Geriatric Syndromes and Atrial Fibrillation: Prevalence and Association with Anticoagulant use in a National Cohort of Older Americans

Sachin J. Shah, MD, MPH (1); Margaret C. Fang, MD, MPH (1); Sun Y. Jeon, MS, PhD (2); Steven E. Gregorich, PhD (3); Kenneth E. Covinsky, MD, MPH (2)

1. Division of Hospital Medicine, University of California, San Francisco, CA, USA
2. Division of Geriatrics, University of California, San Francisco, CA, USA
3. Division of General Internal Medicine, University of California, San Francisco, CA, USA

Corresponding Author:
Sachin J Shah, MD, MPH
533 Parnassus Avenue, UC 130
San Francisco, CA 94143
sachin.shah@ucsf.edu
Phone 415-862-8616

Main text word count: 2471
Abstract word count 289
Abstract

Background: While guidelines recommend focusing primarily on stroke risk to recommend anticoagulants in atrial fibrillation (AF), physicians report that geriatric syndromes (e.g., falls, disability) are important when considering anticoagulants. Little is known about the prevalence of geriatric syndromes in older adults with AF or the association with anticoagulant use.

Methods: We performed a cross-sectional analysis of the 2014 Health and Retirement Study, a nationally representative study of older Americans. Participants were asked questions to assess domains of aging, including function, cognition, and medical conditions. We included participants ≥65 years with two years of continuous Medicare enrollment who met AF diagnosis criteria by claims codes. We examined five geriatric syndromes: one or more falls within the last two years, receiving help with activities of daily living (ADL) or instrumental activities of daily living (IADL), experienced incontinence, and cognitive impairment. We determined the prevalence of geriatric syndromes and their association with anticoagulant use adjusting for ischemic stroke risk (i.e., CHA2DS2-VASc score).

Results: In this study of 779 participants with AF (median age 80 years, median CHA2DS2-VASc score 4), 82% had ≥1 geriatric syndrome. Geriatric syndromes were common: 49% reported falls, 38% had ADL impairments, 42% had IADL impairment, 37% had cognitive impairments, and 43% reported incontinence. Overall, 65% reported anticoagulant use; guidelines recommend anticoagulant use for 97% of participants. Anticoagulant use rate decreased for each additional geriatric syndrome (average marginal effect -3.7%; 95% CI -1.4% to -5.9%). Lower rates of anticoagulant use were reported in participants with ADL dependency, IADL dependency, and dementia.

Conclusion: Most older adults with AF had at least one geriatric syndrome, and geriatric syndromes were associated with reduced anticoagulant use. The high prevalence of geriatric syndromes may explain the lower than expected anticoagulant use in older adults.
Introduction

The burden of atrial fibrillation (AF) is concentrated in older adults – 80% of adults with AF are 65 and older, many with comorbid conditions that affect functioning and quality of life.1,2 While clinical guidelines recommend clinicians focus primarily on stroke risk when considering anticoagulants for thromboprophylaxis, physicians report that geriatric syndromes are important when considering anticoagulants for older adults.3–8

Geriatric syndromes result from accumulated impairments in multiple domains and are common among older adults.9–11 Geriatric syndromes have a substantial impact on the wellbeing of older adults; they are dominant determinants of death, disability, and quality of life.12,13 Examples of geriatric syndromes include falls, impairments in activities of daily living (ADLs) and instrumental activities of daily living (IADLs), cognitive impairment, and incontinence. Given their significance, geriatric syndromes are increasingly acknowledged and incorporated into clinical guidelines that inform both common and complex clinical decisions ranging from diabetes management to cancer treatment to cardiac ICU care.14–16

In the context of anticoagulant use, geriatric syndromes can both limit the therapeutic benefit and increase patients’ and caregivers’ workload. Geriatric syndromes may magnify harm by both increasing the risk of anticoagulant-associated hemorrhage and limiting patient’s ability to recover from major bleeding. This risk of harm has been most clearly and consistently demonstrated in patients who use anticoagulant and have a history of falls.17,18 Additionally, geriatric syndromes reduce life expectancy, thereby limiting the potential benefit of anticoagulant.12,19 Further, anticoagulant use can trigger additional clinic visits, lab testing, medication interactions, dietary restrictions, so-called nuisance bleeding, and out-of-pocket expenses—each of which may be particularly burdensome to frail older adults.
Despite their importance to the treatment context, little is known about the prevalence of geriatric syndromes in older adults with AF. Geriatric characteristics were not collected during the randomized trials that inform current practice, and these features are rarely ascertained in prospective cohort studies. In this study, we describe the prevalence of geriatric syndromes among participants with AF in a nationally representative cohort of older Americans and then estimate the associations between geriatric syndromes and anticoagulant use.

Methods

Design and Cohort

We performed a cross-sectional analysis to examine the prevalence of geriatric syndromes among older adults with AF. We used data from the 2014 wave of the Health and Retirement Study (HRS), a nationally representative, longitudinal study of older Americans.20 HRS participants are aged 50 and older and interviewed every two years to measure changes in disability, health, and wealth as they transition from work to retirement. HRS interviews are conducted by phone or in person. If a participant is unable to complete an interview because of physical or cognitive impairment, the interview is conducted with a proxy, usually a family member.

To create the study cohort, we included participants who completed the 2014 interview, were 65 years or older at the time of the interview, agreed to Medicare claims linkage, and were continuously enrolled in Medicare fee-for-service (Part A and B) in the 24 months before their 2014 interview (Appendix Figure 1). We included participants who had one inpatient or two outpatient claims for atrial fibrillation (427.31 from the International Classification of Diseases Ninth revision, Clinical Modification) in the 24 months before their 2014 interview.21 The 2014 wave is the most contemporary wave for which claims data are available.
Measures: Sociodemographics and clinical comorbidities

We used HRS interview data to characterize participants’ age, gender, race, ethnicity, education, marital status, whether they lived alone, and nursing home residence. Health status was obtained through self-report. We report clinical comorbidities routinely considered in the treatment of patients with AF and those associated with significant morbidity and mortality in older adults. Specifically, we classified participants as having congestive heart failure, hypertension, prior stroke, diabetes mellitus, prior myocardial infarction, angina, lung disease, or cancer (excluding skin cancer), if the participant reported that a physician had ever told them they had that condition. Prior studies have examined the validity of self-reported cardiovascular comorbidities, such as those used in the CHA$_2$DS$_2$-VASc score, finding self-reported diagnoses to accurately reflect medical charts and population-level estimates. We classified participants as having depressive symptoms if they scored ≥4 on the Center for Epidemiological Studies-Depression scale.

We calculated ischemic stroke risk for each participant via a CHA$_2$DS$_2$-VASc score (congestive heart failure, hypertension, age, diabetes, stroke, vascular disease, and sex). Current U.S. consensus guidelines recommend anticoagulation treatment for patients with CHA$_2$DS$_2$-VASc scores of ≥ 2 for men and ≥3 for women.

Measures: Geriatric Syndromes

We evaluated the following geriatric syndromes: falls, impairment in activities of daily living (ADL), impairment in instrumental activities of daily living (IADL), cognitive impairment, and incontinence. We chose these syndromes based on a review of the literature to identify syndromes relevant in the clinical management of atrial fibrillation and those associated with death and disability in older adults.
Participants were classified as having experienced no falls, noninjurious falls, or injurious falls. Falls were assessed by asking, “Have you fallen down in the last two years?” Those who answered “yes” were then asked, “In that fall (or any of these falls), did you injure yourself seriously enough to need medical treatment?” If they answered “yes,” we classified them as having had an injurious fall, and if “no” to have had only noninjurious falls.

Functional impairment was assessed by inquiring if participants had difficulty with or received help with ADLs (bathing, getting out of bed, dressing, eating, toileting, and walking) and IADLS (shopping for groceries, preparing hot meals, taking medications, making phone calls, managing money). For both ADLs and IADLS, participants were classified in hierarchical and mutually exclusive categories: no impairment (i.e., no difficulty or help), difficulty with one or more activities, dependency (i.e., receiving help with one or more activities).

Cognitive impairment was assessed using the Langa-Weir score that has been validated against neuropsychiatric testing. For non-proxy interviews, the score is based on tasks of memory, working memory, and mental processing speed. For proxy interviews, the Langa-Weir score is based on the proxy’s assessment of the participant’s memory, impairments in instrumental activities of daily living (IADLs), and the interviewer’s assessment of cognitive impairment. The Langa-Weir score classifies participants as intact; having cognitive impairment, but not dementia; and having dementia.

Incontinence was assessed by asking, “This might not be easy to talk about, but during the last 12 months, have you lost any amount of urine beyond your control?”

Measures: Anticoagulant use

To determine if they used anticoagulants, participants were asked, “Do you regularly take prescription medications other than aspirin to thin your blood or to prevent blood clots?”. We relied on self-report data because prescription claims are not universally available and do
not necessarily reflect ongoing use. In the subset of HRS participants with 12 months of continuous enrollment in Medicare Part D before their interview date, we performed a sensitivity analysis to examine the concordance of self-reported anticoagulant use with anticoagulant claims. We detail the results of this sensitivity analysis in the Appendix (Appendix Table 2).

Analysis

We estimated the prevalence of baseline sociodemographics, clinical characteristics, and geriatric syndromes having accounted for the complex survey design of the Health and Retirement study (i.e., sampling strata, clusters, and weights). Separate log-binomial models regressed anticoagulant use onto each geriatric syndrome indicator as well as the count of geriatric syndromes. All models adjusted for stroke risk using the CHA₂DS₂-VASc score. From these results, we report the predicted population rates of anticoagulant use and the average marginal effect (AME).³⁰ We excluded <1% of participants missing data on individual geriatric syndromes or anticoagulant use (Appendix Figure 1). We did not use significance testing to determine which confounders to include in the regression models, consistent with epidemiologic best practices.³¹ We report all results with 95% confidence intervals. We performed analyses using SAS 9.4 (Cary, NC) and R 3.4.4 (Vienna, Austria).

Results

Participants

Among the 779 participants, the median age was 80 years, 50% were women, 93% identified as white and 4% as black (Table 1). 9% of interviews were conducted with the aid of a proxy. Cardiovascular comorbidities were common – 76% reported hypertension, 32% reported congestive heart failure, and 25% reported a prior stroke. 45% of participants reported their health as fair or poor.
The median CHA$_2$DS$_2$-VASc score in the cohort was 4 (IQR 3, 5). Based on the 2019 AHA/ACC/HRS guidelines, anticoagulation therapy would be recommended for 97% (CI 95-98%) of study participants. Among study participants, 65% (CI 61-70%) reported using anticoagulants.

Geriatric syndromes

Most participants had one or more geriatric syndromes; 18% (CI 14-21%) had no geriatric syndromes (Table 2). Many participants fell in the preceding two years: 29% (CI 25-33%) reported a noninjurious fall, and 20% (CI 17-24%) reported an injurious fall. Functional impairments were common: 15% (CI 13-18%) reported difficulty with ADLs, and 23% (CI 20-27%) reported receiving help with ADLs. Similarly, 14% (CI 12-17%) reported difficulty with IADLs, and 28% (CI 25-31%) reported receiving help with IADLs. Regarding cognition, 23% (CI 19-27%) were classified as cognitively impaired but without dementia, and 14% (CI 11-17%) were classified as having dementia. Finally, 43% (CI 39-47%) of participants reported urinary incontinence.

Geriatric syndromes and use of anticoagulants

Participants with more geriatric syndromes were less likely to report anticoagulant use (Figure 1). For each additional geriatric syndrome, reported anticoagulant use decreased (average marginal effect [AME] -3.7%; CI -5.9% to -1.4%). Anticoagulant use was significantly associated with some, but not all, geriatric syndromes (Figure 2). ADL dependent participants were less likely to report anticoagulant use compared to those without ADL impairment (predicted population anticoagulant use 61% vs. 70%, respectively; AME -9.1%; CI -17.1% to -1.2%). Similarly, IADL dependent participants were less likely to report anticoagulant use relative to those unimpaired (predicted population ...
anticoagulant use 60% vs. 69%, respectively; AME -9.0%; CI -16.6% to -1.4%). The largest
effect was seen in participants with dementia; participants with dementia were the least likely to
report anticoagulant use when compared to those cognitively intact (predicted population
anticoagulant use 51% vs. 71%, respectively; AME -20.3%; CI -30.1% to -10.5%). While
participants who reported injurious falls and incontinence were also less likely to report
anticoagulant use, these differences were not statistically significant (Appendix table 1).

Discussion

In a nationally representative cohort of older adults with atrial fibrillation (AF), we find
geriatric syndromes are common and are associated with lower rates of anticoagulant use.
Among older adults with AF, 82% had one or more geriatric syndromes—this includes 49% with
a fall, 38% with ADL impairment, 42% with IADL impairment, 37% with cognitive impairment,
and 43% with incontinence. With each additional geriatric syndrome, the rate of anticoagulant
use decreased by 3.7%. We observed variation in the associations between specific geriatric
syndromes and anticoagulant use. While clinicians cite falls as a concern when prescribing
anticoagulants, we did not find a significant association with anticoagulant use. Among the 1 in
7 participants with dementia, anticoagulation rates were the lowest.

These findings add to a growing literature on the prevalence of geriatric syndromes in
older adults with atrial fibrillation and their association with anticoagulant use. Some prior
studies examined one specific geriatric syndrome – frailty – often finding lower rates of
anticoagulant use. Recent studies have examined a broader set of geriatric syndromes.
Saczynski et al. found that geriatric syndromes are common among older adults with AF but
were not statistically associated with anticoagulant use. While this important study sheds light
on the burden of geriatric syndromes, the investigators recruited participants exclusively from
cardiology clinics, and therefore, the population may not reflect the experience of typical older
adults with AF. For instance, that study reported 86% anticoagulant use even among frail and
cognitively impaired patients. Kapoor et al. examined geriatric syndromes among adults with AF
in long-term care facilities. In that population, they found geriatric syndromes were common
and associated with higher rates of anticoagulant discontinuation. Like the results presented
here, they found ADL dependency and cognitive impairment are associated with lower rates of
anticoagulant use. Kapoor et al. also found a statistically significant association with falls,
whereas the corresponding effect in this cohort was not statistically significant.

The results of this study make clear that in older adults with AF, complex geriatric
comorbidities are the rule rather than the exception. While geriatric syndromes have a
substantial effect on quality of life and play a significant role in clinical decision making, their
impact on the care of persons with AF has seldom been considered. Though many randomized
trials have shown anticoagulants are effective at preventing thromboembolic events in patients
with AF, patients with geriatric syndromes were often excluded or under-represented in
those trials. The high prevalence of geriatric syndromes found in the current investigation call
into question whether those trial results are generalizable to most older adults with AF. The
randomized trials establishing the efficacy of warfarin did not report the presence of geriatric
syndromes let alone examine their impact on outcomes; in fact, geriatric syndromes were often
criteria for exclusion. For instance, trials routinely excluded patients with dementia and often
excluded patients with falls or unsteady gait, syndromes experience by 14% and 49% of this
nationally representative cohort, respectively. While recent randomized trials of direct-acting
anticoagulants did not exclude patients with geriatric syndromes, such patients were
dramatically underrepresented. For example, among those enrolled in the randomized trial
comparing apixaban and warfarin, 4% reported falling in the last year. Even after considering
the different retrospective time periods, it is materially different from the 49% reporting a fall in
the last two years in this national cohort.
The study design and data have limitations that are important to consider when interpreting the results. We relied on self-report data to identify geriatric syndromes. Some older adults may not report difficulty because of cognitive impairment or social desirability. To that end, the prevalence measures may be an underestimate. Notably, we designed this study as a cross-sectional analysis to measure the prevalence of geriatric syndromes; this design may underestimate the association of geriatric syndromes and anticoagulant use because of survivor bias.43–45 Specifically, within levels of a geriatric syndrome, those who are healthier may be both more likely to use anticoagulants and to survive long enough to be included in a prevalent cohort. In this situation, the net effect would be to bias the effect estimate towards the null; that is to diminish the association between a geriatric syndrome and anticoagulant use.

In conclusion, in a nationally representative cohort of older adults, we determined that most older adults with AF have one or more geriatric syndromes. Additionally, the presence of geriatric syndromes was associated with lower rates of anticoagulant use. The high prevalence of geriatric syndromes may explain the lower than expected anticoagulant use in older adults. Since the trials that established the efficacy of anticoagulants did not examine the impact of geriatric syndromes on effectiveness, or report whether subjects had geriatric syndromes, it is unclear if the lower anticoagulant use is appropriate.
Contributors: SJS, MCF, and KEC were responsible for the study concept and design. SJS and KEC obtained funding and supervised the study. All authors were involved in the acquisition, analysis, or interpretation of the data. SJS and SJY performed the statistical analyses. SJS drafted the manuscript, and all authors critically revised it for important intellectual content. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted. SJS had full access to all the data in the study and are the guarantors.

Funding: This study was supported by the National Center for Advancing Translational Sciences (KL2TR001870), the National Institute on Aging (P30AG044281 and P30AG015272), and the National Heart Lung and Blood Institute (K24HL141354). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author). MCF reports grants from NIH/NHLBI, during the conduct of the study. SEG and KEC report grants from NIH/NIA, during the conduct of the study. SJS reports grants from NIH/NCATS, during the conduct of the study. No financial relationships with any organizations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: The Human Research Protection Program Institutional Review Board at the University of California, San Francisco, approved this study (IRB# 16-19185).

Data sharing: Researchers can apply to use the Health and Retirement Study (hrs.isr.umich.edu/) for access to the data use in this study. Code used to generate the cohort and perform the analyses can be found on Dryad.

Transparency statement: The lead authors (the manuscript’s guarantors) affirm that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.
References

24. Okura Y, Urban LH, Mahoney DW, Jacobsen SJ, Rodeheffer RJ. Agreement between self-report questionnaires and medical record data was substantial for diabetes, hypertension,
myocardial infarction and stroke but not for heart failure. *Journal of Clinical Epidemiology.*

Table 1: Characteristics of adults 65 and older with atrial fibrillation weighted to estimate national prevalence, 2014

<table>
<thead>
<tr>
<th>Prevalence (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=779)</td>
</tr>
</tbody>
</table>

SOCIODEMOGRAPHICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (IQR)</td>
<td>80 (74, 86)</td>
</tr>
<tr>
<td>Women</td>
<td>50% (46-54%)</td>
</tr>
<tr>
<td>Married or partnered</td>
<td>51% (47-55%)</td>
</tr>
<tr>
<td>Lives alone</td>
<td>35% (31-39%)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Less than high school</td>
<td>17% (13-20%)</td>
</tr>
<tr>
<td>Completed high school</td>
<td>54% (50-59%)</td>
</tr>
<tr>
<td>More than high school</td>
<td>29% (25-33%)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>93% (91-95%)</td>
</tr>
<tr>
<td>Black</td>
<td>4% (2-5%)</td>
</tr>
<tr>
<td>Other</td>
<td>4% (2-5%)</td>
</tr>
<tr>
<td>Hispanic ethnicity</td>
<td>2% (1-5%)</td>
</tr>
<tr>
<td>Proxy interview</td>
<td>9% (7-12%)</td>
</tr>
</tbody>
</table>

MEDICAL COMORBIDITIES

<table>
<thead>
<tr>
<th>Condition</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-reported health (fair or poor)</td>
<td>45% (41-48%)</td>
</tr>
<tr>
<td>Depressive symptoms</td>
<td>14% (11-17%)</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>32% (29-36%)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>76% (72-80%)</td>
</tr>
<tr>
<td>Stroke</td>
<td>25% (21-29%)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>33% (29-38%)</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>30% (26-33%)</td>
</tr>
<tr>
<td>Angina</td>
<td>29% (26-33%)</td>
</tr>
<tr>
<td>Lung disease</td>
<td>19% (16-22%)</td>
</tr>
<tr>
<td>Cancer, excluding skin cancer</td>
<td>28% (25-32%)</td>
</tr>
</tbody>
</table>

ATRIAL FIBRILLATION

<table>
<thead>
<tr>
<th>CHA2DS2-VASc SCORE*</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1% (0-3%)</td>
</tr>
<tr>
<td>2</td>
<td>8% (6-11%)</td>
</tr>
<tr>
<td>3</td>
<td>19% (16-22%)</td>
</tr>
<tr>
<td>4</td>
<td>21% (17-25%)</td>
</tr>
<tr>
<td>5</td>
<td>21% (18-24%)</td>
</tr>
<tr>
<td>6</td>
<td>16% (14-19%)</td>
</tr>
<tr>
<td>7</td>
<td>9% (6-11%)</td>
</tr>
<tr>
<td>8</td>
<td>4% (2-5%)</td>
</tr>
<tr>
<td>9</td>
<td>1% (0-2%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHA2DS2-VASc score, median (IQR)</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (3, 5)</td>
<td>97% (96-99%)</td>
</tr>
</tbody>
</table>
Anticoagulant use 65% (61-70%)

Legend
IQR – interquartile range; CHA2DS2-VASc score - congestive heart failure/hypertension/age/diabetes/stroke/vascular disease

* none with CHA2DS2-VASc score of 0

** Based on 2019 AHA/ACC/HRS consensus guidelines – recommended anticoagulation for men with CHA2DS2-VASc score ≥ 2 and women with CHA2DS2-VASc score ≥ 3

Percentages shown are weighted using the HRS-RAND survey weights to estimate prevalence among adults ≥65 years with atrial fibrillation in the United States
Table 2: Prevalence of geriatric syndromes in adults 65 years and older with atrial fibrillation in a nationally representative sample, 2014

<table>
<thead>
<tr>
<th>Prevalence (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falls in last two years*</td>
</tr>
<tr>
<td>No falls</td>
</tr>
<tr>
<td>Noninjurious fall</td>
</tr>
<tr>
<td>Injurious fall</td>
</tr>
<tr>
<td>Activities of daily living**</td>
</tr>
<tr>
<td>No impairment (neither difficulty nor help with ADLs)</td>
</tr>
<tr>
<td>Difficulty (difficulty with 1+ ADLs, does not require help with any ADLs)</td>
</tr>
<tr>
<td>Dependency (help with 1+ ADLs)</td>
</tr>
<tr>
<td>Instrumental activities of daily living†</td>
</tr>
<tr>
<td>No impairment (neither difficulty nor help with IADLs)</td>
</tr>
<tr>
<td>Difficulty (difficulty with 1+ IADLs, does not require help with any IADLs)</td>
</tr>
<tr>
<td>Dependency (help with 1+ IADLs)</td>
</tr>
<tr>
<td>Cognition‡</td>
</tr>
<tr>
<td>Intact</td>
</tr>
<tr>
<td>Cognitive impaired, not dementia</td>
</tr>
<tr>
<td>Dementia</td>
</tr>
<tr>
<td>Incontinence #</td>
</tr>
<tr>
<td>Count of geriatric syndromes§</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Legend
ADL – activity of daily living; IADL – instrumental activity of daily living

* Categories are hierarchical and mutually exclusive. If a participant reported multiple falls and any fall that resulted in an injury requiring medical attention, the participant was categorized as having had an injurious fall. Excludes three participants missing fall data.

** Categories are hierarchical and mutually exclusive. Difficulty defined as participant reported difficulty completing one or more ADLs and not requiring help with any ADL. Activities of daily living include bathing, getting out of bed, dressing, eating, toileting, and walking. Excludes three participants missing ADL data.

† Categories are hierarchical and mutually exclusive. Difficulty defined as participant reported difficulty completing one or more IADLs and not requiring help with any IADL. Instrumental activities of daily living include shopping for groceries, preparing hot meals, taking medications, making phone calls, and walking. Excludes three participants missing IADL data.

‡ Categories are hierarchical and mutually exclusive. Cognitive status defined using the Langa-Wier score29

Excludes three participants missing incontinence data.

§ Count of syndromes is the sum of impairment in each of the five syndromes defined in the table. Impairments defined as noninjurious fall or injurious fall, ADL difficulty or dependency, IADL difficulty or dependency, cognitive impairment or dementia, and incontinence. Excludes nine participants missing any geriatric syndrome data.

Percentages shown are weighted using the HRS-RAND survey weights to estimate prevalence among adults ≥65 years with atrial fibrillation in the United States.
Figure 1: Association of anticoagulant use with count of geriatric syndromes

Legend

- Count of syndromes is the sum of impairment in each of the five syndromes defined in the table. Impairments defined as noninjurious fall or injurious fall, ADL difficulty or dependency, IADL difficulty or dependency, cognitive impairment or dementia, and incontinence.

- Analysis based on 768 participants; we excluded 8 with missing geriatric syndrome data, 2 with missing data on anticoagulant use, and 1 missing data on both.

- The slope represented the marginal effect of one-unit change in count of geriatric syndromes on anticoagulant use, adjusting for stroke risk (CHA2DS2-VASc score). The shaded area represents the 95% confidence interval. The slope is -3.7% 95% confidence interval -5.9% to -1.4%.
Figure 2: Average marginal effect of individual geriatric syndromes on anticoagulant use adjusted for stroke risk

Legend

A negative marginal effect indicates lower use of anticoagulants. Models adjusted for stroke risk using CHA₂DS₂-VASc score. Gray point estimates and confidence intervals denote values that are not, statistically, different from the reference group. Blue point estimate and confidence intervals denote values that are statistically different from the reference group. All levels within a syndrome are hierarchical and mutually exclusive. We present tabular results in Appendix Table 2.

Falls: If a participant reported multiple falls and any fall that resulted in an injury requiring medical attention, the participant was categorized as having had an injurious fall. Analysis on 773 participants; excludes 3 missing falls data and 3 missing anticoagulation data.

ADL – activity of daily living: Difficulty defined as participant reported difficulty completing one or more ADLs and not requiring help with any ADL. Activities of daily living include bathing, getting out of bed, dressing, eating, toileting, and walking. Analysis on 773 participants; excludes 3 missing ADL data and 3 missing anticoagulation data.

IADL – instrumental activity of daily living: Difficulty defined as participant reported difficulty completing one or more IADLs and not requiring help with any IADL. Instrumental activities of daily living include shopping for groceries, preparing hot meals, taking medications, making phone calls, managing money. Analysis on 776 participants; excludes 3 missing anticoagulation data.

Cognitive status: defined using the Langa-Wier score. Analysis on 776 participants; excludes 3 missing anticoagulation data.

Incontinence analysis on 774 participants; excludes 2 missing incontinence data, 2 missing anticoagulation data, and 1 missing both.
Appendix

1. Appendix Figure 1. Cohort flow diagram

Legend
HRS – Health and Retirement Study; AC – anticoagulation; ADL – activity of daily living; IADL – instrumental activity of daily living
2. Manuscript Figure 2 results as table

Appendix table 1: Average marginal effect of individual geriatric syndromes on anticoagulant use adjusted for stroke risk

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Level</th>
<th>Predicted anticoagulant use (95% confidence interval)</th>
<th>Difference from reference level (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falls</td>
<td>No falls</td>
<td>0.68 (0.64 to 0.73)</td>
<td>Ref</td>
</tr>
<tr>
<td>Falls</td>
<td>Noninjurious falls</td>
<td>0.67 (0.61 to 0.73)</td>
<td>-0.017 (-0.093 to 0.060)</td>
</tr>
<tr>
<td>Falls</td>
<td>Injurious falls</td>
<td>0.62 (0.54 to 0.69)</td>
<td>-0.067 (-0.156 to 0.022)</td>
</tr>
<tr>
<td>ADL</td>
<td>ADL intact</td>
<td>0.70 (0.66 to 0.74)</td>
<td>Ref</td>
</tr>
<tr>
<td>ADL</td>
<td>ADL difficulty</td>
<td>0.62 (0.53 to 0.70)</td>
<td>-0.084 (-0.180 to 0.012)</td>
</tr>
<tr>
<td>ADL</td>
<td>ADL dependent</td>
<td>0.61 (0.54 to 0.68)</td>
<td>-0.091 (-0.171 to -0.012)</td>
</tr>
<tr>
<td>IADL</td>
<td>IADL intact</td>
<td>0.69 (0.65 to 0.74)</td>
<td>Ref</td>
</tr>
<tr>
<td>IADL</td>
<td>IADL difficulty</td>
<td>0.68 (0.59 to 0.76)</td>
<td>-0.016 (-0.112 to 0.079)</td>
</tr>
<tr>
<td>IADL</td>
<td>IADL dependent</td>
<td>0.60 (0.54 to 0.67)</td>
<td>-0.090 (-0.166 to -0.014)</td>
</tr>
<tr>
<td>Cognitive function</td>
<td>Cognitively intact</td>
<td>0.71 (0.67 to 0.75)</td>
<td>Ref</td>
</tr>
<tr>
<td>Cognitive function</td>
<td>Cognitive impairment not dementia</td>
<td>0.63 (0.57 to 0.70)</td>
<td>-0.079 (-0.157 to -0.001)</td>
</tr>
<tr>
<td>Cognitive function</td>
<td>Dementia</td>
<td>0.51 (0.42 to 0.60)</td>
<td>-0.203 (-0.301 to -0.105)</td>
</tr>
<tr>
<td>Incontinence</td>
<td>Not incontinent</td>
<td>0.67 (0.63 to 0.72)</td>
<td>Ref</td>
</tr>
<tr>
<td>Incontinence</td>
<td>Incontinent</td>
<td>0.65 (0.60 to 0.70)</td>
<td>-0.023 (-0.091 to 0.045)</td>
</tr>
</tbody>
</table>

3. Sensitivity analysis on self-reported anticoagulant use

In this study we used a self-reported measure of anticoagulant use ("Do you regularly take prescription medications other than aspirin to thin your blood or to prevent blood clots?"). We sought to examine if self-reported use of anticoagulants mirrored Medicare Part D claims for anticoagulants. To accomplish this, we examined a subset of HRS participants with atrial fibrillation and continuous enrollment in Medicare Part D for the 12 months preceding their 2014 interview (including the month of the interview), and who answered the question about anticoagulant use. In this subset (n=505 of 771 total) we examined the concordance between self-reported anticoagulant use and claims for...
oral anticoagulants including warfarin, dabigatran, rivaroxaban, apixaban, and edoxaban. We found 83% concordance, and Kappa of 0.63, indicating substantial agreement between the two measures of anticoagulant use.

Appendix Table 2: Concordance of self-reported anticoagulant use and claims-based anticoagulant use

| Claims | Self-report | | | |
|---|---|---|---|
| | No AC | AC | Total |
| No AC | 140 (27.7%) | 62 (12.3%) | 202 (40.0%) |
| AC | 26 (5.1%) | 277 (54.9%) | 303 (60.0%) |
| Total | 166 (32.9%) | 339 (67.1%) | 505 (100%) |

* parenthetical percent is percent of total population (n=505)

4. Appendix Table 3: STROBE Statement—Checklist of items that should be included in reports of *cross-sectional studies*

<table>
<thead>
<tr>
<th>Item No</th>
<th>Recommendation</th>
<th>Reported on page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(a) Indicate the study’s design with a commonly used term in the title or the abstract</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(b) Provide in the abstract an informative and balanced summary of what was done and what was found</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Explain the scientific background and rationale for the investigation being reported</td>
<td>4,5</td>
</tr>
<tr>
<td>3</td>
<td>State specific objectives, including any prespecified hypotheses</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Present key elements of study design early in the paper</td>
<td>5</td>
</tr>
</tbody>
</table>
Setting
5
Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection

Participants
6
(a) Give the eligibility criteria, and the sources and methods of selection of participants

Variables
7
Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable

Data sources/measurement
8*
For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group

Bias
9
Describe any efforts to address potential sources of bias

Study size
10
Explain how the study size was arrived at

Quantitative variables
11
Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why

Statistical methods
12
(a) Describe all statistical methods, including those used to control for confounding

(b) Describe any methods used to examine subgroups and interactions

(c) Explain how missing data were addressed

(d) If applicable, describe analytical methods taking account of sampling strategy

(e) Describe any sensitivity analyses

Results
Participants
13*
(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed

(b) Give reasons for non-participation at each stage

(c) Consider use of a flow diagram

Descriptive data
14*
(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders

(b) Indicate number of participants with missing data for each variable of interest

Outcome data
15* Report numbers of outcome events or summary measures
Main results

16. **(a)** Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (e.g., 95% confidence interval). Make clear which confounders were adjusted for and why they were included.
 - Reference: 8, 9, 10
 - **(b)** Report category boundaries when continuous variables were categorized.
 - Reference: n/a
 - **(c)** If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period.
 - Reference: 9, Fig 1, Fig 2

Other analyses

17. Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses.
 - Reference: Appendix

Discussion

Key results

18. Summarise key results with reference to study objectives.
 - Reference: 10

Limitations

19. Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.
 - Reference: 11, 12

Interpretation

20. Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.
 - Reference: 10, 11

Generalisability

21. Discuss the generalisability (external validity) of the study results.
 - Reference: 12

Other information

Funding

22. Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based.
 - Reference: 13

Give information separately for exposed and unexposed groups.