w = —xo,00 We have
we" = —xoage*"ﬂ(f’fﬁyo) = —uoy.

Thus w = Wy(—pog) where Wy is the principal branch of Lambert’s W-function [18], and

1
Too(®,Y,00) = _;OWO(_N(xayaUO)UO)- (5)
Formula (5) allows us to rewrite the problem (4) in terms of the state at time 7" < co:

Given (3:0’ yO) €D,00>0,T >0,
choose an admissible control o(t) : [0,7] — [0, 0p] to minimize

T 6
J = *xoo(x(T)ay(T%O-O) +/0 L(J(t)dt ( )

subject to (2).

In what follows we will also require the derivatives of x, with respect to x, y, and pu.
Direct computation gives

0T o 0000

) - 1= oo (7a)
O _ < 1 ) 0% oo _ 1 — opx(t) | Too (7h)
Ox(t) xz(t)og ) Oy(t) 1—o00xee x(t)

0roo  €70%

(7¢)

8/J - 1—0’03700.

Using these expressions we can also compute the rate of change of x~, when some control
o(t) is applied:

0% VYL oo
= og—o(t)). 8
o2 = 1= (g — (1) (5)
From this we see that the impact of an intervention on x., is independent of z(t) and
directly proportional to y(¢). This indicates that intervention is more impactful when
there is a larger infected population.
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2.2 Bounds on z.
Now we turn our attention to the SIR system with control (2).

Definition 1. (Admissible control) Given a basic reproduction number oy, we say a
control fuction o(t) is admissible if it is Lebesgue measurable and 0 < o(t) < oo for all t.

It is straightforward to show that (2) has a unique solution for all time for any initial
data in D and any admissible control, by the same arguments used for (1). The proof of
the next lemma shows that applying any control o(t) < oo over any length of time leads
to an increase in Too.

Lemma 1. Let 0p > 0 and (xo,y0) € D be given. Let o(t) be an admissible control. Then
fort > 0 we have
Too(2(t;0(1)), y(t; (1)), 00) 2 oo (0, Yo, 00)-
Proof. Dividing (1b) by (1a) gives
dy 1

- o(t)x

(9)

Thus reducing o(t) has the effect of increasing dy/dx. Since all trajectories flow to the
left (z is a decreasing function of ¢), this means that the solution trajectory obtained with
o(t) lies below that obtained with oy, for all ¢ > 0. Since 2 is a decreasing function of
1y, this completes the proof. O

Thus for any admissible control and any initial data we have

ajoo(xo’y070'0) < xoo(x(T)vy(T)’o-O) < 1/00-

2.3 Existence and necessary conditions for an optimal con-
trol

Standard application of Pontryagin’s maximum principle gives necessary conditions for a
solution of (6). The Hamiltonian for this problem is

H(x(t),y(t),0(t), A 2(), 1) = =M (O Oy )z (t) + Ae(t)yy (@) (o (D)x(t) = 1) + Lz(t), y(t), o (1)),

(10)

and the adjoint variables are defined by
20 = 20 = (i~ Mo u(n) — o (11a)
(0 = =50 = (= Maya(Bia(t) + dey - 5 (11b)
() = =2 = O (o). (D), 0 (11¢)
) = -2 O w000 = (1= o) D), (11a)

where z(t), y(t) satisfy (2). The final conditions for A\; 2 can be computed from (7).

6
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Theorem 1. Let (xo,y0) € D and 09,7, T > 0 be given. Then there exists a control o™ (t)
for (6) and corresponding response (x*(t),y*(t)) such that J is minimized over the set of
admissible controls. Furthermore, there exist adjoint functions A\ 2(t) satisfying (11) with
x(t) = x*(t),y(t) = y*(t), and the control o*(t) satisfies the optimality condition

0*(t) = max (0, min (09,5 (t))), (12)

where

oL

= = —(N2(t) — M () yyz. (13)
o (t)=6(t)

Proof. The existence of an optimal control is guaranteed by [6, Corollary 4.1] since L is
convex with respect to q(t) = 1—o(t)/op, the state solutions (x(t), y(t)) are bounded, and
the system (2) is Lipschitz with respect to x,y. Thus, applying Pontryagin’s maximum
principle, we convert the problem (6) into that of minimizing H in (10) pointwise with
respect to o. On the interior of the set of admissible controls we have (13), which leads
to (12). O

2.4 Infinite-time control

In this section only, we consider controls that reach the optimal value zo = 1/0g. This
is achieved only at (z,y) = (1/09,0), a state that cannot be reached from any other state
without imposing some control, and which in any case can only be reached after an infinite
time. Thus we momentarily set aside the restriction (3) and consider controls extending
up to an arbitrarily large time 7. We still require that the system approach a stable
equilibrium point as t — co. We assume that zo > 1/09, since otherwise the maximum
achievable value of z, is 2, which would be achieved by taking simply o(t) = 0 for all ¢.
We also take L = 0 so that an optimal control is any control satisfying

lim z(t,o(t)) = 1/0y.

t—o00

There are infinitely many such controls. Two are particularly simple and are of interest.
The first is a constant control o (t) = o.(z0, Y0, 00). By (5) we must have z+(x0, Yo, 0x) =
1/0¢, so o, is the solution of

O«

WO(_M(‘T(M Yo, U*)U*) = _;0

The second is a bang-bang control in which

O’(t) _ {O’o x > 1/0’0

0 r = 0Q.

The response for each of these controls is shown for a specific example in Figure 2.
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Figure 2: Two infinite-time controls that give z,, = 1/0o. Here oo = 3 and (zo,v0) =
(0.99,0.01). For the constant control, o(t) = o, ~ (1 — 0.4557)0y.

3 Optimal control with L =0

In this section we derive the exact solution of the control problem (6) with L = 0 (i.e.,
when the goal of increasing z~, completely trumps any associated costs or other concerns).
Then (6) becomes

Given (zg,y0) € D,09 > 0,7 > 0,
choose an admissible control o(t) : [0,7] — [0, o] (14)
to minimize J = —zoo(z(T), y(T), 00)

subject to (2).
This problem can be reformulated as a minimum-time control problem.

Lemma 2. Let 0*(t) be an optimal control for (14), and let (x*(T),y*(T')) denote the cor-
responding terminal state. Then there is no admissible control that reaches (z*(T'), y*(T))
from (xo,y0) before time T.

Proof. Suppose there were a control ¢(t) that leads to (z(t*),y(t*)) = («*(T),y*(T)) for
some t* < T. Then we could obtain a smaller value of J in (14) by using & up to time t*
combined with the choice o(t) = 0 for ¢ > t*. This contradicts the optimality of o*(¢). O

Furthermore, the optimal control must be a bang-bang control.
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Lemma 3. Let o(t) be an optimal control for (14). Then

~—

o(t) = {0 il(t) < Aot
oo 1(t) > /\Q(t)

where A1 2(t) are given by (11).
Proof. From (10) with L = 0, we have

O _ () = M ()yu(t)(t).

do
The optimality condition then implies (15) except at points where 0H /0o = 0 (see e.g.
[15, Ch. 17]. Since z(t),y(t) > 0 for ¢ < oo, we have that 0H/0Jo = 0 if and only if
A1 = A2. Suppose that the latter condition holds on an open interval. By (11), that
would imply that A} (t) = A5(¢) = 0 on this interval and hence for all ¢, which contradicts
the boundary conditions (11). O

This motivates the following lemma.

Lemma 4. Let (xg,y0) and (x1,y1) be given such that xo,x1 > 1/00 and xoo (0, Yo, 00) >
ZToo(T1,Y1,00). Leta(t) be a bang-bang control such that (x(t1; xo, Yo, o (t)), y(t1; xo, yo, o (t))) =
(z1,y1) for some t; > 0. Then the minimum value of t1 is achieved by taking

U@)::{ao t<tr (16)

0 t*<t<t,

where t* satisfies x(t*; xo, yo,00) = 1.

Proof. Since o(t) is a bang-bang control, the trajectory (z(t;o(t)),y(t;0(t))) consists of
a sequence of segments each of which is a solution of (2) with o = 0 (traveling directly
downward) or with o = o (traveling along a contour of z,). Some trajectories of this type
are illustrated in Figure 3. Notice that each trajectory must traverse the same distance
in the x-direction; since 2/(t) = —fzy this travel is faster at larger y values. Meanwhile,
the total length of all the downward (o = 0) segments is the same for any trajectory, and
since for these segments y'(t) = —vy, travel is again faster at larger y values. The control
given in the lemma makes all these traversals at the largest possible values of y, so it
arrives in the shortest time. O

Combining these three lemmas, we obtain the following.
Theorem 2. Any optimal control for (14) is of the form (16) with t; =T.

Proof. By Lemmas 2 and 3, the optimal control must be bang-bang and must solve the
optimal-time problem. Then Lemma 4 applies and gives the stated result. O

We can now give the solution of (14).
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Figure 3: Three different paths between two states, each obtained with a bang-bang control.
The top (green) path arrives in the shortest time.

Theorem 3. The optimal control for (14) is unique and is given by

o) = {00 t<tr a7

0 t<t<T,
where
t"=0if zg < ! (18)
=V Yy Tro=> 00(1 —e_'VT)’
and otherwise t* is the unique solution of
N 1
$(t ;0-07'1"07y0) = (19)

oo(1 — e~ (T=t"))’

Proof. First, suppose z(0) < 1/0g. The claimed optimal control gives z(T') = xo, whereas
any other control will give z(T") < x. Similarly, we see from (2) that the optimal control
gives y(T) = e "yy and any other control will lead to a larger value of (7). Since xw,
is a decreasing function of y and (for z < 1/0¢) an increasing function of x, the proposed
control is optimal in this case.

Now suppose z(0) > 1/0g9. We reformulate the objective as follows. From (7) we
see that zo is a strictly monotone increasing function of p, so that maximizing x is

10
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equivalent to maximizing pu. Now

p(t) = (2'(t) — aox(t)(ac'(t) (t)))e—cro(r(t>+y(t)>
ya(t)y(t)e™ (z()+y(t))

Thus .
u(t) = exp <7 INGEE cm)czf) ()

Thus, maximizing z~(7") is equivalent to maximizing

T
I ::/0 y(1) (o9 — o(1))dr.

From Theorem 2 we have that

T
I:/ y(T)oodr
t

= Uo*y( t*) (1 — e*V(T*t*)) )

Differentiating with respect to t* gives

dl .

== = ooy(t) (o0a(t)(1 — e ) —1). (20)
If this condition in (18) is satisfied then this has no zero and I is maximized by taking
* = 0. If the condition in (18) is not satisfied, then setting the right hand side of (20)
equal to zero yields the condition (19). By checking the second derivative, it is easily

confirmed that this is indeed a maximum. O

We remark that the above result apparently cannot be obtained via standard suffi-
ciency conditions based on Pontryagin’s maximum principle, due to the nonconvexity of
the right hand side of the SIR system (2).

Some optimal solutions for particular instances of (14) are shown in Figures 4 and
5, all with the same initial data and parameters 5,y but with different final times 7T
Allowing for a longer intervention (larger 7') makes it possible to reach a more optimal
value of Z.

In real-world scenarios, it may not be possible to apply the maximum control o(t) = 0.
Suppose that in place of (3) we impose omin < o(t) < 0p. In this case the optimal control
is still bang-bang with a single switching time. In Figure 6, we show an optimal solution
when o(t) > 0.40¢ is imposed.

The result above can also be obtained via the Hamilton-Jacobi-Bellman (HJB) equa-
tion for (14). Here we sketch this approach. The HJB equation for u(z,y,t) can be written

up = yyuy — yrymin ((uy — ug)o) (21a)
U(I‘,y,T) = —ono(fE,y, 00)' (21b)

11
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Figure 4: Typical optimal solution. Here (x(0),y(0)) = (0.99,0.01), 8 = 0.3, and v = 0.1.
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Figure 5: Optimal solutions starting from the same point (0.99,0.01) but with different final
times. A larger value of T" allows the system to reach a more optimal state. For all solutions,

£ =0.3 and 7 = 0.1.
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Figure 6: Optimal solutions with o(t) > 0.40¢. Here (x(0),y(0)) = (0.99,0.01), 5 = 0.3,
v =0.1, and 7" = 100.

The required minimum is obtained by taking

{0 Uy(l‘,y,t) >Ug;($,y,t)

o(t) = (22)

g Uy(ﬂ?,y,t) <’U,x(l',y,t)-

From (7) we see that uy(z,y,T) > uz(x,y,T) for all (z,y). Thus for small enough values
of T'— t, the solution of (21) satisfies

ur = yyuy(z,y, t).
The solution of this hyperbolic PDE is
u(x, Ys t> = U([IZ, ye_’Y(T_t)a T) = —To (377 ye_W(T—t)).

Thus, for small enough T — ¢,

1
ug(z,y,t) = Oroc <1 - )

oy x(t)op
. t) = = 2T,

According to (22), the optimal control value will switch when u, = w,, which leads to
(19). Meanwhile, substituting (22) in (21) in the case u, < u, yields the linear hyperbolic
PDE

up = yyuy — Bry(uy — ug),

whose characteristics are just the trajectories of the SIR system (1) illustrated in Figure
1, which are also contours of z. It can be shown that once u, —u, < 0, this inequality
will continue to hold along each such characteristic.
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4 Optimal control with L # 0

We now consider the case of a non-zero Lagrangian, which allows us to account for factors
like the economic cost of intervention or heightened risks caused by hospital overflow. We
formulate the Hamiltion-Jacobi-Bellman (HJB) equation for this problem and apply an
upwind numerical method to compute approximate solutions. The numerical solutions
obtained via the HJB equation have also been checked in each case against solutions of
the BVP given in Section 2.3, and found to agree within numerical errors.

4.1 Quadratic running cost of control

We now attempt to account for the economic cost of intervention. Quantification of the
cost of measures like closing schools and businesses is a challenging problem in economic
modeling, and well outside the scope of the present work. Based on the general idea that
both the cost and the marginal cost will increase with the degree of contact reduction, we
take for simplicity

2
L (t), y(t), o(t) = (1 - "“)) |

g

The HJB equation for (6) is then

2
Up — YYUy = — 0<mi<n ((uy — ug)yryo(t) + c2 (1 — > ) (23a)
<o<oo
’ll,(l',y,T) - _xm(x7y700)' (23b)

The minimum in (23a) is obtained with

o(t) = o min (1,max (0, (1 = 20 ey — ux))>) . (24)

2co

We approximate the solution of (23)-(24) using the first-order upwind finite difference
method:

u(zi, yj,tn) = U = Ug}‘1+
- e oij(t _
8t (D5 - D) + e (1 P80 oy D).
(25)

where

Uij = Ui,

Az ’
Ui'—Ui i
Dip. = VT v a(),y(#),0(1) <0
y o) Ui Uiy

Ay Y (Ga),y(), 0(t) >0,

DiU;; =

and o04(t) is given by a centered difference discretization of (24). Note that the upwind
a-direction is always to the left, since z’(t) < 0.
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Figure 7: Optimal solutions with different running cost. Here (x(0),y(0)) = (0.9,0.1), 8 = 0.3,
v =0.1, and 7" = 100.

Numerical solutions for a range of values of ¢y are shown in Figure 7. The values
of ¢o used here are chosen merely to illustrate the range of possible behaviors. Notice
that the strength of the control o(t) at early times varies non-monotonically with cg, first
increasing and then decreasing as ¢y is reduced. Indeed, the optimal control o(t) over the
initial time interval is simply og in both limits cs — oo and co — 0.

4.2 Minimizing hospital overflow

The optimal solutions above may be unsatisfactory in practice, since the number of people
simultaneously infected at certain times may be too great for all of them to receive ade-
quate medical care. This is a major concern with respect to the current COVID-19 crisis.
A natural objective is to keep the number of infected below some threshold, corresponding
for instance to the number of hospital beds. We thus consider the Lagrangian

2
L0006 = e2 (1= 220 )+ cag(u(0) = )

Here ymax is the maximum number of hospital beds. The HJB equation is then

2
up — YYuy — €39(Y — Ymax) = — min ((uy — ug)yryo(t) + co ( - U(t)> ) (26a)

0<o<a0 o0
u(z,y,T) = —2oo(2,y,00). (26b)

The control that achieves the minimum in (26a) is again given by (24). The function
g(v) should be nearly zero for v < 0 and increase in an approximately linear fashion for
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Figure 8: Optimal solutions with cost for hospital overflow. Here (z(0),%(0)) = (0.99,0.01),
B=0.3,7=0.1,T = 100, and ymax = 0.1. In the cost function, we take c; = 1072 and c3 = 10.

v > 0. For the purpose of having a tractable control problem, it is also desirable that g

be differentiable. We take v

90) = e

Figures 8 and 9 show examples of solutions. Again, we choose parameter values that
demonstrate the range of qualitative behaviors. In both examples, the cost of control is
scaled by ¢o = 1073, In Figure 8, a higher cost for hospital overflow is applied, with
c3 = 10. As might be expected, y(t) is generally kept below ymax (which is set to 0.1).
The control is initially off, then turns on to avoid hospital overflow, and then turns off
again. While the control is applied, it is maintained at a level that keeps the value of y(t)
nearly constant in time.

Figure 9 shows another example scenario in which the cost of hospital overflow is
smaller, with ¢3 = 1. In this case the hospital capacity is significantly exceeded for a short
time, and the control is kept on until the final time, but the epidemiological overshoot is
significantly reduced compared to the previous solution.

5 Application to the COVID-19 pandemic

The main goal of this work has been a mathematical investigation of optimal controls for
the SIR model with a controlled rate of contact, as presented in the previous sections. We
now present a brief illustration of the results in practical terms through application to the
current COVID-19 pandemic. This application is imprecise, for several reasons: the SIR
model is one of the simplest epidemiological models, and assumes homogeneous mixing
among a population; the current state of susceptible and infected persons is not accurately
known; and the parameters of the disease itself (i.e. v,0¢) are still quite uncertain. The
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Figure 9: Optimal solutions with smaller cost for hospital overflow. Here (z(0),y(0)) =
(0.99,0.01), p = 0.3, v = 0.1, T = 100, and ymax = 0.1. In the cost function, we take
co =107% and ¢3 = 1.

examples in this section should be viewed only as illustrations of a few possible scenarios,
and not an exhaustive or detailed study.

We take the infectious period y~! = 10 days, and the basic reproduction number
oo = 2.5, based on recent estimates [23, 16]. To make the results easy to interpret, we use
a fixed terminal cost of ¢;z.,, where we have introduced an additional scaling constant.
Taking ¢; = alN, where N is the total population being modeled and « is the infection
fatality ratio, then this cost is the expected number of lives lost. Since zoo = 1 — o, this
is merely a rescaling of the terminal cost used throughout this work. We take o =~ 0.006
based on recent estimates [23, 19, 24].

We seek reasonable order-of-magnitude estimates for co and c3. The value of ¢3/N
should be equal to the increase in probability of a given infected person dying because
of the lack of medical care. We take c3 = Nn, where the fatality ratio in the absence
of medical care is o + 7. In the absence of any relevant data, we take n ~ 2q, giving
c3 = 0.012N. For ymax we take values from the United States, where there are about 3
hospital beds per 1000 people, and two-thirds of them are typically occupied. Since it is
estimated that about 5% of COVID-19 cases are hospitalized [23], this gives ymax = 0.02N.

Any attempt to quantify the cost of an intervention in human lives is bound to be
contentious. Whether we consider the value of a human life to be in intrinsic personal
value or extrinsic economic value, we can view the cost of intervention as a reduction
of the value of human lives during the intervention period. We take c; = Ne/d where
d =~ 10* is the number of days in a human life (more precisely, the average number of days
remaining in a life claimed by the disease) and 1 — € is the relative value of a day spent
in full isolation (o = 0) compared to a day without intervention. Taking € = 0.2, we have
ca =2 x 107°N.
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Figure 10: Optimal control for COVID-19 with oy = 2.5, v = 0.1, a = 0.006, n = 0.012,
e=0.2,d=10% T = 200, and (z(0),y(0)) = (0.999,0.001).

Since all terms in the cost function are proportional to N, we take N = 1 without
loss of generality. Results for the parameter values given above are shown in Figure
10. We see that the optimal control corresponds to a level of intervention that becomes
more strict as the epidemic grows, and is gradually relaxed as the epidemic subsides.
Most importantly, and in agreement with results from the examples in earlier sections,
the strongest control is applied around the time of peak infection and shortly thereafter.
The maximum hospital capacity is significantly exceeded, with the maximum value of y
around 0.08. It seems plausible that this level of infection may still be manageable with
local surges of care facilities and staff, like those that have already been carried out in
practice for COVID-19. There is also a noticeable (but greatly reduced relative to the
uncontrolled case) epidemiological overshoot.

An alternative scenario is shown in Figure 11, in which we have assumed a fatality
ratio and a value of 7 that are twice as large (in line with the highest estimates of the
infection fatality ratio), as well as taking a smaller cost of intervention with ¢ = 0.05.
These parameters lead to stronger intervention, especially in the later phases of the epi-
demic. The result is almost no epidemiological overshoot and a reduction in maximum
simultaneous infected (to around 0.06).

Finally, in Figure 12, we repeat the first scenario but increase the cost of control
by taking € = 0.5. In this case a more mild control is applied, peaking at about 35%
contact reduction and concentrated around the time of the infection peak. Both the
epidemiological overshoot and the maximum infected are worse, compared to the previous
two scenarios.
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Figure 11: Optimal control for COVID-19 with oy = 2.5, v = 0.1, a = 0.012, n = 0.024,
e =0.05, d = 10*, T = 200, and (x(0),y(0)) = (0.999,0.001).
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Figure 12: Optimal control for COVID-19 with o9 = 2.5, v = 0.1, a« = n = 0.006, ¢ = 0.5,
d =10, T = 2000, and (z(0), y(0)) = (0.999,0.001).
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6 Conclusion

We have studied, for an SIR model with a control on the rate of contact, the problem of
minimizing the eventually infected population in the long-time limit, when the control can
be applied only up to a finite time. In the absence of any cost of intervention, the optimal
strategy is to apply no control until a certain switching time, and then apply maximum
control. We have also considered other objective functions that include a running cost of
control and a penalty for large numbers of simultaneous infections.

Contrary to simple intuition, it is not optimal to impose the maximum level of in-
tervention from the earliest possible time. But real-world studies have supported this
observation; a too-strong intervention may simply lead to a strong second wave of infec-
tion after the intervention is lifted, and not significantly reduce epidemiological overshoot
[3]. On the other hand, intervention that starts too late or is lifted too soon may also have
a negligible effect on total mortality [3, 9, 17]. The idea that intervention should possibly
be delayed in order to increase its effect was also found in [2], although the objective and
optimal policy found there differ from the present work.

Real-world application of the strategies derived here would require precise knowledge of
the disease parameters, the current state of the population, and the quantitative effect of
specific NPIs, none of which are readily available (or indeed capable of being characterized
by a single number). Nevertheless, the general results obtained here may provide insight
into what optimal intervention strategies and their consequences may look like. A major
shortcoming of the present work is the assumption of a uniform mortality rate across all
individuals in a population. We are currently working on a generalization of this work
that includes different levels of risk for different subpopulations.
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