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Abstract

We develop and analyze in this work an epidemiological model for
COVID-19 using Tunisian data. Our aims are first to evaluate Tunisian
control policies for COVID-19 and secondly to understand the effect of
different screening, quarantine and containment strategies and the rule
of the asymptomatic patients on the spread of the virus in the Tunisian
population. With this work, we show that Tunisian control policies are
efficient in screening infected and asymptomatic individuals and that if
containment and curfew are maintained the epidemic will be quickly con-
tained.

1 Introduction

On March 11, 2020, WHO announced that the COVID-19 epidemic had
passed the pandemic stage, indicating its autonomous spread over several
continents. Since March 22, Tunisia has experienced a turning point and
general health containment has begun. Tunisia’s strategy of containment
and targeted screening corresponds to the first WHO guidelines, the aim
being to detect clusters by diagnosing only suspicious persons and then
to trace the people who came into contact with the positive cases. This
method is now showing its limitations. The mass screening carried out in
some countries shows that asymptomatic patients or those who develop
only a mild form of the disease may exist in significant numbers. So what
is the rule of the asymptomatic patients on the spread of the virus in the
Tunisian population and does containment and mass screening strategies
are sufficient to control the spread of the virus in the Tunisian population?

In this work, a mathematical epidemiological model for COVID-19 is
developed to study and predict the effect of different screening, quarantine,
and containment strategies on the spread of the virus in the Tunisian
population. This model is more detailed than the classical model (SIR)
but it remains very simple in its structure. Indeed, all individuals are
assumed to react on average in the same way to the infection, there are
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Figure 1: The model flow chart

no differences in age, sex, contacts. The model is calibrated and fitted to
Tunisian data.

In what follows, we present the model and its assumptions. Then we
calibrate different parameters of the model based on the Tunisian data and
calculate the expression of the basic reproduction number R0 as a function
of the model parameters. Finally, we carry out simulations of interven-
tions and compare different strategies for suppressing and controlling the
epidemic.

2 Model description

COVID-19 is a respiratory disease that spreads mainly through the res-
piratory droplets expelled by people who cough. So the transmission is
usually direct from person to person. Infection is considered possible even
when in contact with a person with mild symptoms. In fact, in the early
stages of the disease, many people with the disease have only mild symp-
toms. It is, therefore, possible to contract COVID-19 through contact
with a person who does not feel sick. Subsequently, in this work, we con-
sider susceptible individuals, noted S, who are infected first go through a
stage where they are infected but asymptomatic, noted As for unreported
asymptomatic infectious. This stage appears to be particularly important
in the spread of COVID-19. The individuals then develop symptoms and
become symptomatic infectious, so either enter directly into a quarantine
stage, noted Q, corresponds to reported symptomatic infectious individ-
uals, or go through a moderate or severe infectious stage, noted I for
unreported symptomatic infectious and then can go through the quaran-
tine stage or not. Finally, the infection ends and the individuals are then
immunized, denoted R or dead, denoted D. This life cycle can be repre-
sented using the following flow chart (1) followed by table 1 that lists the
model parameters.

The quarantine is assumed to act on the As and I stages. Indeed, we
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Table 1: Table of parameters
Notation Description Value Reference

t0 Initial epidemic time −3.172 fitted
S0 Number of susceptible at time t0 11791748 Tunisian population
As0 Number of asymptomatic at time t0 0.317 fitted
I0 Number of infected at time t0 0.050 fitted
α1 Transmission rate by asymptomatic 4.513e− 08 fitted

α2 = fα1 Transmission rate by infected
f 3 estimated
β Rate at which asymptomatic infectious 1/6 estimated from data

become symptomatic infectious
τ1 Rate at which asymptomatic enter in quarantine 0.400 fitted
τ2 Rate at which infected enter in quarantine 0.778 fitted
γ Rate of recovery 0.045 estimated from data
µ Rate of mortality 0.003 estimated from data

assumed that the state can detect asymptomatic individuals by for exam-
ple random screening, and then positive testing ones go into quarantine.
Let τ1, respectively τ2, be the quarantine rate for As class, respectively I.

We assumed that the asymptomatic individual, As, turn out to be I
at a rate β. We further assumed that quarantined individuals, Q and
infected individuals, I either die at a rate of µ per unit of time or become
recovered/immune, R, at a rate of γ per unit of time.

Finally, we assume that each healthy individual is infected proportion-
ally by As asymptomatic individuals, with a rate of α1 and by I infected
individuals, with a rate of α2. As I state is constituted with the moder-
ate or severe state, they are more contagious than the As state, therefore,
α1 < α2.

Therefore, our model consists of the following system of 6 ordinary
differential equations:

dS

dt
= −α1SAs− α2SI

dAs

dt
= α2SI + (α1S − β − τ1)As

dI

dt
= βAs− (τ2 + γ + µ)I

dQ

dt
= τ1As+ τ2I − (µ+ γ)Q

dR

dt
= γ(I +Q)

dD

dt
= µ(I +Q)

(1)

With an initial condition at time t = t0 defined as following:

S(t0) = S0 > 0, As(t0) = As0 > 0, I(t0) = I0 > 0, Q(t0) = 0, R(t0) = 0, D(t0) = 0

One of the advantages of the basic reproduction number R0 concept
is that it can be calculated from the moment the life cycle of the infec-
tious agent is known. We calculate the R0 for our model using the Next
Generation Theorem [3] (see section A.1),

R0 =
α1S0

β + τ1
+

α2βS0

(β + τ1)(τ2 + γ + µ)
(2)
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The first term of the expression of (2) corresponds to infections gen-
erated by asymptomatic types (healthy carrier to mild symptoms). The
second term corresponds to secondary infections caused by moderate or
severe symptomatic infection. With this expression, we can see that there
are several ways to lower the R0 and thus control the epidemic. For exam-
ple, we can reduce the number of susceptible people (decreasing α1 and α2)
by confining the population, reducing contacts, and wearing masks. We
can also reduce the rate of contact with an infected person by increasing
quarantine rates (τ1 and τ2) by isolating asymptomatic or symptomatic
infected persons through mass screening.

3 Comparison with data

The estimation of the different parameters of the model is done in three
steps (see section A.2). In the first step, we will estimate the start date of
the epidemic, t0, the initial states As(t0) and I(t0) as well as the infection
rates α1 and α2. In the second step, we estimate the mortality rate, µ, and
the recovery rate, γ. In the third step, we evaluate the parameters τ1 and
τ2 by an optimization method. The program is available for download1.

We used the Tunisian Health Commission 2 data-set of reported data
to model the epidemic in Tunisia. It represents the daily new-cases, death,
and recoveries in Tunisia. The first case was detected on March 2, 2020.

To estimate the initial conditions As(t0) and I(t0) and parameters α1

and α2, we fix S0 = 11694720, which corresponds to the total popula-
tion of Tunisia and assume that the variation in S(t) is small during the
period consider. We also fix the parameters β, γ, τ1 and τ2. For this esti-
mation, we adapt the method developed by [4] in our case. Let CRt) the
cumulative number of reported infectious cases at time t, defined by,

CR(t) =

∫ t

t0

τ1As(t) + τ2I(t)dt (3)

Let’s assume that CR(t) = χ1 exp(χ2t) − χ3 with χ, χ2 and χ3 three
positive parameters that we estimate using log-linear regression on cases
data (see figure 2 and table 2).

Table 2: Parameters of the estimated cumulative number of reported infectious
cases CR

χ1 χ2 χ3 t0 R2
1.208 0.210 0.729 −2.401 0.993

We obtain the model starting time of the epidemic t0 by assuming that
CR(t0) = 0 and therefore equation (3) implies that:

t0 =
1

χ2
(ln(χ3)− ln(χ1)). (4)

1https://github.com/MayaraLatrech/covid19_sasymodel.git
2https://covid-19.tn/
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(a) Fitted CR. (b) Fitted log(CR).

Figure 2: The fitted cumulative number of reported infectious cases CR =
χ1 exp(χ2t) − χ3 to Tunisian data using Linear regression.

Figure 3: In this figure, we plotted the number of individuals in quarantine
without curfew (in blue), Q(t) ( i.e. the number of diagnosed cases per day),
and the Tunisians data (in orange).

For now, we assume that α2 = fα1 with f a fixed parameter big-
ger than 1 and let’s τ = τ2/τ1. Then, by following using the approach
described in the step 1 of section A.2, we have:

I(t0) =
β

χ2 + τ2 + βτ + γ + µ

χ2χ3

τ1
(5)

As(t0) = (1− βτ

χ2 + τ2 + βτ + γ + µ
)
χ2χ3

τ1
(6)

α1 =
(χ2 + β + τ1)

( fβ
χ2+τ2+γ+µ

+ 1)S0

(7)

R0 =
(χ2 + β + τ1)

(β + τ1)

(1 + fβ
τ2+γ+µ

)

(1 + fβ
χ2+τ2+γ+µ

)
(8)

In figure 3, we plotted the number of individuals in quarantine without
curfew predicted by the ODE model, Q(t) i.e. the number of diagnosed
cases per day and compared to the Tunisians data. We observe that from
the 20th day onwards, the simulated curve deviates from the observed
data. This deviation is due to the epidemic control policies put in place
between 20 and 25 March (closure of cafes shops and the introduction of
a curfew).
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It can be seen that if the curfew had not been installed, the country
could have had thousands of additional cases during the month of April.

4 Numerical simulations

4.1 Effect of containment and curfew

In figure 4 we study the effect of the curfew installed by the Tunisian state
since March 20, 2020, on the number of infected people reported by the
state.

Figure 4 shows the effect of two curfew strategies on the dynamics
of the epidemic: a 12-hour curfew (the chosen Tunisian policy) and an
18-hour curfew (a more restrictive policy). During the period of curfew,
the rate of infection α1 is divided by 100. In Figure 4(a), it can be seen
that, for the chosen policy to maintains a 12-hour curfew for 100 days,
the epidemiological peak in terms of the number of reported infected is
reached after about 50 days with a value equal to 953. After the peak, we
observe a slow decrease in the number of reported infected persons. On
the other hand, in the more restrictive case of18 hours curfew, the peak
would be reached more quickly after 27 days with a more rapid decrease.
These values should be compared with the 774 cases given by [1] and the
fact that the epidemiological peak was reached around April 29, 2020,
after about 58 days with a reported infected number equal to 975.

We represent on figure 4(b), the number of deaths by time, it appeared
that the peak of the deaths is shifted to the peak of the infected for
about 50 days, this shift corresponds to the hypothesis that we made
on the duration between the beginning of the symptoms and the deaths
( i.e. 30 days). We note that the simulated death curve overestimates
the observed curve. This may be due to the mortality of unreported
infected and therefore the surplus corresponds to unreported COVID-
19 mortality, which makes the optimization of the model’s variables for
deaths imprecise.

Moreover, the model predicts 228 deaths at the end of the epidemic
in the current case (12 hours curfew). In the case where the curfew was
18 hours, the number of deaths would be 84. This information should be
taken with caution, because at the time the simulations were made the
number of deaths was low.

Finally, we notice that the ratio between the undeclared cases (asymp-
tomatic and symptomatic) represents between 45% at the beginning of the
epidemic for less than 10% at the end of the epidemic (see figure 5).

4.2 Effect of mass screening

We study in this section the effect of more intensive mass screening, i.e.
by increasing τ1 and τ2, on the basic reproduction number, R0, and on
the number of declared infected, Q (see figures 6, 7).

In figure 6, we can see that no matter how intensively we screen, we
have R0 > 1. Moreover, we note that to minimize the basic reproduction
number, it is necessary to increase the massive screening of the class of
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(a) Effect of curfew on number of re-
ported infected.

(b) Effect of curfew on number of
death.

Figure 4: Effect of containment on number of reported infected and death

Figure 5: Ratio of undeclared cases (asymptomatic and symptomatic)

Figure 6: Effect of quarantine rates, τ1 and τ2, on the basic reproduction number
R0.
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asymptomatic infections. Similarly in figure 7, we can see that the increase
in the mass screening effort allows a more rapid decrease in the number
of cases (see figure 7(a)). This is probably since cases are detected earlier,
they do not contribute to the contamination of the healthy ones.

Indeed, mass screening has an indirect effect on recruitment in the
infect compartment. More specifically, we assume that β + τ1 does not
vary when τ1 changes. Consequently, the effort of mass screening on
asymptomatic patients cannot exceed this value, and then any additional
effort beyond β + τ1 will be passed on to healthy patients and therefore
will be useless.

It is observed that the calibration of the model on the Tunisian data
using Metropolis-Hastings (MH) algorithm, gives a value of τ1 = 0.78,
which represents a very important screening effort. This would prove that
the screening strategy is very efficient. However, we didn’t had access to
the testing campaign methodology that would have allowed us to adjust
our estimates.

Moreover, it is observed that the number of deaths at the end of the
epidemic varies from 228 to 167, i.e. a 20% decrease in the number of
cases (see figure 7(b)).

(a) Effect of mass screening on num-
ber of reported infected.

(b) Effect of mass screening on num-
ber of death.

Figure 7: Effect of different scenarios of mass screening policies on the tunisian
population

5 Conclusion

It can be noted that since April, 15, 2020, Tunisia has succeeded in slowing
down the speed of propagation thanks to and containment and a curfew.
With this work, we suggest that if containment and curfew are main-
tained, short-term projections could be more optimistic. The fact that
the epidemic is quickly contained tends to show that the number of un-
declared infected is low, which may suggest that our model is efficient for
the evaluation of undeclared cases. In fact, we show that at the time of
the epidemiological peak, the number of unreported infected persons con-
stitutes at most 1/3 of the infected population. However, this will need
to be confirmed by a field evaluation. Moreover, using Tunisian data,
the optimization algorithm fixes the rate at which asymptomatic enter in
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quarantine, τ1, at a high value. This expresses the good performance of
the control policy of the Tunisian government. Indeed, in Tunisia, the
control policy consists of an intense isolation campaign targeting sick in-
dividuals and their relatives. An effort of testing was carried out in a
targeted manner, similar to snowball sampling. This approach enabled to
have a major screening effort on infected and asymptomatic individuals.
Finally, the model was successfully able to predict the time of the peak
at the end of April.

A Materials and Methods

A.1 Computation of the basic reproduction num-
ber R0

We use the next generation matrix to drive the basic reproduction num-
ber R0 [3]. In the system (1) we have two infected compartments repre-
sented by the second and third equations of the system. Therefore, at the
infection-free steady state, i.e. for a small (As, I) and S = S0, the linear
epidemic subsystem is :

dAs

dt
= S0(α1As+ α2I)− (β + τ1)As

dI

dt
= βAs− (τ2 + γ + µ)I

(9)

If we set X = (As, I)T as the vector of infected, F is the matrix that
represents the production of new infections and T the matrix of transfer
into and out of the compartment by transmission, mortality, quarantine,
and recovery, then the matrix form of the linear epidemic subsystem is:

Ẋ = (F − T )X

Where : F =

(
α1S0 α2S0

0 0

)
and T =

(
β + τ1 0
−β τ2 + γ + µ

)
.

Therefore, the next generation matrix is :

FT−1 =
S0

(β + τ1)(τ2 + γ + µ)

(
α1(τ2 + γ + µ) + α2β α2(β + τ1)

0 0

)
Knowing that the basic reproductive number R0 is the largest eigen-

value of the next-generation matrix, then:

R0 =
α1S0

β + τ1
(1 +

α2β

α1(τ2 + γ + µ)
)

A.2 Parameter estimation

Step 1: In this part, to estimate the initial conditions As(t0) and I(t0)
and parameters α1 and α2 we adapt the method developed by [4]. Let
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γ1 = γ+µ and CR(t) the cumulative number of reported infectious cases
at time t, defined by,

CR(t) =

∫ t

t0

τ1As(t) + τ2I(t)dt

Let’s assume that CR(t) = χ1 exp(χ2t) − χ3 with χ, χ2 and χ3 three
positive parameters.

By assuming that, CR(t0) = 0 equation (3) implies that:

exp(χ2t0) =
χ3

χ1
and then t0 =

1

χ2
(ln(χ3)− ln(χ1)). (10)

Using equation (3), we have also:

CR′(t) = τ1As(t) + τ2I(t) (11)

= χ1χ2 exp(χ2t) (12)

Let’s note τ = τ2
τ1

and H(t) = As(t) + τI(t). Then we have,

H(t) = H(t0) exp(χ2(t− t0)),with H(t0) =
χ3χ2

τ1
. (13)

In order to simplify the calculus, we will use the normalized functions,
As
H

and I
H

. We have:

As(t0))

H(t0)
= 1− τ I(t0)

H(t0)
. (14)

Rewriting the third equation (1), with H variable,

dI

dt
= βH − (τ2 + βτ + γ1)I (15)

By assuming, that I(t) = I(t0) exp(χ2(t − t0)) and substituting in
equation (15), we obtain:

χ2I(t0) = βH(t0)− (τ2 + βτ + γ1)I(t0) (16)

Equation (16), implies

I(t0)

H(t0)
=

β

χ2 + τ2 + βτ + γ1
(17)

By using equation (14) and (17), we obtain:

As(t0))

H(t0)
=

χ2 + τ2 + γ1
χ2 + τ2 + βτ + γ1

(18)

Let’s assume that α2 = fα1 with f a fixed parameter bigger than 1.
The parameter α1 is evaluated using As(t) = As(t0) exp(χ2(t − t0)) and
the second equation of (1) at t0, we obtain:

χ2
As(t0)

H(t0)
= α1S0(f

I(t0)

H(t0)
+
As(t0)

H(t0)
)− (β + τ1)

As(t0)

H(t0)
⇔ (19)

α1 =
χ2 + β + τ1

(f I(t0)
As(t0)

+ 1)S0

(20)
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and therefore using equations (17) and (18),

α1 =
(χ2 + β + τ1)

( fβ
χ2+τ2+γ1

+ 1)S0

(21)

Step 2 We hereby propose to estimate γ and µ. We notice that, R(t) =
γ
µ
D(t), for all t > 0. Let ρ = µ

γ
, ρ is estimate using dead and recoveries

data.
Let p the fraction of infectious (quarantined or not) that become re-

ported dead ( i.e. 1 − p become reported recovered). Thus ρ = pµ̂
(1−p)γ̂ ,

with 1/µ̂ the average time to death and 1/γ̂ the average time to recover.
Therefore,

p =
ργ̂

µ̂+ ργ̂
. (22)

Step 3 Parameters τ1 et τ2 was estimated using Metropolis-Hastings
(MH) algorithm developed in the pymcmcst python package [5]
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