Assessment of the outbreak risk, mapping and infestation behavior of COVID-19: Application of the autoregressive and moving average (ARMA) and polynomial models

- 4
- Hamid Reza Pourghasemi^{1*}, Soheila Pouyan², Zakariya Farajzadeh³, Nitheshnirmal
 Sadhasivam⁴, Bahram Heidari^{5*}, Sedigheh Babaei¹, John P. Tiefenbacher⁶
- ¹Department of Natural Resources and Environmental Engineering, College of Agriculture,
 Shiraz University, Shiraz, Iran
- ²Department of Arid Land and Desert Management, Faculty of Natural Resources and Desert
 Studies, Yazd University, Yazd, Iran
- ³Department of Agricultural Economics, College of Agriculture, Shiraz University, Shiraz,
 Iran
- ⁴Department of Geography, School of Earth Science, Bharathidasan University,
 Tiruchirappalli, Tamil Nadu, India
- ⁵Department of Plant Production and Genetics, School of Agriculture, Shiraz University,
 Shiraz, Iran.
- ⁶Department of Geography, Texas State University, San Marcos, United States of America
- 18 * Corresponding authors
- 19 E-mail: <u>hr.pourghasemi@shirazu.ac.ir</u> (HP)
- 20 E-mail: <u>bheidari@shirazu.ac.ir</u> (BH)
- 21
- 22 Short title: Modelling outbreak risk and infestation behavior of coronavirus
- 23
- 24
- 25
- 26
- 27
- 28
- 29

30

31 Abstract

32 Infectious disease outbreaks pose a significant threat to human health worldwide. The 33 outbreak of pandemic coronavirus disease 2019 (COVID-2019) has caused a global health emergency. Identification of regions with high risk for COVID-19 outbreak is a major 34 35 priority of the governmental organizations and epidemiologists worldwide. The aims of the 36 present study were to analyze the risk factors of coronavirus outbreak and identify areas with 37 a high risk of human infection with virus in Fars Province, Iran. A geographic information 38 system (GIS)-based machine learning algorithm (MLA), support vector machine (SVM), was 39 used for the assessment of the outbreak risk of COVID-19 in Fars Province, Iran. The daily observations of infected cases was tested in the third-degree polynomial and the 40 41 autoregressive and moving average (ARMA) models to examine the patterns of virus 42 infestation in the province and in Iran. The results of disease outbreak in Iran were compared 43 with the data for Iran and the world. Sixteen effective factors including minimum temperature 44 of coldest month (MTCM), maximum temperature of warmest month (MTWM), precipitation 45 in wettest month (PWM), precipitation of driest month (PDM), distance from roads, distance 46 from mosques, distance from hospitals, distance from fuel stations, human footprint, density of cities, distance from bus stations, distance from banks, distance from bakeries, distance 47 from attraction sites, distance from automated teller machines (ATMs), and density of 48 49 villages – were selected for spatial modelling. The predictive ability of an SVM model was 50 assessed using the receiver operator characteristic – area under the curve (ROC-AUC) 51 validation technique. The validation outcome reveals that SVM achieved an AUC value of 52 0.786 (March 20), 0.799 (March 29), and 86.6 (April 10) a good prediction of change 53 detection. The growth rate (GR) average for active cases in Fars for a period of 41 days was 54 1.26, whilst it was 1.13 in country and the world. The results of the third-degree polynomial and ARMA models revealed an increasing trend for GR with an evidence of turning, demonstrating extensive quarantines has been effective. The general trends of virus infestation in Iran and Fars Province were similar, although an explosive growth of the infected cases is expected in the country. The results of this study might assist better programming COVID-19 disease prevention and control and gaining sorts of predictive capability would have wide-ranging benefits.

Keywords: COVID-19, Outbreak risk mapping, Support vector machine, Machine learning
algorithm, ARMA model, Growth rate of deaths.

63 Introduction

64 In December 2019 several pneumonia infected cases were reported in Wuhan, China [1-2]. In 65 January 2020, a novel coronavirus (2019-nCoV) that was later formally named COVID-19 66 was approved in Wuhan [3]. It was announced that the disease is a severe acute respiratory 67 syndrome coronavirus 2 (SARS-CoV-2). The virus elevated concerns within China as well as 68 the global community as it was believed to be transmitted from human to human [4]. Initially, 69 China witnessed the largest outbreak in Hubei and other nearby provinces. The spread in 70 China was controlled soon thereafter through stringent preventive measures, but other parts 71 of the world (Europe, the Middle East, and the United States) were increasingly affected by 72 the outbreak through transmission by infected travellers from China. A similar outbreak soon 73 followed in other Asian countries [5]. Its global spread to more than 150 countries led to the declaration in mid-March 2020 that COVID-19 was a pandemic [6]. By April 10, 2020, there 74 75 were nearly 1.70 million cases worldwide with 102684 deaths attributed to COVID-19 [7]. 76 Currently, the United States has the largest number of confirmed cases, while Italy has 77 reported the highest number of casualties [7-8]. Iran with 68,192 recorded cases and 4232 78 deaths is the most affected country in the Middle East (as of April 10, 2020) and infected

79 cases are expected to surge in the coming days [7, 9]. The outbreak of COVID-19 has 80 disrupted and depressed the world economy, whereas Iran is among the most severely affected by massive economic losses, largely compounded by politically motivated sanctions 81 82 imposed by other governments [10]. The problem has been exacerbated as no specific 83 medicine is yet realized for COVID-19 disease treatment, though there are a few pre-existing 84 drugs that are being tested, so regions are presently concentrating their efforts on maintaining 85 the infection rate in a level that assists to reduce virus spread [11]. This has led to most states 86 imposing lockdowns, encouraging social distancing, and restricting the sizes of gatherings to 87 limit transmission [12]. There is a pressing necessity for scientific communities to aid 88 governments in their efforts to control and prevent transmission of the virus [13].

89 During previous virus outbreaks stemming from Zika, influenza, West Nile, Dengue, 90 Chikungunya, Ebola, Marburg, and Nipah, geographic information systems (GISs) have 91 played significant roles in providing significant insight via risk mapping, spatial forecasting, 92 monitoring spatial distributions of supplies, and providing spatial logistics for management 93 [13]. In this current situation, risk mapping is critical and may be used to aid governments' 94 need for tracking and management of the disease as it spread in places with the highest risk. 95 Sánchez-Vizcaíno et al. [14] used a multi-criteria decision making (MCDM) model to map 96 the risk of Rift Valley fever in Spain. Traditional statistical techniques had been also used to 97 detect the risk of outbreak [14]. Reeves et al. [15] employed an ecological niche modelling 98 (ENM) technique for mapping the transmission risk of MERS-CoV; the Middle Eastern name 99 for the coronavirus known as SARS-CoV-2. Similar techniques have been in the 100 Nyakarahuka et al. [16] study to map Ebola and Marburg viruses risks in Uganda. They 101 assessed the importance of environmental covariates using the maximum entropy model.

102 More recently, the use of machine learning algorithms (MLAs) for mapping the risk of 103 transmission of viruses has been increasing which is due to the demonstrated superior (and

104 more accurate) predictive abilities of the MLA models over traditional methods [17]. Jiang et 105 al. [18] employed three MLAs – backward propagation neural network (BPNN), gradient 106 boosting machine (GBM), and random forest (RF) – to map the risk of an outbreak of Zika 107 virus. Tien Bui et al. (2019) compared different MLAs – artificial neural network (ANN) and 108 support vector machine (SVM) with ensemble models including adaboost, bagging, and 109 random subspace – for modelling malaria transmission risk. Similarly, GBM, RF, and general 110 additive modelling (GAM) were used by Carvajal et al. [19] to model the patterns of dengue 111 transmission in the Philippines. Mohammadinia et al. [20] employed geographically weighted 112 regression (GWR), generalized linear model (GLM), SVM, and ANN to develop a forecast 113 map of leptospirosis; GWR and SVM produced highly accurate predictions. The literature 114 shows that very few studies have tried to use GIS for analysis of COVID-19 outbreak in 115 human communities. Kamel Boulos and Geraghty [21] described the use of online and 116 mobile GIS for mapping and tracking COVID-19 whilst Zhou et al. [13] revealed the 117 challenges of using GIS for SARS-CoV-2 big data sources . To our knowledge, there has 118 been no study with focus on mapping the outbreak risk of the COVID-19 pandemic. The aims 119 of the present study were to analyze the risk factors of coronavirus outbreak and test the SVM 120 model for mapping areas with a high risk of human infection with virus in Fars Province, Iran. The outcome of the present study lays a foundation for better programming and 121 122 understanding the factors that accelerate virus spread for use in disease control plans in 123 human communities.

124

125 Materials and methods

126 Study area

127	The study area is in the southern part of Iran with an area of 122608 square kilometres
128	located between 27°2' and 31°42' N and between 50°42' and 55°36' E. Fars is the fourth
129	largest province in Iran (7.7 % of total area) with a population density of 4851274 (based on
130	in 2016 report). Fars Province is divided into 36 counties, 93 districts, and 112 cities (Fig 1).
131	Fig 1. The counties of Fars Province, Iran, and the number of COVID-19 infected case
132	identified from March 29, 2020.
133	
134	Methodology
135	The multi-phased workflow implemented in this investigation (Fig. 2) is described
136	comprehensively below.
137	Fig 2. The methodological framework followed in this study.
138	
139	Preparation of location of COVID-19 active cases
140	A dataset of active cases of COVID-19 in Fars was prepared to analyse the relationships
141	between the locations of active cases and the effective factors that may be useful for
142	predicting outbreak risk. The data utilized in this research was collected on April 10, 2020
143	from Iranian's Ministry of Health and Medical Education (IMHME).
144	Preparation of effective factors
145	Choosing the appropriate effective factors to predict the risk of pandemic spread is vital as its

146 quality affects the validity of the results [17]. Since, there have been no previous studies of

- 147 risk for COVID-19 distribution, the selection of effective factors is a quiet challenging task.
- 148 Ongoing research on the pandemic has revealed that local and community-wide transmission

149 of the virus largely happens in public places where the most people are likely to come into 150 contact with largest number of potential carriers of the infection [22]. Wang et al. [23] 151 indicated that meteorological conditions, such as rapidly warming temperatures in 439 cities 152 around the world resulted in a decline of COVID-19 cases. Accordingly, in this research, we 153 selected sixteen most relevant effective factors for the outbreak risk mapping of COVID-19 154 in Fars Province of Iran, which includes minimum temperature of coldest month (MTCM), 155 maximum temperature of warmest month (MTWM), precipitation in wettest month (PWM), 156 precipitation of driest month (PDM), distance from roads, distance from mosques, distance 157 from hospitals, distance from fuel stations, human footprint, density of cities, distance from 158 bus stations, distance from banks, distance from bakeries, distance from attraction sites, 159 distance from automated teller machines (ATMs) and density of villages. All the effective 160 factors employed in this research are generated using the ArcGIS 10.7.

161 A few studies have established that variation in temperature would impact the transmission of 162 COVID-19 [23]. It has been also reported that alteration in temperature would have impacted 163 the SARS outbreak, which was caused by the identical type of coronavirus as SARS-CoV-2 164 [24]. Recently, Ma et al. [2] disclosed that surge in temperature and humidity conditions have 165 resulted in the decline of death caused by SARS-CoV-2. Thus, climatic factors such as 166 temperature and precipitation can have an impact in the outbreak of SARS-CoV-2. The 167 temperature and precipitation data namely MTWM, MTCM, PDM and PCM of Fars Province 168 is acquired from world climatic data (https://www.worldclim.org/). In this study, the MTWM of the Fars Province ranges from 27.7°C to 41.8°C (Fig 3a) whereas MTCM ranges between 169 -15.3°C and 10.4°C (Fig 3b). The PWM of the study area varies between 28 mm and 86 mm 170 171 (Fig 3c) and also the PDM is presented in Fig 3d.

172 Fig 3. Preparation of effective factors of COVID-19 outbreak

173

174 The proximity to various public places including roads, mosques, hospitals, fuel stations, bus 175 stations, banks, bakeries, attraction sites, and ATMs where people come in close contact to 176 each other can also be considered as significant factors that influence the distribution of 177 COVID-19. The distance from roads ranges from 0 to 45 in the study area (Fig 3e) whereas 178 the distance from mosques varies between 0 and 0.71 (Fig 3f) and the distance from fuel 179 stations spans 0 to 0.67 (Fig 3g). The distance from bus stations, banks, bakeries, attraction 180 sites, and ATMs of Fars Province have the minimum value of 0 and maximum value of 1.31, 181 0.68, 0.97, 0.79, and 0.78 respectively (Fig 3h - 3l). Since, humans are the potential carriers 182 of the COVID-19, the use of human footprint (HFP) can aid in understanding the terrestrial 183 biomes on which humans have more influence and access [25]. In this study, HFP of the 184 study area is acquired from the Global Human Footprint Dataset. The HFP of Fars Province 185 ranges from 6 to 78 (Fig 3m) where the minimum value represents the places having least 186 access by humans and the maximum value refers to those regions having highest human 187 influence and access. The density of population is also considered to be an important factor 188 for the spread of the disease [26-27]. Gilbert et al., [28] revealed that the number of COVID-19 cases were proportional to the population density in Africa. Accordingly, in this research, 189 190 density of cities and villages were assessed and the outcome displays that density of cities in 191 Fars Province ranges between 0 and 0.60 (Fig 3n) while the density of villages varies from 0 192 to 0.58 (Fig 3o). The distance from hospitals ranged from 0 to 1.11 (Fig 3p).

193 Evaluation of variable importance using ridge regression

The association among the location of COVID-19 active cases and effective factors were evaluated using ridge regression in order to assess the significance of individual effective factor in predicting the outbreak risk [17]. To our knowledge, no previous study in epidemic outbreak risk mapping have utilized ridge regression in determining the significance of effective factors. However, the ridge regression algorithm has been utilized for modelling

purposes in various fields [29]. It was first given by Hoerl and Kennard [30] which exploits
L₂ norm of regularization for lessening the model complication and controlling overfitting.
Ridge regression was also developed to avoid the excessive instability and collinearity
problem caused by least square estimator [31]. The 'caret' package (https://cran.rproject.org/web/packages/caret/caret.pdf) of R 3.5.3 was utilized for assessing the variable
importance using ridge regression.

205 Machine learning algorithm (MLA)

206 Support vector machine

207 SVM is an extensively exercised MLA in diverse fields of research that functions on the 208 principle of statistical learning concept and structural risk minimization given by Vapnik 209 [32], which is utilized for classification as well as regression intricacies [33-34]. SVM has a 210 high efficacy in classifying both linearly separable and inseparable data classes [35]. It 211 utilizes an optimal hyperplane to distinguish linearly divisible data whereas kernel functions 212 are employed for transforming inseparable data into a higher dimensional space so that it can 213 be easy categorized [36]. Assume a calibration dataset to be (s_m, t_m) , where m is 1, 2, 3..., x; 214 s_m refers to the sixteen independent factors; t_m denotes 0 and 1 that resembles risk and non-215 risk classes and x represents the total amount of calibration data. This algorithm tries to 216 obtain an optimal hyperplane for classifying the aforementioned classes by utilizing the 217 distance between them, which can be formulated as follows [37]:

$$218 \quad \frac{1}{2} \|p\|^2 \tag{1}$$

$$219 \quad t_m((p \times s_m) + a) \ge 1 \tag{2}$$

where, ||p|| denotes the rule of normal hyperplane; a refers to a constant. When Lagrangian multiplier (λ_m) and cost function is introduced, the expression can be given as follows [38]:

222
$$l = \frac{1}{2} \|p\|^2 - \sum_{n=1}^{x} \lambda_n (t_n((p \times s_m) + a) - 1)$$
(3)

In case of inseparable dataset, a slack covariate δ_m is added into the previous Eq. (2) that is provided as follows [32]:

$$225 t_m((p \times s_m) + a) \ge 1 - \delta_m (4)$$

Accordingly, the Eq. (3) can be described as follows [32]:

227
$$L = \frac{1}{2} \|p\|^2 - \frac{1}{ux} \sum_{n=1}^{x} \delta_m$$
(5)

Moreover, SVM contains four kernel functions (linear, polynomial, radial basis function: RBF and sigmoid) for making an optimal margin in case of inseparable dataset [32]. Mohammadinia et al. [20] revealed that RBF kernel type produces high prediction accuracy than other kernel types for epidemic outbreak risk mapping. Thus, in this study, RBF is used for creating decision boundaries and the kernel function is expressed as follows [32]:

233
$$K(z_a, z_b) = (-v \Box z_a - z_b \Box), v > 0$$
 (6)

where, $K(z_a, z_b)$ refers to kernel function and *v* represents its parameter.

235 Analysis of growth rate for active and death cases of COVID-19

In this study, the growth rate (GR) of active and death cases around the world, Iran, and Fars
Province were evaluated using the data acquired from WHO and IMHME between February
26, 2020 and April 10, 2020 for active cases and from March 3, 2020 to April 10, 2020 for
death cases.

240 Validation of outbreak risk map

The cross-checking of calibrated model using untouched testing data is vital for determining the scientific robustness of the prediction [33]. In this research, we utilized ROC- AUC

243	curve values for the validation of COVID-19 outbreak risk map generated using SVM model.
244	It is a widely utilized validation technique for analysing the predictive ability of a model [35].
245	A model is determined to be perfect, very good, good, moderate and poor if the AUC values
246	were 1.0-0.9, 0.9-0.8, 0.8-0.7, 0.7-0.6 and 0.6-0.5 respectively [39].

247

248 Models for infection cases trend

The behavior of the variable infection cases was captured by a third-degree polynomial or cubic specification as follows:

251
$$Infection(t) = \alpha_1 t + \alpha_2 t^2 + \alpha_3 t^3$$
 (7)

252 Where Infection(t) represents the total infected cases in day t and t denotes the days 253 starting from 19th of February for Iran and one week later for Fars province. Also, other 254 specifications including quadratic as well as fourth-degree polynomial specifications were examined and based on the predictions, the cubic form was selected against other 255 256 specifications. In the literature, this form of the specification has been applied by Aik et al. 257 [40] to examine the Salmonellosis incidence in Singapore. We also used an ARMA model to 258 compare the process generating the variable for Iran and Fars province. This model includes 259 two processes: Autoregressive (AR) and Moving Average (MA) process. An ARMA model 260 of order (p,q) can be written as [41]:

261
$$x(t) = \beta_0 + \sum_{i=1}^p \beta_i x_{t-i} + \sum_{j=1}^q \beta_j \varepsilon_{t-j}$$
(8)

Where x is the dependent variable and ε is the white noise stochastic error term. In the applied model, x shows the total infected cases and t is the days starting from the first day of happening infection cases. Benvenuto et al. [42] also applied an ARIMA model to predict the epidemiological trend of COVID-2019.

266 267 268 **Results**

269 **Outcome of the variable importance analysis**

The analysis of variable importance using ridge regression revealed that distance from bus stations, distance from hospitals, and distance from bakeries have the highest significance whereas distance from ATMs, distance from attraction sites, distance from fuel stations, distance from mosques, distance from road, MTCM, density of cities and density of villages exhibit moderate importance. The effective factors such as distance from banks, MTWM, HFP, PWM and PDM were the least influential factors (Fig 4).

Fig 4. Variable importance of each effective factors (bus: distance from bus stations; hospital:
distance from hospitals; bakery: distance from bakeries; atm: distance from ATMs; attraction:
distance from attraction sites; fuel: distance from fuel stations; mosque: distance from
mosques; road: distance from road; bio6: MTCM; city: density of cities; village: density of
villages; bank: distance from banks; bio13: MTWM; footprint: HFP, bio14: PWM; bio5:
PDM.

282

283 COVID-19 outbreak risk map using SVM

The COVID-19 outbreak risk map generated using SVM displays that risk of SARS-CoV-2 ranges from -0.25 to 1.22 (March 29) and -0.35 to 1.21 (April 10) where -0.25 and -0.35 represents the lower risk of SARS-CoV-2 outbreak and 1.22 and 1.21 indicates the regions of Fars Province which is likely to experience a higher risk of COVID-19 outbreak (Fig 5, a-b). It can be observed from Fig 5b (April 10) that Shiraz County and its surrounding counties including Firouzabad, Jahrom, Sarvestan, Arsanjan, Marvdasht, Sepidan, Abadeh, Khorrambid, Rostam, Larestan and Kazeron of Fars Province has the highest risk of being the

- epicentre of SARS-CoV-2 outbreak. Apart from which counties like Eghlid, and Fasa also liein the high risk zone.
- **Fig 5.** The COVID-19 outbreak risk map a) on March 29, 2020 and b) on April 10, 2020
- 294

295 **Outcome of growth rate analysis**

296 The results of GR of active cases in world, Iran, and Fars Province are presented in Fig 6. 297 Our results displayed that the highest active cases in world, Iran, and Fars Province was 298 related to March 11 (GR=1.95), Feb 26 (GR=2.41), and March 15 (GR=4.8), respectively. 299 Also, the outcome stated that GR average of active cases in world, Iran, and Fars Province 300 reported since March 1 to April 10 was 1.13, 1.13, and 1.25, respectively. Our observations 301 demonstrated that the highest GR of active cases in Fars Province was on March 16 302 (GR=4.80), March 09 (GR=3.20), March 20 (GR=2.40), March 22 (GR=2.10), April 1st 303 (GR=2.10), and March 26 (GR=1.90). On the other hand, the analyses indicated that between 304 February 27 and February 29, the GR of active cases was zero in Fars Province, followed by 305 a GR value of 0.3 in March 14, March 19, and March 21, whereas the lowest GR of active 306 cases in world and Iran observed on March 4 (GR=0.89) and March 3 (GR=0.67) 307 respectively.

Fig 6. Growth rate of active cases in world, Iran, and Fars Province 308

309

Results of death cases in world, Iran, and Fars Province are given in Fig 7.

Fig 7. Growth rate of death cases in world, Iran, and Fars Province 311

312

313 In total of 1762 active cases of COVID-19 in Fars Province, 42 died between February 24 314 and April 10. The highest GR of death cases in Fars Province was reported on March 24 315 (GR=4.00), March 26 (GR=3.00), March 22 (GR=2.00), March 4 (GR=2.00), and April 5 316 (GR= 2.00). Our analyses showed that since March 5 to March 11, March 15 to March 21, 317 March 28 to April 4, and April 5 to April 8, the GR of death cases was equal to zero. 318 Although the deaths on March 31, April 3, April 7, and April 10 were 3, 2, 4, and 1, 319 respectively, the daily growth rate is zero. Also, average of the GR in Fars Province during 320 41 days was 0.49, whereas this rate in world and Iran was observed as 1.15 and 1.10, 321 respectively. Fig 7 shows that the highest GR of death cases in world and Iran was nearly 322 equal during March 08 (GR=2.17) and March 03 (GR=2.50). In contrast, the lowest rate of death case was observed on March 09 (GR=0.87), April 08 (GR=0.87), and March 04 323 324 (GR=0.60).

Results of active cases in 31 provinces of Iran country by March 25 is presented in Fig 8. Observations indicate that the number of active cases in the 100,000 population vary from 0.4 to 13.1. This figure also shows that provinces of Bushehr and Fars have the lowest cumulative rate of active cases, whereas the highest rate was observed in Qom, Semnan, Mazandaran, Gilan, and Golestan. The Qom Province was the first place in Iran where the outbreak of COVID-19 was recorded.

331

Fig 8. Results of active cases in 31 provinces of Iran country by March 25, 2020

332

333

A comparison among age class of death cases in China, Iran, and Fars Province is presented in Table 1. Percentage of death cases in China was related to February 29, whereas for Iran and Fars Province it is related to March 14 and March 31, respectively. Following Table 1

- show that age class > 50 years old lie in the highest class of death rate. So, this age class of
- above 50 years is highly sensitive to COVID-19.

Table 1 Comparison of age in death cases of China, Iran, and Fars Province

Country	China	Iran	Fars Province
Age	Death Rate (%)	Death Rate (%)	Death Rate (%)
>50 years old	93.7	84.15	78
10-50 years old	6.3	15.46	22
<10 years old	0	0.39	0

339

340 Validation outcome of outbreak risk map

344	using the remaining 30% testing dataset collected on March 20, 2020 (Fig 9 and Table 2).
343	0.786 and a standard error of 0.031 indicating a good predictive accuracy when cross-verified
342	COVID-19 outbreak risk map generated by SVM. The model achieved an AUC value of
341	The ROC-AUC curve cross-validation technique is utilized in this research for validating the

Table 2 Area under the curve based on data from March 20, 2020

			Asymptotic 95%	% Confidence
	Standard	Asymptotic	Inter	val
Area	Error	Significant	Lower Bound	Upper Bound
0.786	0.031	0.000	0.726	0.846

345

Fig 9. Receiver operator characteristic (ROC) curve based on testing data from March 20,

347 2020

When tested with active case locations on March 29, 2020, the model achieved an increasedAUC value of 0.799 which proves the stable and good forecast precision of the outbreak risk

- map (Fig 10 and Table 3). Also, change detection on April 10, 2020 show that accuracy of
- the built models is increased to 86.6% (AUC=0.868) (Fig 11 and Table 4).

Table 3 Area under the curve based on data from March 29, 2020

			Asymptotic 95%	% Confidence	
	Standard	Asymptotic	Inter	al	
Area	Error	Significant	Lower Bound	Upper Bound	
0.799	0.022	0.000	0.756	0.841	

352

Table 4 Area under the curve based on data from April 10, 2020

			Asymptotic 95%	6 Confidence
	Standard	Asymptotic	Interval	
Area	Error	Significant	Lower Bound	Upper Bound
.868	.015	.000	.838	.898

353

Fig 10. Receiver operator characteristic (ROC) curve based on data from March 29, 2020

Fig 11. Receiver operator characteristic (ROC) curve based on data from April 10, 2020

356

364

357 Comparison of Fars province and Iran infection cases

Two tools have been applied to compare the general trend of infection in Fars province and Iran. The first one is a third-degree polynomial model that is presented in Fig 12. Another quantitative model is an ARMA presented in Table 5. Fig 12 shows the trend of infection cases in Iran and Fars province, where predicted values extraordinarily keep pace with the actual values. R² values also indicate that estimated models have significant predictive power. The infection cases are increasing over the selected horizon.

Fig 12. Actual cases versus estimated cases in Fars province and Iran

365	The first derivative of the estimated model which turns it to a second-degree polynomial
366	equation, represents the daily infection cases. Based on the daily infection model, there is a
367	turning point for both Iran and provincial cases. It was found that the turning point for
368	provincial daily infection is 75. In other words, after 75 days the decreasing trend in the daily
369	infection is expected.

Table 5 The results of autoregressive and moving average (ARMA) model for COVID-19 infection cases of Fars province and Iran

	Regressor	Coefficient	Standard error	t-statistics	probability
Fars province	Constant	596.015	478.41	1.24	0.221
	AR(1)	1.432	0.056	25.33	0.000
	AR(3)	-0.438	0.056	-7.79	0.000
	Ma(4)	0.474	0.122	3.89	0.000
	Adjusted R ²	0.997			
	Q(1)a	1.653			0.199
	Q(2)a	1.875			0.392
	Heteroskedasticity (ARCH)	0.832			0.367
	Jarque Berra	1.083			0.581
	Inverted AR roots	0.99			
	Inverted Ma roots	-0.85			
Iran	Constant	43360.05	32082.85	1.35	0.184
	AR(1)	1.489	0.015	99.48	0.000
	AR(3)	-0.492	0.014	-35.01	0.000
	MA(1)	0.848	0.075	4.16	0.000
	Adjusted R ²	0.999			
	Q(1)a	1.169			0.194
	Q(2)a	1.785			0.410
	Heteroskedasticity (ARCH)	1.149			0.289
	Jarque Berra	0.088			0.956
	Inverted AR roots	0.96			
	Inverted Ma roots	0.59			

 $a^{Q(p)}$ is the significance level of the Ljung–Box statistics in which the first p of the residual autocorrelations are jointly equal

372

to zero.

³⁷¹

373 The corresponding value for Iran is 211 that is much higher than the provincial one. There are 374 some evidences showing that a turning point in infection is expected. For instance, it has been 375 reported for SARS incidence [43], HAV [44], ARI [45], and for A (H1N1)v [46]. It is worth 376 noting that a turning point means that after passing the peak it is expected to show a deceasing trend. In the 38th day of infection, Fars province accounts for around 2.84% of the 377 378 total Iranian cases while its population share is more than 6% (Statistical Center of Iran, 379 2016). Regarding the values obtained for turning points and the infection share, the measures 380 taken by the provincial government may be considered more effective than those taken in 381 other provinces as a whole. However, it should be taken into consideration that Fars province 382 experienced its first infection cases 7 days after Qom and Tehran, provinces that are 383 considered as starting point for virus outbreak in Iran. This might have given the provincial 384 governmental body and the households to take measures to cope with the widespread 385 outbreak. It is worth noting that the comparison of the specified models is more appropriate 386 to investigate the effectiveness of the measures taken by the corresponding health body rather 387 than using it to predict the future values.

388 The ARMA time series models for infection variables of the Fars province and Iran are 389 presented in Table 5. These models may show the generating process of the variables in time 390 horizon. It is worth noting that in order to have more comparable models, a 38-day time 391 horizon is selected. This is the period of time that data are available, staring on 19th of 392 February for Iran and one week later for Fars province. As shown in Table 4, the both series are generated by an ARMA (2, 1) process. However, the absolute values of the AR terms for 393 394 Fars province are lower than those of Iran, indicating a slower process of increasing trend for 395 Fars province compared to those of Iran. However, regarding the values for AR roots, the 396 autoregressive (AR) process for both models isn't explosive. Benvenuto et al. [42] also found 397 that COVID-2019 spread tends to reveal slightly decreasing spread. In addition,

398 Heteroscedasticity (ARCH) were found to be insignificant in both models, indicating that the 399 infection cases tend to show insignificants fluctuations. This is the fact that is not easily 400 captured in the trends shown in Fig 12. Generally speaking, the diagnostic statistics indicate 401 that the estimated models are acceptable since Q-statistics reveal that the residuals are not 402 significantly correlated and the Jarque Berra statistic support the normality of residuals at 403 conventional significance level. Also, ARCH effect was not significant, indicating a low 404 volatility in the infection cases trend. In addition, all AR and MA roots were found to lie 405 inside the unit circle, indicating that ARMA process is (covariance) stationary and invertible.

406 Discussion

407 There is a great necessity for new robust scientific outcomes that could aid in containing and 408 preventing the COVID-19 pandemic from spreading. The spatial mapping of COVID-19 409 outbreak risk can aid governments and policy-makers in implementing strict measures in 410 certain regions of a city or a country where the risk of outbreak is very high. It is therefore 411 crucial to identify the regions that would have high outbreak risk through predictive 412 modelling with the help of machine learning algorithms (MLAs). In recent times, MLAs have 413 demonstrated promising results in forecasting the epidemic outbreak risk [17]. In this 414 research, the SVM model showing good forecast accuracy was used for mapping the outbreak 415 risk of COVID-19. Similarly, Mohammadinia et al. [20] revealed that GWR and SVM had 416 the highest precision in mapping the occurrence of leptospirosis. Ding et al. [47] employed 417 three MLAs including SVM, RF and GBM for mapping the transmission risk assessment of 418 mosquito-borne diseases and disclosed that all three MLAs acquired excellent validation 419 outcome. Machado et al. [48] also applied RF, SVM and GBM in modelling the porcine 420 epidemic diarrhoea virus and demonstrated 90% specificity values in case of SVM. Tien Bui 421 et al. [17] stated that SVM achieved an AUC value of 0.968 in mapping the susceptibility to 422 malaria. The ability to classify inseparable data classes is the greatest benefit of SVM model

423 [49]. It is among the most precise and robust MLA [50]. SVM can be useful and has higher 424 prediction accuracy when it comes to handling a small dataset. However, Huang and Zhao 425 [51] demonstrated that SVM also yields excellent precision in predictive modelling when a 426 large dataset is utilized. The algorithm have a very low probability to overfit and is not 427 disproportionately impacted by noisy data [49]. Behzad et al. [52] revealed that SVM had 428 huge capacity in simplification and had enduring forecast accuracy. It should be also noted 429 that the predictive exactness of SVM model largely depends on the choice of kernel function 430 [50]. Among the four kernel functions of SVM, RBF has been proved to generate high 431 accuracy models [49]. SVM includes diverse kinds of categorization functions which are 432 responsible for assessing overfitting and simplifying data that needs a minor tuning of model 433 parameters [53]. The significance of each effective factor employed in this research is 434 assessed using ridge regression. Since, there is no previous study in COVID-19 that outlines 435 the proper effective factors. The outcome of this research can be very helpful for scientists in 436 experimenting the same and additional effective factors for COVID-19 outbreak risk 437 mapping. The proximity factors including distance from bus stations, distance from hospitals, 438 distance from bakeries were most influential in forecasting the COVID-19 outbreak risk 439 whereas other proximity factors such as distance from ATMs, distance from attraction sites, 440 distance from fuel stations, distance from mosques and distance from road had the moderate 441 influence which is followed by MTCM, density of cities and density of villages. It should be 442 noted that climatic factors including MTWM, PWM and PDM had the least significance in 443 mapping the outbreak risk. From this, it can be concluded that precipitation factors PWM and 444 PDM are not associated with the transmission of COVID-19 in Fars Province whereas in case 445 of temperature factors MTCM had moderate influence in mapping COVID-19 outbreak risk 446 but MTWM exhibited a least significance. This outcome reveals that proximity factors had 447 high influence in the transmission of SARS-CoV-2. In addition, the study conducted

448 disclosed that increase in temperature will not decline the SARS-CoV-2 cases, although it has 449 been also revealed that increase in temperature and absolute humidity could decrease the 450 death of patients affected by COVID-19 [54]. A third-degree polynomial and ARMA models 451 were applied to examine the behaviour of infection in Fars province and Iran. The general 452 trend of infection in Iran and Fars province are similar while more explosive behavior for 453 Iran's cases is expected. The methodology and effective factors used in this research can be 454 adapted in studies investigated in other parts of the world for preventing and controlling the 455 outbreak risk of COVID-19.

456

457 **Conclusions**

458 Mapping of SARS-CoV-2 outbreak risk can aid decision makers in drafting effective policies 459 to minimize the spread of the disease. In this research, GIS based SVM was used for mapping 460 the COVID-19 outbreak risk in Fars Province of Iran. Sixteen effective factors including 461 MTCM, MTWM, PWM, PDM, distance from roads, distance from mosques, distance from 462 hospitals, distance from fuel stations, human footprint, density of cities, distance from bus 463 stations, distance from banks, distance from bakeries, distance from attraction sites, distance 464 from automated teller machines (ATMs) and density of villages were selected along with the 465 locations of active cases of SARS-CoV-2. The results of ridge regression revealed that 466 distance from bus stations, distance from hospitals, and distance from bakeries had the 467 highest significance and the outcome was utilized in mapping the outbreak risk of the 468 pandemic with the help of SVM. The generated model had good predictive accuracy of 0.786 469 and 0.799 when verified with the locations of active cases during March 20 and March 29, 470 2020. The Iranian government should take restrict preventive measures for controlling the 471 outbreak of SARS-CoV-2 in Shiraz as a tourism destination and the counties having high

472 risk. Based on the results of polynomial and an ARMA model, the infection behavior is not 473 expected to reveal an explosive process, however; the general trend of infection will last for 474 several months especially in the Iran as a whole. A more slowly trend is expected in Fars 475 Province, demonstrating extensive home quarantine and travel and movement restrictions 476 were good strategies for disease control in Fars province. The main policy implication is that 477 the infection cases, to some extent, may be controlled using more effective measures. 478 Although, the estimated models may be used to predict the infection in following days, 479 however; this contribution is less significant than the other implications derived from them. 480 Generally speaking, it is expected to encounter a decreasing trend, however; this may be 481 reversed if the ongoing attempts are slowed down, pointing out the need to keep the measures 482 like quarantine or even to try more restricting attempts.

483

484 **Competing interests**

485 The authors declare that they have no competing interests.

486 **Funding**

487 Shiraz University, Iran, Grant No. 96GRD1M271143.

488 Availability of data and materials

489 All data and materials used in this work were publicly available.

490 Ethics approval and consent to participate

491 The ethical approval or individual consent was not applicable

492 Authors' contributions

493

HRP, SP, BH, ZF, NS, MHT, BH, SB, and JPT contributed to study design, the literature

495 search, data collection, data analysis, software working, and writing of this article. All

authors read and approved the final draft of the manuscript.

497
498 Consent for publication
499 Not applicable.
500

501 502

503 **References**

- 1. Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Feng, Z. Early transmission
- 505 dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. New England
- 506 Journal of Medicine. 2020. https://doi.org/10.1056/nejmoa2001316
- 507 2. Ma, Y., Zhao, Y., Liu, J., He, X., Wang, B., Fu, S., Luo, B. Effects of temperature
- variation and humidity on the death of COVID-19 in Wuhan, China. Science of the Total

509 Environment. 2020; 138226. https://doi.org/10.1016/j.scitotenv.2020.138226

- 510 3. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Cao, B. Clinical features of patients
- 511 infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020; 395(10223), 497–
- 512 506. <u>https://doi.org/10.1016/S0140-6736(20)30183-5</u>
- 4. Wang, C., Horby, P. W., Hayden, F. G., Gao, G. F. A novel coronavirus outbreak of global
 health concern. The Lancet. 2020; 395, 470–473. https://doi.org/10.1016/S01406736(20)30185-9
- 516 5. Sohrabi, C., Alsafi, Z., O'Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Agha, R. World
- 517 Health Organization declares global emergency: A review of the 2019 novel coronavirus
- 518 (COVID-19). International Journal of Surgery. 2020; 76, 71–76.
 519 <u>https://doi.org/10.1016/j.ijsu.2020.02.034</u>
- 6. WHO, 2020a. WHO characterizes COVID-19 as a pandemic, 2020 (3).
- 521 7. WHO, 2020b. Coronavirus disease 2019 (COVID-19) Situation Report -70.

522 8. Remuzzi, A., Remuzzi, G. COVID-19 and Italy: what next? The Lancet. 2020;

523 https://doi.org/10.1016/S0140-6736(20)30627-9

- 524 9. Arab-Mazar, Z., Sah, R., Rabaan, A. A., Dhama, K., Rodriguez-Morales, A. J. Mapping
- 525 the incidence of the COVID-19 hotspot in Iran Implications for Travellers. Travel Medicine
- 526 and Infectious Disease. 2020; 101630. <u>https://doi.org/10.1016/j.tmaid.2020.101630</u>
- 527 10. Takian, A., Raoofi, A., Kazempour-Ardebili, S. COVID-19 battle during the toughest
- 528 sanctions against Iran. Lancet (London, England). 2020; (20), 30668.
- 529 <u>https://doi.org/10.1016/S0140-6736(20)30668-1</u>
- 530 11. Singh, A. K., Singh, A., Shaikh, A., Singh, R., Misra, A. Chloroquine and
 531 hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic
 532 search and a narrative review with a special reference to India and other developing
 533 countries. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020;
 534 https://doi.org/10.1016/j.dsx.2020.03.011
- 535 12. McCloskey, B., Zumla, A., Ippolito, G., Blumberg, L., Arbon, P., Cicero, A., Borodina,
- 536 M. Mass gathering events and reducing further global spread of COVID-19: a political and
- 537 public health dilemma. The Lancet. 2020; <u>https://doi.org/10.1016/S0140-6736(20)30681-4</u>
- 13. Zhou, C., Su, F., Pei, T., Zhang, A., Du, Y., Luo, B., Xiao, H. COVID-19: Challenges to
- 539 GIS with Big Data. Geography and Sustainability. 2020; 540 <u>https://doi.org/10.1016/j.geosus.2020.03.005</u>
- 14. Sánchez-Vizcaíno, F., Martínez-López, B., Sánchez-Vizcaíno, J. M. Identification of
 suitable areas for the occurrence of Rift Valley fever outbreaks in Spain using a multiple
 criteria decision framework. Veterinary Microbiology. 2013; 165(1–2), 71–78.
- 544 <u>https://doi.org/10.1016/j.vetmic.2013.03.016</u>

545	15. Reeves, T., Samy, A. M., Peterson, A. T. MERS-CoV geography and ecology in the
546	Middle East: Analyses of reported camel exposures and a preliminary risk map. BMC
547	Research Notes. 2015; 8(1), 1–7. https://doi.org/10.1186/s13104-015-1789-1
548	16. Nyakarahuka, L., Ayebare, S., Mosomtai, G., Kankya, C., Lutwama, J., Mwiine, F. N.,

- 549 Skjerve, E. Ecological Niche Modeling for Filoviruses: A Risk Map for Ebola and Marburg
- 550 Virus Disease Outbreaks in Uganda. PLoS Currents. 2017; 9.

551 <u>https://doi.org/10.1371/currents.outbreaks.07992a87522e1f229c7cb023270a2af1</u>

552 17. Tien Bui, Q. T., Nguyen, Q. H., Pham, V. M., Pham, M. H., Tran, A. T. Understanding

spatial variations of malaria in Vietnam using remotely sensed data integrated into GIS and

machine learning classifiers. Geocarto International. 2019; 34(12), 1300–1314.
https://doi.org/10.1080/10106049.2018.1478890

18. Jiang, D., Hao, M., Ding, F., Fu, J., & Li, M. Mapping the transmission risk of Zika virus

using machine learning models. Acta Tropica. 2018; 185, 391–399.
<u>https://doi.org/10.1016/j.actatropica.2018.06.021</u>

559 19. Carvajal, T. M., Viacrusis, K. M., Hernandez, L. F. T., Ho, H. T., Amalin, D. M.,

560 Watanabe, K. Machine learning methods reveal the temporal pattern of dengue incidence

561 using meteorological factors in metropolitan Manila, Philippines. BMC Infectious Diseases.

562 2018; 18(1), 183. <u>https://doi.org/10.1186/s12879-018-3066-0</u>

563 20. Mohammadinia, A., Saeidian, B., Pradhan, B., Ghaemi, Z. Prediction mapping of human

⁵⁶⁴ leptospirosis using ANN, GWR, SVM and GLM approaches. BMC Infectious Diseases.

565 2019; 19(1), 971. <u>https://doi.org/10.1186/s12879-019-4580-4</u>

566 21. Kamel Boulos, M. N., Geraghty, E. M. Geographical tracking and mapping of

567 coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-

568 CoV-2) epidemic and associated events around the world: how 21st century GIS technologies

- 569 are supporting the global fight against outbreaks and epidemics. International Journal of
- 570 Health Geographics. 2020; 19, 8. <u>https://doi.org/10.1186/s12942-020-00202-8</u>
- 571 22. Chen, S., Yang, J., Yang, W., Wang, C., Bärnighausen, T. COVID-19 control in China
- 572 during mass population movements at New Year. The Lancet. 2020; 395, 764–766.
- 573 https://doi.org/10.1016/S0140-6736(20)30421-9
- 574 23. Wang, M., Jiang, A., Gong, L., Luo, L., Guo, W., Li, C., Li, H. Temperature significant
- 575 change COVID-19 Transmission in 429 cities. MedRxiv. 2020; 20025791.
- 576 https://doi.org/10.1101/2020.02.22.20025791
- 577 24. Tan, J., Mu, L., Huang, J., Yu, S., Chen, B., Yin, J. An initial investigation of the
- association between the SARS outbreak and weather: With the view of the environmental
- temperature and its variation. Journal of Epidemiology and Community Health. 2005; 59(3),
- 580 186–192. <u>https://doi.org/10.1136/jech.2004.020180</u>
- 581 25. Correa Ayram, C. A., Mendoza, M. E., Etter, A., Pérez Salicrup, D. R. Anthropogenic
- 582 impact on habitat connectivity: A multidimensional human footprint index evaluated in a
- 583 highly biodiverse landscape of Mexico. Ecological Indicators. 2017; 72, 895–909.
- 584 https://doi.org/10.1016/j.ecolind.2016.09.007
- 585 26. Tarwater, P. M., Martin, C. F. Effects of population density on the spread of disease.
- 586 Complexity. 2001; 6(6), 29–36. <u>https://doi.org/10.1002/cplx.10003</u>
- 587 27. Schmidt, W. P., Suzuki, M., Thiem, V., White, R. G., Tsuzuki, A., Yoshida, L. M.,
- 588 Ariyoshi, K. Population density, water supply, and the risk of dengue fever in Vietnam:
- 589 Cohort study and spatial analysis. PLoS Medicine. 2011; 8(8).
- 590 <u>https://doi.org/10.1371/journal.pmed.1001082</u>

591	28. Gilbert, M., Pullano, G., Pinotti, F., Valdano, E., Poletto, C., Boëlle, P. Y., Colizza, V.
592	Preparedness and vulnerability of African countries against importations of COVID-19: a
593	modelling study. The Lancet. 2020; 395(10227), 871-877. https://doi.org/10.1016/S0140-
594	<u>6736(20)30411-6</u>

- 595 29. Pourghasemi, H. R., Kariminejad, N., Amiri, M., Edalat, M., Zarafshar, M., Blaschke, T.,
- 596 Cerda, A. Assessing and mapping multi-hazard risk susceptibility using a machine learning
- 597 technique. Scientific Reports. 2020; 10(1), 3203. <u>https://doi.org/10.1038/s41598-020-60191-3</u>
- 598 30. Hoerl, A. E., Kennard, R. W. Ridge Regression: Biased Estimation for Nonorthogonal
- 599 Problems.
 Technometrics.
 1970;
 12(1),
 55–67.
- 600 <u>https://doi.org/10.1080/00401706.1970.10488634</u>
- 601 31. Tikhonov, A. N., Goncharsky, A. V., Stepanov, V. V., Yagola, A. G., Tikhonov, A. N.,
- 602 Goncharsky, A. V., Yagola, A. G. Regularization methods. In Numerical Methods for the
- 603 Solution of Ill-Posed Problems. 1995; 7–63. https://doi.org/10.1007/978-94-015-8480-7_2
- 32. Vapnik, V.N., An overview of statistical learning theory. IEEE Trans. Neural Network.
 1999; 10 (5): 988–999. https://doi.org/10.1109/72.788640.
- 606 33. Gayen, A., Pourghasemi, H. R., Saha, S., Keesstra, S., Bai, S. Gully erosion susceptibility 607 assessment and management of hazard-prone areas in India using different machine learning 608 algorithms. Science of Total Environment. 2019; 668, the 124–138. 609 https://doi.org/10.1016/j.scitotenv.2019.02.436
- 610 34. Yousefi, S., Sadhasivam, N., Pourghasemi, H. R., Ghaffari Nazarlou, H., Golkar, F.,
- 611 Tavangar, S., Santosh, M. Groundwater spring potential assessment using new ensemble data
- 612 mining techniques. Measurement. 2020; 157, 107652.
- 613 <u>https://doi.org/10.1016/j.measurement.2020.107652</u>

614 35. Pou	irghasemi, F	1 . К.,	Sadhasivam,	. N.,	Karimineja	ad, N	Collins.	A.	Gully	erosion	spatial
-------------	--------------	----------------	-------------	-------	------------	-------	----------	----	-------	---------	---------

- 615 modelling: Role of machine learning algorithms in selection of the best controlling factors
- and modelling process. Geoscience Frontiers. 2020; https://doi.org/10.1016/j.gsf.2020.03.005
- 617 36. Garosi, Y., Sheklabadi, M., Conoscenti, C., Pourghasemi, H. R., Van Oost, K. Assessing
- the performance of GIS- based machine learning models with different accuracy measures for
- determining susceptibility to gully erosion. Science of the Total Environment. 2019; 664,
- 620 1117–1132. <u>https://doi.org/10.1016/j.scitotenv.2019.02.093</u>
- 621 37. Yao, X., Tham, L. G., Dai, F. C. Landslide susceptibility mapping based on Support
- 622 Vector Machine: A case study on natural slopes of Hong Kong, China. Geomorphology.
- 623 2008; 101(4), 572–582. <u>https://doi.org/10.1016/j.geomorph.2008.02.011</u>
- 38. Chen, W., Pourghasemi, H. R., Naghibi, S. A. A comparative study of landslide
 susceptibility maps produced using support vector machine with different kernel functions
 and entropy data mining models in China. Bulletin of Engineering Geology and the
 Environment. 2018; 77(2), 647–664. <u>https://doi.org/10.1007/s10064-017-1010-y</u>
- 39. Dodangeh, E., Choubin, B., Eigdir, A. N., Nabipour, N., Panahi, M., Shamshirband, S.,
- 629 Mosavi, A. Integrated machine learning methods with resampling algorithms for flood
- 630 susceptibility prediction. Science of the Total Environment. 2020; 705, 135983.
- 631 <u>https://doi.org/10.1016/j.scitotenv.2019.135983</u>
- 40. Aik, J., Heywood, A. E., Newall, A. T., Ng, L.C., Kirk, M. D., Turner, R. Climate
- 633 variability and salmonellosis in Singapore A time series analysis. Science of the Total
- 634 Environment. 2018; 639, 1261-1267.
- 41. Enders, W. *Applied Econometric Times Series*. John Wiley & Sons. 2004.

- 636 42. Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S., Ciccozzi, M. Application of
- 637 the ARIMA model on the COVID-2019 epidemic dataset. Data in Brief. 2020; 29:105340.
- 638 43. Wong, G. Has SARS infected the property market? Evidence from Hong Kong. Journal
- 639 of Urban Economics. 2008; 63, 74-95.
- 640 44. Alberts, C. J., Boyd, A., Bruisten, S. M., Heijman, T., Hogewoning, A., van Rooijen, M.,
- 641 Siedenburg, E., Sonder, G. J. B. Hepatitis A incidence, seroprevalence, and vaccination
- 642 decision among MSM in Amsterdam, the Netherlands. Vaccine. 2019; 37, 2849–2856.
- 643 45. Leonenko, V. N., Ivanov, S. V., Novoselova, Y. K. A computational approach to
- 644 investigate patterns of acute respiratory illness dynamics in the regions with distinct seasonal
- 645 climate transitions. Procedia Computer Science. 2016; 80, 2402–2412.
- 646 47. Ding, F., Fu, J., Jiang, D., Hao, M., Lin, G. Mapping the spatial distribution of Aedes 647 aegypti Aedes albopictus. Tropica. 2018; 178, 155–162. and Acta 648 https://doi.org/10.1016/j.actatropica.2017.11.020
- 649 48. Machado, G., Vilalta, C., Recamonde-Mendoza, M., Corzo, C., Torremorell, M., Perez,
- 650 A., VanderWaal, K. Identifying outbreaks of Porcine Epidemic Diarrhea virus through
- animal movements and spatial neighborhoods. Scientific Reports. 2019; 9(1), 1–12.
- 652 https://doi.org/10.1038/s41598-018-36934-8

651

- 653 49. Gigović, L., Pourghasemi, H. R., Drobnjak, S., Bai, S. Testing a New Ensemble Model
- 654 Based on SVM and Random Forest in Forest Fire Susceptibility Assessment and Its Mapping
- 655 in Serbia's Tara National Park. Forests. 2019; 10(5), 408. https://doi.org/10.3390/f10050408
- 656 50. Abdollahi, S., Pourghasemi, H. R., Ghanbarian, G. A., Safaeian, R. Prioritization of
- 657 effective factors in the occurrence of land subsidence and its susceptibility mapping using an

- 658 SVM model and their different kernel functions. Bulletin of Engineering Geology and the
- 659 Environment. 2019; 78(6), 4017–4034. <u>https://doi.org/10.1007/s10064-018-1403-6</u>
- 660 51. Huang, Y., Zhao, L. Review on landslide susceptibility mapping using support vector
- 661 machines. Catena. 2018; 165: 520–529. <u>https://doi.org/10.1016/j.catena.2018.03.003</u>
- 52. Behzad, M., Asghari, K., Coppola, E. A. Comparative Study of SVMs and ANNs in
- Aquifer Water Level Prediction. Journal of Computing in Civil Engineering. 2010; 24(5):
- 664 408–413. <u>https://doi.org/10.1061/(ASCE)CP.1943-5487.0000043</u>
- 53. Joachims, T. Text categorization with support vector machines: Learning with many
- 666 Relevant Features. 1998. <u>https://doi.org/10.1007/bfb0026683</u>
- 54. Zhu, Y., Xie, J. Association between ambient temperature and COVID-19 infection in
- 668 122 cities from China. Science of the Total Environment, 2020; 138201.
- 669 https://doi.org/10.1016/j.scitotenv.2020.138201

670

Fig. 1

Fig. 2

Fig. 3

Fig. 7

Fig. 9

Fig. 10

ROC Curve

Fig. 12