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Key Points 

 

Question: What are the characteristics and outcomes of individuals hospitalized with 

Covid-19 in Eastern Massachusetts through April 28, 2020, as determined from electronic 

health records surveillance? 

 

Findings: Across 2 academic medical centers and 3 affiliated community hospitals, among 

1,898 hospitalized individuals who tested positive for Covid-19, 481 (25.3%) required 

mechanical ventilation and 241 (12.7%) died. Markers of red cell immaturity and poor renal 

function, as well as older age, were associated with mortality. Markers of tissue injury, and 

male sex, were associated with risk for mechanical ventilation.  

 

Meaning: Simple prediction models incorporating admission laboratory studies may assist 

in risk stratification among hospitalized COVID-19 patients. 
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Abstract 

 

 

Importance: The Covid-19 pandemic has placed unprecedented stress on health systems 

across the world, and reliable estimates of risk for adverse outcomes are needed. 

Objective: To quantify admission laboratory features associated with mechanical 

ventilation and mortality risk across 5 Eastern Massachusetts hospitals. 

Design: Retrospective cohort study using narrative clinical notes and laboratory values 

through April 28, 2020. 

Setting: Emergency department and inpatient settings from 2 academic medical centers 

and 3 community hospitals. 

Participants: All individuals with hospital admission and documented coronavirus testing 

across these 5 hospitals. 

Main Outcome or Measure: Mechanical ventilation, as documented in narrative notes. 

Results: Among 1,898 hospitalized Covid-19-positive individuals through April 28, 2020, 

481 (25.3%) required mechanical ventilation and 241 (12.7%) died. L1-regression models 

developed in 3 of these hospitals yielded area under ROC curve (AUC) of 0.837 for in-

hospital mortality and 0.839 for mechanical ventilation in the other 2 hospitals. In total, 

66.7% of deaths occurred in the highest-risk mortality quintile. 

Conclusions and Relevance: Specific admission laboratory studies in concert with 

sociodemographic features facilitate risk stratification among individuals hospitalized for 

COVID-19.  

Funding: none. 

Trial Registration: None 
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Introduction 

 

With the rapid spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-

2), efforts to predict clinical outcomes and stratify risk have taken on greater urgency as a 

means of allocating resources and targeting interventions. A recent report of 1099 admitted 

individuals from China found that 5.0% required intensive care unit (ICU) transfer, and 

2.3% required mechanical ventilation1. In Lombardy, Italy, around 16% of test-positive 

individuals required ICU admission2.  In the United States, characteristics of admitted 

patients may differ somewhat. A recent case series from the Seattle area described 24 ICU-

admitted patients, of whom 75% required mechanical ventilation3. In one of the largest U.S. 

studies to date, among a series of 2634 hospitalized patients in New York who died or were 

discharged, 12.2% had required mechanical ventilation4. 

 

Given the constrained resources for treatment of COVID-19, particularly with regard to 

mechanical ventilation, simple approaches to stratifying morbidity and mortality risk at 

time of hospitalization are needed. In cohorts ranging from 100-200 patients, multiple 

laboratory studies have been associated with mortality risk, including elevated ferritin, 

troponin, and C-reactive peptide (CRP) 5, elevated d-dimer6, and low eosinophil count.7 A 

recent large cohort study across 169 hospitals identified cardiovascular disease as a major 

predictor of in-hospital mortality8. 

 

Electronic health records may facilitate rapid and efficient investigation of clinical cohorts, 

and form the basis of consortia efforts to address COVID-19 at scale9. Here, we examined 

records from 2 academic medical centers and 3 affiliated community hospitals in Eastern 

Massachusetts. As coded clinical data lags by 4-6 weeks or more, and may not be complete 
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until after discharge, we relied on narrative clinical notes and laboratory studies, available 

with less than 24-hour lag, to determine features of admitted patients. We applied data from 

3 hospitals to generate simple base-case models to estimate risk of need for mechanical 

ventilation, and risk for death, and validated these results in another academic medical 

center and a community hospital, as a starting point for generalizable efforts at clinical risk 

stratification10. 

 

Method 

 

Subjects 

 

The full cohort included all individuals age 18 or older hospitalized at any of the 2 academic 

medical centers and 3 community affiliate hospitals between March 1, 2020 and April 28, 

2020, with documented COVID+ test result at any point in this period. For all of these 

individuals, any available narrative clinical notes from the emergency department or 

inpatient setting were extracted from the Partners Research Patient Data Registry (RPDR)11 

and used to generate an i2b2 datamart.12 Data were augmented with age, sex, race, and 

ethnicity from the same source. The enterprise laboratory feed was used to extract 

coronavirus test order and results (LOINC:94309-2), as well as additional laboratory values 

(Supplemental Table 1). Laboratory values available in at least 80% of individuals were 

included in subsequent analysis as continuous measures, after Winsorization at the 99th 

percentile but otherwise without transformation, along with laboratory-specific high and 

low flags. As an aggregate measure of comorbidity, age-adjusted Charlson comorbidity 

index was calculated using coded ICD9 and 10 diagnostic codes drawn from the EHR, but by 

necessity lagging admissions by 4-6 weeks, as previously described13. 
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The study protocol was approved by the Partners HealthCare Human Research Committee. 

No participant contact was required in this study which relied on secondary use of data 

produced by routine clinical care, allowing waiver of requirement for informed consent as 

detailed by 45 CFR 46.116. 

 

Hospital Course Characterization from Narrative Clinical Notes 

 

As coded clinical data (e.g., ICD-10 diagnoses or CPT codes) is not available in real time in 

the RPDR, we developed and validated simple string-based classifiers to identify mechanical 

ventilation based on narrative clinical notes. A preliminary list of tokens was curated by one 

of us (RP) based on manual chart review; the strings resulting from these queries were then 

further reviewed in context to determine specificity, and iteratively revised. We identified 

date of emergency department evaluation, inpatient hospitalization, ventilation if present, 

and discharge if present on the basis of index note of that type. 

 

Study Design and Analysis 

 

We included all newly-hospitalized individuals undergoing Covid-19 testing during the 

study period. The two primary outcomes of interest were mechanical ventilation and 

overall mortality. (In the former case, mortality was also considered an outcome, because it 

would otherwise represent a competing risk.) Beyond descriptive analysis, we report 

appropriate univariate comparisons (i.e., chi square test for binary variables, Student's t-

test for continuous measures) followed by L1-penalized regression, or the least absolute 

shrinkage and selection operator (Lasso)14, to identify a parsimonious model with 
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sociodemographic features and laboratory values as candidate predictors. Lasso was 

applied to all participants with complete laboratory studies in 1 academic medical center 

and 2 community hospitals, and the performance characterized in an additional academic 

medical center and community hospital. Model fitting used all individuals in the training set, 

with median imputation of missing data; testing utilized all participants with complete data. 

Model performance was characterized using standard metrics of discrimination and 

calibration, focusing on the 5 quintiles of risk determined in the training data set. 

 

Regression models offer advantages in interpretability but fail to consider censoring or 

competing risk. Therefore, to better characterize model performance in the testing set, we 

utilized survival analysis, right-censoring at time of hospital discharge or end of available 

data (4/28/20), presenting Kaplan-Meier curves comparing risk quintile groups. All 

analyses utilized R 3.6.215. STROBE reporting guidelines for cohort studies were applied. 

 

Results 

 

The 1,898 individuals hospitalized with Covid-19 through April 28, 2020, including 1137 

(59.9%) at academic medical centers and 761 (40.1%) at community hospitals, were 54.5% 

male, 47.4% white, and 6.7% Hispanic; mean age was 62.8 years (Table 1). In all, 481 

(25.3%) required mechanical ventilation and 241 (12.7%) died. Median time of follow-up 

was 6 days (IQR, 3-9). Laboratory values are summarized in Supplemental Table 2. 

 

We utilized L1-penalized regression to train a prediction model based on admission 

characteristics and laboratory values in one academic medical center and 3 community 

hospitals (Table 2). For overall mortality notable features associated with elevated risk 
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included red blood cell (RBC) indices (presence of nucleated RBC's, and RBC distribution 

width (RDW)) as well as markers of diminished renal function (Table 2A). For mechanical 

ventilation or mortality (vent+mortality), beyond male gender and elements of the 

chemistry-20 panel, notable laboratory flags associated with risk include elevation in high-

sensitivity cardiac troponin, creatine kinase, and procalcitonin (Table 2B).  

 

In an independent testing set including a second academic medical center and a second 

community hospital, the mortality model yielded AUC of 0.827 (Figure 1A), with sensitivity 

of 82.2% and specificity of 66.7% at the top risk quintile (positive predictive value is 92.6%, 

while negative predictive value is 42.4%). For the vent+mortality model, AUC is 0.823 

(Figure 1B); 89.3% and specificity of 56.0% (positive predictive value is 77.9%, while 

negative predictive value is 75.0%). Both models exhibit substantial lift, with the highest-

risk quintile markedly enriched for adverse outcomes (Figure 2A and B) - as specificity 

results indicate, 66.7% of mortality is observed in the highest-risk quintile, and 56% of 

vent+mortality outcomes occur in the highest risk quintile.  

 

For illustrative purposes, we also examined risk quintile in Kaplan-Meier survival curves, 

with curves censored at time of hospital discharge, end of follow-up, or 15 days, whichever 

came first. Figure 3 illustrates mortality (A), or vent+mortality (B), by predicted risk 

quintile. Quintiles were significantly associated with predicted outcome by log-rank test 

(p<0.0001 for each). 

 

Discussion 
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In this study of 1,898 individuals with positive COVID-19 status hospitalized at academic 

medical centers and community hospitals in Eastern Massachusetts through April 28, 2020, 

25.3% required mechanical ventilation and 12.7% died. Measures of renal function and red 

cell immaturity, along with age, were associated with greater mortality risk, confirming two 

non-pulmonary markers associated with COVID-19 severity. Measures of cardiac or other 

tissue injury (creatine kinase, troponin T) and systemic infection (procalcitonin), along with 

male sex, were associated with greater likelihood of requiring mechanical ventilation. 

Notably, even though the latter model overlaps with the former by design in order to avoid 

the problem of competing risk, inclusion of mechanical ventilation still yields a substantially 

different model. 

 

In general, discrimination of both models appears promising, identifying a high-risk quintile 

with reasonable sensitivity and specificity. Survival curves demonstrate the limitations of 

these models, with deteriorating discrimination beyond day 10. As such, predictions may be 

most useful during the initial week of hospitalization; a useful next-step study could 

examine whether re-running models with additional laboratory studies, or incorporating 

other biomarkers, can improve subsequent prediction.  

 

Our results are consistent with a recently-reported cohort of 8910 COVID-19 patients, in 

which cardiovascular disease was associated with marked elevation in mortality8, as well as 

a smaller study associating renal involvement with mortality16. Multiple smaller cohorts 

have also reported laboratory features associated with morbidity and mortality among 

hospitalized COVID-19 patients. For example, a retrospective cohort study from Wuhan in 

191 hospitalized patients found older age and greater d-dimer value at admission were 

associated with risk of death6. Among 95 fatal cases of COVID-19, low eosinophil count at 
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admission was also common.7 Ferritin also associated with mortality in a retrospective 

cohort study of 120 patients from Wuhan5, along with troponin and CRP.  

 

In developing these simple regression-based prediction models, we were mindful of the 

recent frameworks for10 and criticisms of17 such models - particularly the recognition that 

poorly validated or calibrated models may cause more harm than good. Initial models are 

likely optimistic (i.e., overfit to data) and biased (i.e., by nonrepresentative samples), with a 

lack of transparency17. On the other hand, strategies to allow risk stratification are 

particularly necessary in an environment of constrained resources. As such, we report these 

results in the hope they will provide simple base-case models for others to improve upon. 

Undoubtedly application of artificial intelligence pixie dust will yield further improvement 

in model fit, but whether the degree of improvement balances a diminution of 

interpretability will merit careful consideration. 

 

We note multiple limitations that likely diminish model performance. First, the lag in 

availability of coded clinical data precludes inclusion of clinical features useful for 

prediction. Reliance on a manually-curated definition of ventilator use likely diminishes 

model performance. Our modeling methodology (i.e., reliance on logistic regression) does 

not fully account for censoring; while extensions of Lasso to Cox regression exist, inpatient 

clinical data typically violates proportional hazards assumptions, prompting our hybrid 

approach (i.e., model development using regression, and characterization using survival 

curves.) Survival analyses do suggest that, while this approach may not yield optimal 

models for lower-risk individuals, incorporation of censoring still results in 

discriminativeness for the highest-risk quintile. Finally, many laboratory values are highly 

non-normal; we elected to incorporate standard high/low flags plus continuous measures, 
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rather than adopting specific transformations for each value which would risk overfitting or 

diminish generalizability but likely extract additional information. Efforts to aggregate 

laboratory data across international health systems will provide an opportunity to explore 

such transformations if individual-level data becomes accessible9. 

 

Despite these limitations, our analyses suggest the utility of laboratory values in 

combination with sociodemographic features in identifying individuals at particularly high 

risk for more severe hospital course. These admission models provide an opportunity for 

comparison as more sophisticated models are developed, particularly those incorporating 

additional physiologic measures or other biomarkers. As hospital resources remain 

constrained, the ability to target resources to highest-risk individuals is likely to be 

valuable, and expansion and refinement of risk models may represent a useful approach to 

optimizing care. 
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Table 1. Sociodemographic characteristics of training and test sets 

 Training (N=1441) Test (N=457) Total (N=1898) p value 

Hospital type    0.075 

   Academic medical centers 847 (58.8%) 290 (63.5%) 1137 (59.9%)  

   Community hospitals 594 (41.2%) 167 (36.5%) 761 (40.1%)  

Male gender 812 (56.3%) 223 (48.8%) 1035 (54.5%) 0.005 

Age group    0.002 

   < 30 51 (3.5%) 12 (2.6%) 63 (3.3%)  

   30-39 129 (9.0%) 25 (5.5%) 154 (8.1%)  

   40-49 187 (13.0%) 35 (7.7%) 222 (11.7%)  

   50-59 259 (18.0%) 89 (19.5%) 348 (18.3%)  

   60-69 261 (18.1%) 107 (23.4%) 368 (19.4%)  

   70-79 241 (16.7%) 84 (18.4%) 325 (17.1%)  

   80+ 313 (21.7%) 105 (23.0%) 418 (22.0%)  

Race    < 0.001 

   Asian 57 (4.0%) 17 (3.7%) 74 (3.9%)  

   Black 168 (11.7%) 164 (35.9%) 332 (17.5%)  

   Other 280 (19.4%) 56 (12.3%) 336 (17.7%)  

   Unknown 196 (13.6%) 61 (13.3%) 257 (13.5%)  

   White 740 (51.4%) 159 (34.8%) 899 (47.4%)  

Hispanic ethnicity 89 (6.2%) 39 (8.5%) 128 (6.7%) 0.080 

Charlson comorbidity index 

     age-adjusted, mean (sd)    

5.28 (4.94) 5.89 (5.06) 5.427 (4.975) 0.022 

Mechanical ventilation 350 (24.3%) 131 (28.7%) 481 (25.3%) 0.061 

Death 166 (11.5%) 75 (16.4%) 241 (12.7%) 0.006 

Mechanical ventilation or death 444 (30.8%) 166 (36.3%) 610 (32.1%) 0.028 
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Table 2. Model Coefficients 

A. Mortality model feature coefficients 

 

feature coefficient 

(Intercept) -5.6916 

CBC - NRBC (H) 0.5370 

Chem20 - BUN (H) 0.3659 

Chem20 - CRE (H) 0.1491 

Chem20 - ANION (H) 0.1245 

CBC - PLT (L) 0.0836 

CBC - RDW (continuous) 0.0607 

Age (continuous) 0.0343 

CBC - MCV (H) 0.0334 

TROPTHS (H) 0.0299 

Charlson Comorbidity Index 0.0170 

CBC - WBC (continuous) 0.0051 

Chem20 - BUN (continuous) 0.0014 

CRP (continuous) 0.0007 

Chem20 - LDH (continuous) 0.0006 

Chem20 - GFR (continuous) -0.0050 
 

B. Mechanical ventilation or mortality model feature 

coefficients 

feature coefficient 

(Intercept) -1.7760 

Chem20 - ANION (H) 0.3647 

Chem20 - TP (L) 0.2954 

Chem20 - SGOT (H) 0.2576 

TROPTHS (H) 0.2154 

CBC - PLT (L) 0.2034 

Chem20 - BUN (H) 0.2019 

CPK (H) 0.1335 

Chem20 - GLU (H) 0.1257 

Male gender 0.1163 

Chem20 - GFR (L) 0.0995 

PRCCITON (H) 0.0772 

Chem20 - CRE (H) 0.0450 

Chem20 - K (continuous) 0.0241 

Charlson Comorbidity Index 0.0072 

CRP (continuous) 0.0055 

Chem20 - LDH (continuous) 0.0023 

CBC - WBC (H) 0.0023 

TROPTHS (continuous) 0.0005 

Age (continuous) 0.0002 

Chem20 - GLU (continuous) 0.0002 

Chem20 - GFR (continuous) -0.0017 

Chem20 - CA (continuous) -0.0860 

Chem20 - ALB (continuous) -0.1071 
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Figure 1. ROC Curves from test set 

A. Mortality ROC 

 

B. Mortality or mechanical ventilation ROC 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.04.20090555doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.04.20090555
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Calibration 

A. Proportion of patients who died by model prediction quintiles 

 

B. Proportion of patients with mechanical ventilation or who died by model prediction quintiles 
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Figure 3. Survival curves, by model risk quintile, in testing set. 

A. Time to mortality, censored at discharge, end of follow-up, or 15 days 
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B. Time to mechanical ventilation or death, censored at discharge, end of follow-up, or 15 

days 
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