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Abstract 

Re-opening societies and economies across the globe following the initial wave of the severe              

acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) pandemic requires       

scientifically-guided decision processes and policy development. Public health authorities         

now consider it highly likely that transmission of SARS-CoV-2 and COVID-19 will follow a              

pattern of seasonal circulation globally. To guide mitigation strategies and tactics in a             

location-specific manner, accurate simulation of prolonged or intermittent patterns of          

social/physical distancing is required in order to prevent healthcare systems and           

communities from collapsing. It is equally important to capture the stochastic appearance of             

individual transmission events. Traditional epidemiological/statistical models cannot make        

predictions in a geospatial temporal manner based on human individuals in a community.             

Thus, the challenge is to conduct spatio-temporal simulations of transmission chains with            

real-world geospatial and georeferenced information of the dynamics of the disease and the             

effect of different mitigation strategies such as isolation of infected individuals or location             

closures. Here, we present a stochastic, ​ge ​ospatially ​r​eferenced and ​d ​emography-specific          

a ​gent-based model with agents representing human beings and include information on age,            

household composition, daily occupation and schedule, risk factors, and other relevant           

properties. Physical encounters between humans are modeled in a time-dependent          

georeferenced network of the population. The model (GERDA-1) can predict infection           

dynamics under normal conditions and test the effect of different mitigation scenarios such             

as school closures, reduced social contacts as well as closure or reopening of public/work              

spaces. Specifically, it also includes the fate and influence of health care workers and their               

access to protective gear. Key predictions so far entail:  
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(i) the effect of specific groups on the spreading, specifically that children in school              

contribute substantially to distribution.  

(ii) the result of reopening society depends crucially on how strict the measures have been               

during lock-down.  

(iii) the outcome of reopening is a stochastic process - in the majority of cases, we must                 

expect a second wave, in some cases not. To the best of our best knowledge, the GERDA-1                 

model is the first model able to predict a bimodal behavior of SARS-Cov-2 infection              

dynamics. 

 

Given the criticality of the global situation, informing the scientific community, decision            

makers and the general public seems prudent. Therefore, we here provide a pre-print of the               

GERDA-1 model together with a first set of predictions and analyses as work in progress.  

 

Introduction 

As SARS-CoV-2 infection is spreading around the world it is inferring multi-dimensional            

damage to humanity: millions of COVID-19 patients are bringing healthcare systems close to             

collapse, halting or suppressing global and local economies, and normal human activity. In             

response, countries and communities are scrambling to fight the virus with a series of              

different measures and strategies aimed at preventing new infections whilst providing           

optimal treatment of patients and aiming to re-open economies as swiftly as possible. 

 

To assist policy makers and governments in choosing different exit/re-entry strategies,           

data-driven mathematical and computational modelling can predict the path and severity of            

infection, the expected number of fatalities and the effect of different mitigation measures.  

Considering the lack of information about not only the disease itself but also its near- and                

long-term impact on healthcare systems and society, models are required to reliably predict             

the effect of alternative strategies to both “re-open” societies and allow the general             

population to return to work and social activities. Therefore, the scientific community has a              

great responsibility to create such mathematical models and ensure that the predictions are             

as precise and adapted to reality as possible, as the accuracy of the predictions can directly                

influence society.  

In short, there are chiefly two different computational modeling approaches used to predict             

the spread of a pathogen. On the one hand, deterministic models often use ordinary              

differential equations (ODEs) to depict trajectories of defined variables that change over            

time and are dependent on population-level metrics, data and statistics. On the other hand,              

stochastic models, such as agent-based models (ABM), use a set of rules and probabilities in               

order to define the behavior of agents, in this case individuals, which can be tracked over                

time in order to extract population-level metrics that can always be traced back to their               

agent-level origin. In typical epidemiological models different groups of people can be            

considered based on common features (e.g. based on demographics, risk groups, age etc.),             

where particularly the group of susceptibles (S), the group of infected (I) and the group of                

recovered (R) individuals are usually of great interest [1]. Recovered individuals are assumed             
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to have acquired immunity to some degree (though this is still an open question for               

SARS-CoV-2). The transition between these states depends on ​(i) a basic reproduction            

number R​0 describing how likely it is that infected individuals transmit the infection to              

susceptible individuals and ​(ii) parameters describing the recovery. More advanced models           

include further relevant states such as exposed (E), hospitalized (H) or being treated in an               

ICU, as recently presented by an ODE model of the Neher laboratory [see             

https://covid19-scenarios.org/ ​]. An example for a respective ABM model has already been           

implemented in the tool Netlogo [3].  

 

Here we present an elaborate model (GERDA-1) that can provide simulated input for             

informed decision processes. To this end, we developed an agent-based model that            

incorporates the accepted different stages of SARS-Cov-2 infection, COVID-19 disease and           

recovery that takes demographic data, realistic daily scenarios and, importantly, the ​physical            

location of individuals into consideration. GERDA-1 can predict the effects of different            

tailored scenarios and measures for mitigation depending on the location (e.g. workplace,            

school, public places such as shopping malls, etc) but also dependending on the actual time               

of day. To this end, we have integrated a large amount of publicly available data, e.g., on                 

locations, age distribution, geographical information, and sociological data for typical          

numbers and types of social contacts in the German population.  

Most importantly, we have taken into account the distinct role of front-line health care              

workers, medical doctors and first-responders, because these groups are most exposed to            

the virus and therefore have an increased risk of contracting it. It is emerging that               

SARS-Cov-2 is inducing the disease in a dose-dependent manner, a characteristic that is             

particularly problematic for healthcare providers. Consequently, it is critical to model the            

burden and surge-requirements for hospitals/medical systems, as this very much depends           

on essential staff to ensure the functioning of the medical system including local doctor              

offices and hospitals. 

 

 

Results 

Given the critical importance of conducting location- and situation-specific predictions of           

virus spreading and optimal measures to suppress the infection rate to a range that can be                

handled by the healthcare system. Therefore, GERDA-1 represents the virus propagation           

and effects of mitigation measures within a concrete (German) population. The model tracks             

the number of individuals with specific infection states at a specific physical location             

through time. Because the model is georeferenced, it makes use of the concrete number of               

residential buildings, workplaces, schools or public places in a given community/municipality           

as the space for potential infection chain initiation by human contact. The approach is              

displayed in ​Figure 1​. GERDA-1 is based on demographic data from the German census with               

respect to age distributions, household sizes and composition. As an example, we used data              

from the municipality Gangelt ( ​Figure 2A for a map), a place that experienced a widely               
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noticed COVID-19 outbreak in Germany. Gangelt had more than 300 confirmed cases among             

12,000 inhabitants with the outbreak after a carnival event in March 2020 followed by              

widespread transmission within the community.  

It is important to note that a model remains an abstraction and it is neither repetition of                 

history nor can it be traced back to real individuals, but allows to study realistic instead of                 

real scenarios whilst safe-guarding privacy and anonymity for members of the public 

 

 
Figure 1​: ​Overview of the GERDA-1 model Agents representing individuals are drawn from distributions              

representing census-based demography. They have individual properties, such as age, risk, infection state and              

follow a specific weekly schedule. Each day, an individual visits locations in their geo-data-based world               

according to their own schedule. Individuals can with a certain likelihood either become infected or infect                

other individuals in these locations. Following an infection an individual can be diagnosed, admitted to hospital                

and/or ICU, recover or succumb to the disease. Mitigation measures influence the likelihood for infections,               

e.g., by excluding (closing down of) specific types of locations or by wearing personal protective equipment                

(PPE). 

 

The GERDA-1 Model 

In the model each human being is described as an autonomous agent who is always present                

at one specific physical location at a given time point; thus even deceased individuals are               

assigned to a morgue location. In the current basic version (v.1.0), the location can be one of                 

the following types: residential buildings (home), work places, schools, hospitals, and public            

places. These ​locations are initialized automatically from openly available data for a given             
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municipality using geographical data from OpenStreetMap. Here, we used Gangelt as an            

example (see ​Figure 2A ​).  
 

World initialization: ​Each building is considered a location as long as its floor area is large                

enough and it is not a non-residential building, e.g. a windmill. The building types are               

assigned according to labels in the input data. For example buildings marked as ‘office’ or               

‘industrial’ are assigned as workplaces while buildings marked as ‘public’ or ‘church’ are             

assigned as public places. All buildings that are not labelled specifically are assigned as              

residential buildings or homes. If the input data did not contain a location for a hospital or                 

morgue, these locations were added artificially at the margin of the world, during the              

initialization process (see ​Figure 2D​).  
 

 

Figure 2​. ​Georeference of the model. ​A​) Map of Gangelt as defined by OpenStreetMap. Overlaid are indicators                 
for the location type assigned to each building. Hospital (H) and morgue (M) is introduced (in case they are                   
missing) at the border of the map. ​B​) Exemplary schedules for individuals (A - Adult/employee, weekdays, no                 
mitigation; B - Medical care worker, work day, no mitigation; C - Student/child, weekdays, no mitigation; D -                  
Student/child, weekdays, schools closed; E - Adult/pensionist, all days, no mitigation; F - Student/child,              
adult/employee, weekend, no mitigation; G - Diagnosed person, all days; H - Hospitalized person, all days; I -                  
Deceased person - all days). ​C​) Resulting age distribution of the modelled population. ​D​) Number of locations                 
per type. Colors in A, B, and D correspond to the same types of location, respectively.  

Initializing the agent population: ​Each residential building is home to one household that             

was randomly drawn from a distribution, based on German census data. According to the              

respective household type and considering the reported demography, agents with adequate           

ages are randomly generated and given different properties such as profession, risk state             
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and infection status (see ​Figure 2C​). Additionally each agent is assigned a specific weekly              

schedule, that comprises times spent at home, work, public places etc., which are based on               

predefined flexible schedules for different age groups and types of individuals (see ​Figure             

2B ​). These can differ from individual to individual and for different days of the week, e.g. the                 

weekend. 

This spatio-temporal network, defined by periodically recurring movement patterns,         

constitutes the environment in which the agents interact and the infection spreads. Despite             

some degree of freedom; most agents operate in defined sub-networks, specified by            

regularly visited locations. 

 

During the initialization of a modeled world the infection status of all agents is set to                

susceptible ( ​S​). At the beginning of a simulation the status of a predefined number of agents                

is set to infected (I), chosen from a minimal number of households. During each time-step of                

the simulation, the agents visit the locations specified by their respective schedules and the              

infection spreads across the spatio-temporal network of interacting agents.  

Characterization of agents: ​Agents are characterized according to their health status as            

susceptible (S), infected (I), recovered (R) or deceased (D). Agents among the group of              

infected individuals (I) obtain sub-states specifying their condition as (only) infected (I),            

diagnosed (I ​d ​), hospitalized (I ​d ​H​), or being in an ICU (I ​d ​ICU​) (see ​Figure 3A​). These states and                

sub-states are accompanied by corresponding schedules. Upon hospitalization (and during          

stay in the ICU) the agent follows a hospital-schedule, which places it in the hospital until                

recovery or death (in the basic model we do not consider possible re-infection following              

release from hospital). Diagnosed individuals are considered to be quarantined in their            

respective homes. While the recovery of an agent introduces the reacquisition of its regular              

schedule, its death results in assignment of the deceased-schedule (see ​Figure 3D​). 

GERDA-1 specifically represents the group of healthcare workers and medical professionals           

by defining corresponding schedules with medical facilities as workplaces. The high           

exposure to infected individuals in this location yields an elevated risk for infection in              

agreement with hitherto observation made for SARS-Cov-2 in multiple outbreak theaters. In            

addition, the risk for medical professionals under different levels of personal protection            

measures can be assessed in isolation by targeted data analysis.  

Modeling the spreading of SARS-Cov-2 infection: ​Each agent is considered to encounter            

(unilateral) interactions with other agents, according to a specified interaction-frequency          

(one per hour), based on the underlying georeferenced network and the agents respective             

schedules ( ​Figure 3C​). The interaction partner is randomly picked among all other agents             

present at the same location at the same time. Given a susceptible agent (S) has been                

assigned to an infected agent (I) as interaction partner, the infection transmission is a              

situation-dependent property occurring with a specific probability, , upon which       P infection    
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the uninfected agent’s state might transit from susceptible to infected ( ​Figure 3B​). This             

infection probability reads 

 P infection = P infection (t) = kI · I I (t) · SS
  

where is the infectivity of an infected agent (I) depending on its duration of infection and I I                 

the susceptibility of a susceptible agent (S). is the infection rate, which representsSS        kI        

individual protective measures of both parties (e.g., wearing face-masks) or location-specific           

factors such as the more strict hygiene regime in medical facilities. 

State transitions of infected agents: ​Infected agents have a probability (per hour) to change              

their status to either (R) or (D) or change their sub-status to (I ​d ​), (I ​d ​H​) or (I ​d ​ICU​). These                 

probabilities are derived from published rates for those processes given in the            

Supplementary Material ( ​Table S2 ​). The transition probabilities that we used to simulate            

the model are calculated for all transitions as probability per hour, where their dependence              

on age and the duration of ongoing (sub-)states is taken into account. 
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Figure 3​. ​Principles of agents/individuals, their states and schedules. ​A​) For state transitions in the model, we                 

consider a transition from susceptible (S) to infected (I), based on interaction between (S) and (I). Infected                 

individuals comprise those not diagnosed (I in full circle) and those diagnosed (I​d ​), hospitalized (I​d ​H ​) and those                 

in ICU (I​d ​ICU​). All infected individuals have a probability of dying (D), patients from the ICU can return to the                    

hospital (non-ICU or recovery ward), and all infected except ICU patients can recover (R). The colors                

correspond to the colors used below in time course plots. ​B​) Infection process and probabilities, as an example                  

for status transitions in the model (I​I ​: infectivity of an infected agent; S ​S ​: susceptibility of a susceptible agent ;                    

k​I​: infection rate). ​C​) Schematic representation of infection spreading via interactions at locations over time. At                

time ​t​, ​a susceptible and an infected agent move to a location, specified by their respective schedules. They                  

encounter each other at time ​t+1 ​and the infection can occur; subsequently they move to other scheduled                 

locations, where they may spread the infection further. ​D​) Overview of different schedules. Agents with states                

(S), (R) and (I) follow their regular schedules, which are modulated by the restrictions imposed by                

mitigation-measures. Upon lifting of these measures, the schedules are reset to their original state. Diagnosed,               

deceased and hospitalized agents follow specific schedules. 

Agent data from simulation: ​All locations and (sub-)states of individual agents are recorded             

and their time-course over the entire simulation is stored to be used as input for               

subsequent simulations and for analyses and plotting. Furthermore, information on the           

infection network (when, where and by whom every modelled agent was infected) can be              

extracted once a simulation is completed. To test the effect of different mitigation             
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measures, parameter values, or the application and relaxation of social distancing, repeated            

simulations (with the different measures imposed) can be performed with identical           

initializations or starting from a selected time point of previous simulations to compare             

alternative trajectories of disease-spread. 

 

Simulation Results of the Model - Baseline Version (GERDA-1) 

We start the model with a basic initialization of households, workplaces, public places,             

schools, a hospital, and a morgue as well as a total number of infected individuals. The total                 

number of individuals originates from assigning a household (drawn from the demographic            

distributions) to each residential building. The baseline model is key to subsequent            

evaluation of the predicted outcome of the outbreak without any implemented measures            

such as social distancing or home offices and closure of schools (unlimited and silent              

community spread). The dynamical behavior of the population and their stages is displayed             

in ​Figure 4​.  
 

 
Figure 4​. ​Simulation results for the baseline scenario for the modeled municipality Gangelt. Here, we started                

with 5 infected individuals. ​A​) Time courses for susceptible (S), infected (I), recovered (R), and deceased (D)                 

individuals. ​B​) Time courses for diagnosed (I​d ​), hospitalized (I​d ​H ​) individuals and those in ICU (I​d ​ICU​). ​C​)                

Distribution of transition times between stati for infected individuals. ​D​) Number of infections per location               

type normalized to the number of locations of each type. Parameter values: Infectivity = 0.5 
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The dynamics at the different locations are represented in ​Figure 5​. Representations for             

groups of people with different states (S), (I), (R), and (D) at the locations home, school,                

hospital, public, and work, are in each case summarized across all locations belonging to a               

certain type (e.g. for all schools together). It can be observed how the wave of infection in                 

the event of no mitigation spreads through the population. It is important to note that the                

weekly structure of schedules (work or school from Monday to Friday, more visits of public               

places during the weekends) directly influence the resulting dynamics. Also represented is            

the morgue as a location for deceased individuals. Age-dependent trajectories are shown in             

Supplementary Figure S1 ​. 
 

 
Figure 5​. ​Exemplary representation of daily occupations of the agents during the outbreak. Simulation of the                

same scenario as in Figure 4. ​A​) Home represents the residential building where agents spend most of their                  

time. Agents can be either susceptible, infected or recovered. ​B​) The morgue represents the location for                

deceased individuals. ​C​), ​E​), ​F​) Time courses for schools, public places and workplaces. All three types of                 

location represent the dynamics of the infection wave with initially high number of susceptible and later high                 
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number of recovered individuals. School and workplaces also reflect the effect of weekly schedules of the                

individuals with 5 days mainly at work or school and two days prevalently at home or public places. ​D​) The                    

hospital comprised both hospitalized individuals and doctors/nurses who work in the hospital (red susceptible,              

green recovered). 
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Figure 6​. ​Resulting distributions, over 100 replicate simulations, of the duration (hours), spent in different               

states prior to the transition to other specific states. Different transitions considered in this figure, (starting                

from top-left I→R : infection to recovery , I→D : infection to death, I→I​d ​H : Infection to hospitalization , I​d ​H ​→ R                     

: admission to hospital to recovery , I​d ​H ​→D : admission to hospital to death , I​d ​H ​→ I​d ​ICU : admission to hospital to                      

onset of ICU-treatment ).  
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Parameters 

The model parameters are based on published data for transition periods between infection             

and diagnosis, diagnosis and hospitalization, frequencies of need for ICU as well as death              

rates in the German cohort [RKI]. In order to verify that the model predictions reflect these                

underlying data in a satisfactory manner, we determined distributions of transition           

frequencies per unit of time for the different state transitions considered in our model              

( ​Figure 6​). These frequencies agree well with the frequencies reported in literature,            

although not all necessary values for all age groups have been published yet. 

 

The dynamics of infection spreading resulting from the simulation of the baseline scenario is              

visualized in Movie 1 [​https://thbpcloud.de/index.php/s/2lJ8McKxPc0WrvT​]. It is important        

to note that the daily rhythm shown in the movie, results from individuals moving between               

their respective homes and workplaces. To illustrate this three still images of this movie are               

shown in ​Figure 7​. The infection starts with two infected individuals in one household at               

time 0 h. At times 100 h and 200 h more and more infected agents are observed, especially                  

at the geographical hubs (e.g., center of the town). 

 

 
Figure 7​. ​Still images from Movie 1 ​. Representing the dynamics of infection spread over the underlying                

geographic network. Movie1 is available at​ https://thbpcloud.de/index.php/s/2lJ8McKxPc0WrvT ​. 
 

Scenarios of Mitigation and Elevation of Contact Restrictions 

In order to analyze the effect of mitigation measures and interventions such as lockdowns,              

or contact prohibition, we tested the following mitigation scenarios: 

 

1. Scaling of the infectivity as proxy for wearing face masks 

or keeping physical distance 

2. Selective closure of public spaces such as schools, general public spaces, 

workplaces or a combination of these 

3. Variation of the infection probability for healthcare workers to simulate limited           

access to PPE 

 

The effect of the scenario mimicking increased level of social (physical) distancing            

represented by reduction of infection rate is represented in ​Figure 8​. Here, we have              

compared the baseline version of the model with infectivity values of 0.5 (indicating typical              

behavior) and 0.3 (corresponding to low social distancing, i.e., the probability to get infected              
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when meeting an infected individual is decreased by 40%). As a result of the reduced               

infectivity, the infection wave runs through the population more slowly, i.e., the peak of (I)               

is lower (about 7000 individuals compared to 8000 at the higher rate) and also occurs later.                

At the end, fewer people have been infected and moved to the recovered state (about 9500                

compared to about 10000 individuals). The reason for the lower number of infected and,              

therefore, recovered individuals is that in the case of a slower spread of the virus through                

the population, the overshoot in infected individuals is reduced [5]. Further results for             

infection rate 0.3 are represented in ​Supplementary Figures S2​. 
 

 
Figure 8. Variation of the infection rate. Upper panel: standard infection rate of 0.5. Lower panel: reduced                 

infection rate of 0.3 mimicking stricter behavior/distancing. ​A​) and ​D​): Dynamics of S, I, R and D. ​B​) and ​E​):                    

Number of infections per location (normalized to the number of locations per type). ​C​) and ​F​): Dynamics of                  

infected, diagnosed, hospitalized and individuals in ICU.  
 

To evaluate the influence of more strict measures to influence the course of the epidemic,               

we have simulated a series of potential scenarios for lockdown and release of lockdown              

measures. This includes closures of all locations except of homes and hospitals (i.e.,             

workplaces, schools and public spaces) as well as closure of selected locations. We further              

tested the selective opening of these locations. ​Figure 9 shows exemplary results for             

closures at 200h (ca. 8 days) and openings at 500h (ca. 20 days) with 100 simulations per                 

scenario. It can be observed that closing of all locations leads to a significant reduction of                

the infection peak from about 8500 individuals to about 1700 individuals. By only closing              

public places and schools or public- and workplaces a peak of about 6200 or 3700 infected                
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individuals, respectively is observed. Thus, closing all locations (except for home and            

hospital) has a strong advantage compared to closing only selected locations.  

Reopening of any selected location type such as schools ( ​Figure 9D​), work ( ​Figure 9E ​), or all                

locations ( ​Figure 9F​) results in a unique phenomenon, namely a bimodal behavior of the              

system. In this case, the infection declines in some simulations, while reaching a strong              

second peak of infection in other simulations. This is due to the stochastic nature of the                

process: the precise behavior of individuals is unpredictable, despite being regulated (even            

in Germany). The ratio of cases of declining and recurring infection waves varies between              

the scenarios, as well as the peak of the second infection wave with the strongest peak                

when all public activities are resumed in the scenario “close all, reopen all” ( ​Figure 9F​).               

However, already selective opening of only schools bears a strong risk of a second infection               

wave ( ​Figure 9D ​). ​Supplementary ​Figures S3 and ​S4 represent testing of different start             

times and durations of closures. 

 

In summary, these results have serious consequences for considering the reopening of            

societies and communities: In this specific simulation, reopening of schools or of all             

locations after sufficiently long partial closure has no major effect. Following closure of all              

locations, opening of schools or public spaces can lead to a strong second peak of infection.                

Here, one has to note that different simulation runs show qualitatively different behavior.             

Due to the stochastic nature of the model, the infection becomes active in some              

simulations, but not in others. It is also important to note that in the case of closure of all                   

locations, the number of susceptible individuals stays high, meaning that, even if the virus              

dies out in the simulation, the simulated population would be at risk of a second wave with                 

just one newly infected person entering the system.  
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Figure 9​. ​Comparison of different scenarios of contact restrictions and release. We compare the effect of no                 

mitigation to scenarios where schools, workplaces (work), public places (public) or all three of them (all) have                 

been selectively closed at 200h and selectively opened at 500h. Closed and opened locations are indicated per                 

panel; downward arrows: closing times, upward arrows: opening times. 

 

The effective reproduction number R ​eff 

The GERDA-1 model can be used to monitor the effective reproduction number R​eff in a               

time-dependent fashion, as an emergent property of the modelled system. The results for             

the baseline scenario without mitigation and an infection rate are shown in ​Figure         .5pinf = 0     

10 ​. The value ranges between about 4.8 at the beginning of the infection wave and 0.68 at                 

the end of the simulation period. When we reduce the infection rate to mimicking             .3pinf = 0  

low social distancing, the values range between 3.5 and 0.63. Closure of schools, public and               

work (“all”) leads to faster decline in R​eff​, however, the final values are slightly higher than                

without mitigation (about 0.77). The selective reopening of schools after closure of all             

locations leads to a second increase in R ​eff​, here with values of up to 1.6. 
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Figure 10​. R​eff values for different scenarios. R​eff has been calculated as the average number of individuals who                  

have been infected by one infected individual. Resulting R​eff values are average numbers for a sliding window                 

of 4 days (although the total number of newly infected individuals per I-individual was considered). For all                 

scenarios where not specified, the infection rate is 0.5.  

 

Discussion 
The presented GERDA-1 model is - to the best of our knowledge - the first geospatial and                 

demography-referenced agent-based model of the Sars-CoV-2-epidemics. It is based on          

location data and household numbers of a small German municipality but can be readily              

extended to any community world-wide where data is available. It neither repeats the             

history in that municipality nor violates the privacy of real individuals, but it relies on               

realistic assumptions about type and number of locations, distances, number of households            

and inhabitants as well as their daily routines. It represents a realistic network between the               

simulated individuals, hence is not entirely random, despite its inherent stochastic nature. 

The agent-based model can simulate the stochasticity of virus spreading through a            

population. Furthermore, its agents are generated based on population data and renders            

their movements in a realistic environment constructed from real world geodata. Agents            

have individual behavior based on their age group and encounter other agents by modelled              

probabilities. This is a significant improvement compared to the classical SIR-models, which            

are based on ODEs and can, therefore, not simulate individual behavior and randomness nor              

make use of geolocations. The latter also being an important milestone also for future              

integration with public health authority recommended smart-phone tracking. 

Whilst the model recently published by Kissler et al. [6] is an ODE model fitted with                

published data and implements social distancing measures, it does not discriminate           
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between different types of mitigation measures. Our model can discriminate between           

different types of measures applied to different public places or subgroups of people.  

 

Predicting the outcome of mitigation scenarios. ​Our model allows us to compare the             

potential worst case scenario without any protection or mitigation measures (the baseline            

scenario) to scenarios that represent different protection levels, lockdown measures and           

reopening strategies.  

These simulations allow a set of preliminary conclusions: 

1. The effect of lockdown measures importantly ​depends on how strict the measures            

are implemented and enforced. Lockdown of only public places and schools still            

leads to a significant infection wave passing through the entire population compared            

to lockdown of all locations (except of homes and hospitals) where the infection is              

drastically decreased. Also the effect of a selective opening is dependent on how             

strict the preceding lockdown has been.  

2. If the population still contains a large number of susceptible individuals and            

sufficient infected individuals, then a selective opening of locations (such as the            

opening of schools after 500hrs (approx. 20 days) in ​Figure 7​) can lead to a ​severe                

second ​ ​wave​ of infection. 

3. The infection process is ​stochastic by nature. This means that the effect of reopening              

cannot be predicted with absolute certainty. Depending on the numbers of S and I as               

well as on the not fully predictable behavior of the individuals, we can obtain              

qualitatively different trajectories, meaning that the infection picks up in some cases            

and decays in other cases.  

 

The role of schools in the infection dynamics. Schools turn out to be a major hub for the                  

progression of infection. Schools are a natural place of contact for the children and teachers.               

Our simulations (e.g., ​Figure 8B,E, Figure 9D ​) show that they are also a major location to                

spread the infection within the municipality and that they contribute essentially to the             

overall dynamics. For the currently envisaged reopening of schools in many countries the             

property as a hub and the bimodality of the behavior after reopening means that the               

outcome of this political decision can be positive (i.e., no major infection wave afterwards)              

or troublesome (i.e., leading to another major outbreak). However, the presented           

simulations refer only to a small town (the virtual Gangelt) with only 2 schools and in the                 

current GERDA-1 model version neither kindergartens nor public transport and the effect            

for larger communities with more inhabitants and travel activities remains to be tested. To              

the best of our knowledge, the GERDA-1 model is the first model able to predict the bimodal                 

behavior of SARS-Cov-2 infection dynamics. 

 

Exposure of specific groups of the population. Health care workers and medical professionals             

are at the forefront fighting COVID-19. Our model also reveals the importance of specifically              

protecting them since a lack of personal protective gear leads to increased numbers of              

infected and deceased medical staff, but also to an elevated spreading of the disease in the                
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whole population. In addition, it can be expected that this trend is enhanced upon including               

detailed hospital capacity metrics (staff, beds, ICU beds) in the model. 

 

Potential limitations of the model. Here, we have integrated real demographic data            

reflecting the number of households, composition of households (singles, families, couples,           

shared apartments), age distribution. We also include relevant data about daily activities of             

individuals such as being at home, visiting schools or workplaces or engaging in social              

activities. Specifically, we also consider individuals working in healthcare (first-responders,          

nurses and doctors). This allows to test much more specific scenarios of mitigation or the               

effect of relaxation measures than do classic epidemiological models, which describe only            

the different epidemic groups without reference to their real life occupations or            

geopatterns. Note that we modeled the outbreak in only one small-town municipality, the             

dynamics might differ if more connected regions are included (metropolitan areas, suburbs            

etc).  

How trustworthy are the parameter values? We have derived all relevant transition            

probabilities from currently available information for the propagation of COVID-19 (see           

Supplementary Table S1, [4]). However, this information is neither complete (w.r.t. the            

transitions that we have in the model) nor is it stabilized. For example, diagnostic capacity in                

Germany is increasing while we simulate and write this manuscript, hence, the respective             

parameters need to be adjusted during the pandemic and for different geolocations. The             

infection probability (whether an S-agent gets infected by an I-agent when meeting at the              

same location) by itself is hard to measure directly (as statistics over infection events are               

lacking). Thus, the respective values is best educated guess and we will test the effect of this                 

parameter further with sensitivity analysis. On the other hand, the number of locations has              

been taken from current databases (OpenStreetMap) so can be considered rather robust.            

Composition of households is from the German census data, thus trustworthy, however            

potentially not exactly representing the conditions for every region. 

 

For comparison, the latest numbers reported from Gangelt of April 30 2020 (status at 15:00)               

[​https://www.kreis-heinsberg.de/aktuelles/aktuelles/?pid=5149 ​] are 478 diagnosed    

individuals, 446 recovered individuals and 4 deceased individuals since February 25 2020.  

The current version of GERDA-1 entails only a ​limited set of opportunities for ​daily schedules               

and ​locations for each agent. These were schedules we considered most representative. In             

forthcoming versions of the model we will allow for more diverse and adapted schedules.              

First, we will include nursery/senior homes to account for a location with potentially drastic              

consequences during the pandemic. Then we will also take into account daily occupations             

such as kindergartens, differentiate between elementary schools and high schools, but also            

enclose universities and other educational instances. We will also allow for more diversity of              

workplaces (SME vs large-industry), e.g. in public transport, public service, or shops            

compared to workplaces with more limited/repetitive contacts such as offices or factories.            

These data will be drawn from the respective statistics.  
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Generalization and potential extensions of the model 

The model concept allows for a multitude of extensions. Our goal will be to extend the                

georeference of the model to enable the EMEA/EU and subsequently global community to             

run simulations via a web portal. We hope Alphabet Inc. will open up for access to Google                 

Maps. In future versions of the model, we consider to include further specialized groups,              

such as system-relevant workers, workers with direct client contact or shift workers. This             

will provide the basis for simulating diverse mitigation measures in very different            

populations. Incorporating further locations, especially to represent different public spaces,          

such as but not restricted to super markets, public transport will lead to simulation of more                

diverse municipalities. In consequence, expansion of the model to several small           

municipalities or bigger cities will be feasible. 

 

A ​stepwise extension of the model will comprise (pursued in parallel collaborating            

developer-teams) (i) other cities and municipalities in Germany, (ii) a combination of several             

cities in Germany, (iii) whole Germany, and as soon as possible (iv) Europe and worldwide,               

and (v) adaptation and improvement of individual behavior. However, it is clear that each              

extension will require data representing locations and inhabitants of the considered areas            

and that each extension will also demand more development time, computing power, and             

testing capacity.  

 

While our model and efforts to implement it, has been very much motivated by the current                

corona crisis, the presented concept and the planned extensions are also suited to analyze              

the distribution of other infectious diseases in an unprecedented precision, since we include             

demographic and geographic data that is as precise as current databases allow and that also               

determines spreading of, for example, the common flu or other coronaviruses and            

pathogens. 

 

 

 

Material & Methods 
The ABM and the simulation framework were designed in an object-oriented manner, using             

the programming language ​Python version 3 [7] and the packages ​Numpy [8], ​Pandas [9],              

Geopandas [10], ​osmnx [11]. The package ​matplotlib [12] was used for visualisation.            

Despite being streamlined for the parallel execution of numerous replicates; the developed            

tool was designed for usage on customary machines.  

 

Data Sources 

John Hopkins Corona resource​:  
https://coronavirus.jhu.edu/map.html 

 

Ourworldindata 

https://ourworldindata.org/coronavirus#all-charts-preview 
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IHME and CDC,  ECDC. 

 

Robert Koch-Institut (RKI) 

https://www.rki.de 

1. Current Stage/Situation report of Robert-Koch-Institute (RKI) about COVID-19: 

1.1. COVID-19 fatalities reported to RKI sorted according to age and sex  

1.2. Reported COVID-19 cases per 100.000 inhabitants in Germany sorted         

according to age groups and sex  

1.3. Case numbers 

1.4. Intensive care numbers / see Divi Intensive Register 

 

2. SARS-CoV-2 Characteristics for Coronavirus-Disease-2019 (COVID-19) (in German)       

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html 

2.1. - Data from the characteristics refer to different studies  

 

3. Modellierung von Beispielszenarien der SARS-CoV-2-Epidemie 2020 in Deutschland 

https://edoc.rki.de/handle/176904/6547.2 

 

Divi-Intensivregister  

https://www.divi.de 

1. Tagesreport DIVI Intensivregister 

2. Case numbers of reported intensive care patients (to estimate transition          

probabilities) 

 

Statistisches Bundesamt 

Census, Distribution of household types, size and corresponding age distributions 

1. https://ergebnisse.zensus2011.de/ 

2. https://service.destatis.de/ 

 

 

OpenStreetMap 

Geospatial data for initialization of locations openstreetmap 

https://www.openstreetmap.de/ 

 

 

Code Availability 

The code will be available shortly at  

https://ford.biologie.hu-berlin.de/tbphu/corona_abm 
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Supplementary Information 

 

Supplementary Table S1 ​: Quantitative Information used for state changes. For the state            

changes in the left column we derived the age-dependent probabilities per hour for the              

transition to occur from the following data: average time in a state until the transition (given                

in days) and percentage of affected people undergoing the transition.  

 

State Change Average Time  

to transition [d] 

Percentage of individuals   

affected 

Source 

Infected →  

Recovered 

10 85 % RKI 

Infected → Hospital 5.5 15 % RKI 

Infected → Death 10 Age Dependent Death Rate RKI 

Hospital →  

Recovered 

14 78 % RKI 

Hospital → ICU 14 22 % DIVI-Register 

Hospital → Death 10 Age Dependent Death Rate RKI 

ICU → Hospital 7 70 % DIVI -Register 

ICU → Death 7 30 % DIVI-Register 

Susceptible →  

Infected 

Probability distribution taken from [1] 

Infected →  

Diagnosed 

15 15 % RKI 
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Supplementary Figure S1 ​: Age-dependent trajectories for S, I, R, and D. Curves show results              

for a single simulation for infection rate 0.5. Age ranges are given on top of each panel. 
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Supplementary Figure S2 ​: Quantitative characterization of dynamics for infection rate 0.3           

without mitigation measures. ​A​) Distribution of daily occupations. ​B​) Distribution of           

transition times. ​C ​) Time courses S, I, R, and D for medical professionals, ​C​) Time courses S, I,                  

R, and D for teachers, ​E ​) Number of infection events at given times per location type. Panel                 

B shows the statistics for 100 simulation runs, Panels ​A​, ​C​, ​D​, and ​E show results for a single                   

representative simulation run. 
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Supplementary Figure S3 ​: Variation of the onset time for complete shutdown (Close_all            

modus). Shown is the scenario with closure of schools, work and public at the times given in                 

the panel (i.e., 100h up to 500h).  
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Supplementary Figure S4: Variation of start times of closure of all locations and durations of               

complete shutdown followed by school reopening. Parameter value .5.P inf = 0  
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