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 30 

Abstract 31 

Infectious disease outbreaks pose a significant threat to human health worldwide. The 32 

outbreak of pandemic coronavirus disease 2019 (COVID-2019) has caused a global health 33 

emergency. Identification of regions with high risk for COVID-19 outbreak is a major 34 

priority of the governmental organizations and epidemiologists worldwide. The aims of the 35 

present study were to analyze the risk factors of coronavirus outbreak and identify areas with 36 

a high risk of human infection with virus in Fars Province, Iran. A geographic information 37 

system (GIS)-based machine learning algorithm (MLA), support vector machine (SVM), was 38 

used for the assessment of the outbreak risk of COVID-19 in Fars Province, Iran. The daily 39 

observations of infected cases was tested in the third-degree polynomial and the 40 

autoregressive and moving average (ARMA) models to examine the patterns of virus 41 

infestation in the province and in Iran. The results of disease outbreak in Iran were compared 42 

with the data for Iran and the world. Sixteen effective factors including minimum temperature 43 

of coldest month (MTCM), maximum temperature of warmest month (MTWM), precipitation 44 

in wettest month (PWM), precipitation of driest month (PDM), distance from roads, distance 45 

from mosques, distance from hospitals, distance from fuel stations, human footprint, density 46 

of cities, distance from bus stations, distance from banks, distance from bakeries, distance 47 

from attraction sites, distance from automated teller machines (ATMs), and density of 48 

villages – were selected for spatial modelling. The predictive ability of an SVM model was 49 

assessed using the receiver operator characteristic – area under the curve (ROC-AUC) 50 

validation technique. The validation outcome reveals that SVM achieved an AUC value of 51 

0.786 (March 20), 0.799 (March 29), and 86.6 (April 10) a good prediction of change 52 

detection. The growth rate (GR) average for active cases in Fars for a period of 41 days was 53 

1.26, whilst it was 1.13 in country and the world. The results of the third-degree polynomial 54 
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and ARMA models revealed an increasing trend for GR with an evidence of turning, 55 

demonstrating extensive quarantines has been effective. The general trends of virus 56 

infestation in Iran and Fars Province were similar, although an explosive growth of the 57 

infected cases is expected in the country.  The results of this study might assist better 58 

programming COVID-19 disease prevention and control and gaining sorts of predictive 59 

capability would have wide-ranging benefits. 60 

Keywords: COVID-19, Outbreak risk mapping, Support vector machine, Machine learning 61 

algorithm, ARMA model, Growth rate of deaths. 62 

Introduction 63 

In December 2019 several pneumonia infected cases were reported in Wuhan, China [1-2]. In 64 

January 2020, a novel coronavirus (2019-nCoV) that was later formally named COVID-19 65 

was approved in Wuhan [3]. It was announced that the disease is a severe acute respiratory 66 

syndrome coronavirus 2 (SARS-CoV-2). The virus elevated concerns within China as well as 67 

the global community as it was believed to be transmitted from human to human [4]. Initially, 68 

China witnessed the largest outbreak in Hubei and other nearby provinces. The spread in 69 

China was controlled soon thereafter through stringent preventive measures, but other parts 70 

of the world (Europe, the Middle East, and the United States) were increasingly affected by 71 

the outbreak through transmission by infected travellers from China. A similar outbreak soon 72 

followed in other Asian countries [5]. Its global spread to more than 150 countries led to the 73 

declaration in mid-March 2020 that COVID-19 was a pandemic [6]. By April 10, 2020, there 74 

were nearly 1.70 million cases worldwide with 102684 deaths attributed to COVID-19 [7]. 75 

Currently, the United States has the largest number of confirmed cases, while Italy has 76 

reported the highest number of casualties [7-8]. Iran with 68,192 recorded cases and 4232 77 

deaths is the most affected country in the Middle East (as of April 10, 2020) and infected 78 
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cases are expected to surge in the coming days [7, 9]. The outbreak of COVID-19 has 79 

disrupted and depressed the world economy, whereas Iran is among the most severely 80 

affected by massive economic losses, largely compounded by politically motivated sanctions 81 

imposed by other governments [10]. The problem has been exacerbated as no specific 82 

medicine is yet realized for COVID-19 disease treatment, though there are a few pre-existing 83 

drugs that are being tested, so regions are presently concentrating their efforts on maintaining 84 

the infection rate in a level that assists to reduce virus spread [11]. This has led to most states 85 

imposing lockdowns, encouraging social distancing, and restricting the sizes of gatherings to 86 

limit transmission [12]. There is a pressing necessity for scientific communities to aid 87 

governments in their efforts to control and prevent transmission of the virus [13].  88 

During previous virus outbreaks stemming from Zika, influenza, West Nile, Dengue, 89 

Chikungunya, Ebola, Marburg, and Nipah, geographic information systems (GISs) have 90 

played significant roles in providing significant insight via risk mapping, spatial forecasting, 91 

monitoring spatial distributions of supplies, and providing spatial logistics for management 92 

[13]. In this current situation, risk mapping is critical and may be used to aid governments’ 93 

need for tracking and management of the disease as it spread in places with the highest risk. 94 

Sánchez-Vizcaíno et al. [14] used a multi-criteria decision making (MCDM) model to map 95 

the risk of Rift Valley fever in Spain. Traditional statistical techniques had been also used to 96 

detect the risk of outbreak [14]. Reeves et al. [15] employed an ecological niche modelling 97 

(ENM) technique for mapping the transmission risk of MERS-CoV; the Middle Eastern name 98 

for the coronavirus known as SARS-CoV-2. Similar techniques have been in the 99 

Nyakarahuka et al. [16] study to map Ebola and Marburg viruses risks in Uganda. They 100 

assessed the importance of environmental covariates using the maximum entropy model. 101 

More recently, the use of machine learning algorithms (MLAs) for mapping the risk of 102 

transmission of viruses has been increasing which is due to the demonstrated superior (and 103 
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more accurate) predictive abilities of the MLA models over traditional methods [17]. Jiang et 104 

al. [18]  employed three MLAs – backward propagation neural network (BPNN), gradient 105 

boosting machine (GBM), and random forest (RF) – to map the risk of an outbreak of Zika 106 

virus. Tien Bui et al. (2019) compared different MLAs – artificial neural network (ANN) and 107 

support vector machine (SVM) with ensemble models including adaboost, bagging, and 108 

random subspace – for modelling malaria transmission risk. Similarly, GBM, RF, and general 109 

additive modelling (GAM) were used by Carvajal et al. [19] to model the patterns of dengue 110 

transmission in the Philippines. Mohammadinia et al. [20] employed geographically weighted 111 

regression (GWR), generalized linear model (GLM), SVM, and ANN to develop a forecast 112 

map of leptospirosis; GWR and SVM produced highly accurate predictions. The literature 113 

shows that very few studies have tried to use GIS for analysis of COVID-19 outbreak in 114 

human communities. Kamel Boulos and Geraghty [21]  described the use of online and 115 

mobile GIS for mapping and tracking COVID-19 whilst Zhou et al. [13] revealed the 116 

challenges of using GIS for SARS-CoV-2 big data sources . To our knowledge, there has 117 

been no study with focus on mapping the outbreak risk of the COVID-19 pandemic. The aims 118 

of the present study were to analyze the risk factors of coronavirus outbreak and test the SVM 119 

model for mapping areas with a high risk of human infection with virus in Fars Province, 120 

Iran. The outcome of the present study lays a foundation for better programming and 121 

understanding the factors that accelerate virus spread for use in disease control plans in 122 

human communities. 123 

 124 

Materials and methods 125 

Study area 126 
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The study area is in the southern part of Iran with an area of 122608 square kilometres 127 

located between 27°2′ and 31°42′ N and between 50°42′ and 55°36′ E. Fars is the fourth 128 

largest province in Iran (7.7 % of total area) with a population density of 4851274 (based on 129 

in 2016 report). Fars Province is divided into 36 counties, 93 districts, and 112 cities (Fig 1). 130 

Fig 1. The counties of Fars Province, Iran, and the number of COVID-19 infected case 131 

identified from March 29, 2020. 132 

 133 

Methodology 134 

The multi-phased workflow implemented in this investigation (Fig. 2) is described 135 

comprehensively below. 136 

Fig 2. The methodological framework followed in this study. 137 

 138 

Preparation of location of COVID-19 active cases 139 

A dataset of active cases of COVID-19 in Fars was prepared to analyse the relationships 140 

between the locations of active cases and the effective factors that may be useful for 141 

predicting outbreak risk. The data utilized in this research was collected on April 10, 2020 142 

from Iranian’s Ministry of Health and Medical Education (IMHME).  143 

Preparation of effective factors 144 

Choosing the appropriate effective factors to predict the risk of pandemic spread is vital as its 145 

quality affects the validity of the results [17]. Since, there have been no previous studies of 146 

risk for COVID-19 distribution, the selection of effective factors is a quiet challenging task. 147 

Ongoing research on the pandemic has revealed that local and community-wide transmission 148 
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of the virus largely happens in public places where the most people are likely to come into 149 

contact with largest number of potential carriers of the infection [22]. Wang et al. [23] 150 

indicated that meteorological conditions, such as rapidly warming temperatures in 439 cities 151 

around the world resulted in a decline of COVID-19 cases. Accordingly, in this research, we 152 

selected sixteen most relevant effective factors for the outbreak risk mapping of COVID-19 153 

in Fars Province of Iran, which includes minimum temperature of coldest month (MTCM), 154 

maximum temperature of warmest month (MTWM), precipitation in wettest month (PWM), 155 

precipitation of driest month (PDM), distance from roads, distance from mosques, distance 156 

from hospitals, distance from fuel stations, human footprint, density of cities, distance from 157 

bus stations, distance from banks, distance from bakeries, distance from attraction sites, 158 

distance from automated teller machines (ATMs) and density of villages. All the effective 159 

factors employed in this research are generated using the ArcGIS 10.7.  160 

A few studies have established that variation in temperature would impact the transmission of 161 

COVID-19 [23]. It has been also reported that alteration in temperature would have impacted 162 

the SARS outbreak, which was caused by the identical type of coronavirus as SARS-CoV-2 163 

[24]. Recently, Ma et al. [2] disclosed that surge in temperature and humidity conditions have 164 

resulted in the decline of death caused by SARS-CoV-2. Thus, climatic factors such as 165 

temperature and precipitation can have an impact in the outbreak of SARS-CoV-2. The 166 

temperature and precipitation data namely MTWM, MTCM, PDM and PCM of Fars Province 167 

is acquired from world climatic data (https://www.worldclim.org/). In this study, the MTWM 168 

of the Fars Province ranges from 27.7⁰C to 41.8⁰C (Fig 3a) whereas MTCM ranges between 169 

-15.3⁰C and 10.4⁰C (Fig 3b). The PWM of the study area varies between 28 mm and 86 mm 170 

(Fig 3c) and also the PDM is presented in Fig 3d.  171 

Fig 3. Preparation of effective factors of COVID-19 outbreak 172 

 173 
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The proximity to various public places including roads, mosques, hospitals, fuel stations, bus 174 

stations, banks, bakeries, attraction sites, and ATMs where people come in close contact to 175 

each other can also be considered as significant factors that influence the distribution of 176 

COVID-19. The distance from roads ranges from 0 to 45 in the study area (Fig 3e) whereas 177 

the distance from mosques varies between 0 and 0.71 (Fig 3f) and the distance from fuel 178 

stations spans 0 to 0.67 (Fig 3g). The distance from bus stations, banks, bakeries, attraction 179 

sites, and ATMs of Fars Province have the minimum value of 0 and maximum value of 1.31, 180 

0.68, 0.97, 0.79, and 0.78 respectively (Fig 3h – 3l). Since, humans are the potential carriers 181 

of the COVID-19, the use of human footprint (HFP) can aid in understanding the terrestrial 182 

biomes on which humans have more influence and access [25]. In this study, HFP of the 183 

study area is acquired from the Global Human Footprint Dataset. The HFP of Fars Province 184 

ranges from 6 to 78 (Fig 3m) where the minimum value represents the places having least 185 

access by humans and the maximum value refers to those regions having highest human 186 

influence and access. The density of population is also considered to be an important factor 187 

for the spread of the disease [26-27]. Gilbert et al., [28]  revealed that the number of COVID-188 

19 cases were proportional to the population density in Africa. Accordingly, in this research, 189 

density of cities and villages were assessed and the outcome displays that density of cities in 190 

Fars Province ranges between 0 and 0.60 (Fig 3n) while the density of villages varies from 0 191 

to 0.58 (Fig 3o). The distance from hospitals ranged from 0 to 1.11 (Fig 3p). 192 

Evaluation of variable importance using ridge regression 193 

The association among the location of COVID-19 active cases and effective factors were 194 

evaluated using ridge regression in order to assess the significance of individual effective 195 

factor in predicting the outbreak risk [17]. To our knowledge, no previous study in epidemic 196 

outbreak risk mapping have utilized ridge regression in determining the significance of 197 

effective factors. However, the ridge regression algorithm has been utilized for modelling 198 
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purposes in various fields [29]. It was first given by Hoerl and Kennard [30] which exploits 199 

L2 norm of regularization for lessening the model complication and controlling overfitting. 200 

Ridge regression was also developed to avoid the excessive instability and collinearity 201 

problem caused by least square estimator [31]. The ‘caret’ package (https://cran.r-202 

project.org/web/packages/caret/caret.pdf) of R 3.5.3 was utilized for assessing the variable 203 

importance using ridge regression. 204 

Machine learning algorithm (MLA) 205 

Support vector machine 206 

SVM is an extensively exercised MLA in diverse fields of research that functions on the 207 

principle of statistical learning concept and structural risk minimization given by Vapnik 208 

[32], which is utilized for classification as well as regression intricacies [33-34]. SVM has a 209 

high efficacy in classifying both linearly separable and inseparable data classes [35]. It 210 

utilizes an optimal hyperplane to distinguish linearly divisible data whereas kernel functions 211 

are employed for transforming inseparable data into a higher dimensional space so that it can 212 

be easy categorized [36]. Assume a calibration dataset to be (sm, tm), where m is 1, 2, 3…, x; 213 

sm refers to the sixteen independent factors; tm denotes 0 and 1 that resembles risk and non-214 

risk classes and x represents the total amount of calibration data. This algorithm tries to 215 

obtain an optimal hyperplane for classifying the aforementioned classes by utilizing the 216 

distance between them, which can be formulated as follows [37]: 217 

21

2
p          (1) 218 

(( ) ) 1m mt p s a× + ≥        (2) 219 

where, p  denotes the rule of normal hyperplane; a refers to a constant. When Lagrangian 220 

multiplier ( )mλ and cost function is introduced, the expression can be given as follows [38]: 221 
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2

1

1
( (( ) ) 1)

2

x

m m m
n

l p t p s aλ
=

= − × + −∑      (3) 222 

In case of inseparable dataset, a slack covariate mδ  is added into the previous Eq. (2) that is 223 

provided as follows [32]: 224 

(( ) ) 1m m mt p s a δ× + ≥ −        (4) 225 

Accordingly, the Eq. (3) can be described as follows [32]: 226 

2

1

1 1

2

x

m
n

L p
ux

δ
=

= − ∑        (5) 227 

Moreover, SVM contains four kernel functions (linear, polynomial, radial basis function: 228 

RBF and sigmoid) for making an optimal margin in case of inseparable dataset [32]. 229 

Mohammadinia et al. [20] revealed that RBF kernel type produces high prediction accuracy 230 

than other kernel types for epidemic outbreak risk mapping. Thus, in this study, RBF is used 231 

for creating decision boundaries and the kernel function is expressed as follows [32]: 232 

( , ) ( ), 0a b a bK z z z zυ υ= − − >� �       (6) 233 

where, K(za, zb) refers to kernel function and υ represents its parameter. 234 

Analysis of growth rate for active and death cases of COVID-19 235 

In this study, the growth rate (GR) of active and death cases around the world, Iran, and Fars 236 

Province were evaluated using the data acquired from WHO and IMHME between February 237 

26, 2020 and April 10, 2020 for active cases and from March 3, 2020 to April 10, 2020 for 238 

death cases.  239 

Validation of outbreak risk map 240 

The cross-checking of calibrated model using untouched testing data is vital for determining 241 

the scientific robustness of the prediction [33].  In this research, we utilized ROC- AUC 242 
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curve values for the validation of COVID-19 outbreak risk map generated using SVM model. 243 

It is a widely utilized validation technique for analysing the predictive ability of a model [35]. 244 

A model is determined to be perfect, very good, good, moderate and poor if the AUC values 245 

were 1.0-0.9, 0.9-0.8, 0.8-0.7, 0.7-0.6 and 0.6-0.5 respectively [39]. 246 

 247 

Models for infection cases trend 248 

The behavior of the variable infection cases was captured by a third-degree polynomial or 249 

cubic specification as follows: 250 

���������	�
 � α��  α��
�  α��

�                                                           (7) 251 

Where ���������	�
 represents the total infected cases in day t and t denotes the days 252 

starting from 19th of February for Iran and one week later for Fars province. Also, other 253 

specifications including quadratic as well as fourth-degree polynomial specifications were 254 

examined and based on the predictions, the cubic form was selected against other 255 

specifications. In the literature, this form of the specification has been applied by Aik et al. 256 

[40] to examine the Salmonellosis incidence in Singapore. We also used an ARMA model to 257 

compare the process generating the variable for Iran and Fars province. This model includes 258 

two processes: Autoregressive (AR) and Moving Average (MA) process. An ARMA model 259 

of order (p,q) can be written as [41]: 260 

    �	�
 � β�  ∑ ������
�

�	�  ∑ �
���

�


	�                                                           (8) 261 

Where x is the dependent variable and � is the white noise stochastic error term. In the 262 

applied model, x shows the total infected cases and t is the days starting from the first day of 263 

happening infection cases. Benvenuto et al. [42] also applied an ARIMA model to predict the 264 

epidemiological trend of COVID-2019.  265 
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 266 

 267 

Results 268 

Outcome of the variable importance analysis 269 

The analysis of variable importance using ridge regression revealed that distance from bus 270 

stations, distance from hospitals, and distance from bakeries have the highest significance 271 

whereas distance from ATMs, distance from attraction sites, distance from fuel stations, 272 

distance from mosques, distance from road, MTCM, density of cities and density of villages 273 

exhibit moderate importance. The effective factors such as distance from banks, MTWM, 274 

HFP, PWM and PDM were the least influential factors (Fig 4).  275 

Fig 4. Variable importance of each effective factors (bus: distance from bus stations; hospital: 276 

distance from hospitals; bakery: distance from bakeries; atm: distance from ATMs; attraction: 277 

distance from attraction sites; fuel: distance from fuel stations; mosque: distance from 278 

mosques; road: distance from road; bio6: MTCM; city: density of cities; village: density of 279 

villages; bank: distance from banks; bio13: MTWM; footprint: HFP, bio14: PWM; bio5: 280 

PDM. 281 

 282 

COVID-19 outbreak risk map using SVM 283 

The COVID-19 outbreak risk map generated using SVM displays that risk of SARS-CoV-2 284 

ranges from -0.25 to 1.22 (March 29) and -0.35 to 1.21 (April 10) where -0.25 and -0.35 285 

represents the lower risk of SARS-CoV-2 outbreak and 1.22 and 1.21 indicates the regions of 286 

Fars Province which is likely to experience a higher risk of COVID-19 outbreak (Fig 5, a-b). 287 

It can be observed from Fig 5b (April 10) that Shiraz County and its surrounding counties 288 

including Firouzabad, Jahrom, Sarvestan, Arsanjan, Marvdasht, Sepidan, Abadeh, 289 

Khorrambid, Rostam, Larestan and Kazeron of Fars Province has the highest risk of being the 290 
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epicentre of SARS-CoV-2 outbreak. Apart from which counties like Eghlid, and Fasa also lie 291 

in the high risk zone.  292 

Fig 5. The COVID-19 outbreak risk map a) on March 29, 2020 and b) on April 10, 2020 293 

 294 

Outcome of growth rate analysis 295 

The results of GR of active cases in world, Iran, and Fars Province are presented in Fig 6. 296 

Our results displayed that the highest active cases in world, Iran, and Fars Province was 297 

related to March 11 (GR=1.95), Feb 26 (GR=2.41), and March 15 (GR=4.8), respectively. 298 

Also, the outcome stated that GR average of active cases in world, Iran, and Fars Province 299 

reported since March 1 to April 10 was 1.13, 1.13, and 1.25, respectively. Our observations 300 

demonstrated that the highest GR of active cases in Fars Province was on March 16 301 

(GR=4.80), March 09 (GR=3.20), March 20 (GR=2.40), March 22 (GR=2.10), April 1st 302 

(GR=2.10), and March 26 (GR=1.90). On the other hand, the analyses indicated that between 303 

February 27 and February 29, the GR of active cases was zero in Fars Province, followed by 304 

a GR value of 0.3 in March 14, March 19, and March 21, whereas the lowest GR of active 305 

cases in world and Iran observed on March 4 (GR=0.89) and March 3 (GR=0.67) 306 

respectively. 307 

Fig 6. Growth rate of active cases in world, Iran, and Fars Province 308 

 309 

Results of death cases in world, Iran, and Fars Province are given in Fig 7.  310 

Fig 7. Growth rate of death cases in world, Iran, and Fars Province 311 

 312 
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In total of 1762 active cases of COVID-19 in Fars Province, 42 died between February 24 313 

and April 10. The highest GR of death cases in Fars Province was reported on March 24 314 

(GR=4.00), March 26 (GR=3.00), March 22 (GR=2.00), March 4 (GR=2.00), and April 5 315 

(GR= 2.00). Our analyses showed that since March 5 to March 11, March 15 to March 21, 316 

March 28 to April 4, and April 5 to April 8, the GR of death cases was equal to zero. 317 

Although the deaths on March 31, April 3, April 7, and April 10 were 3, 2, 4, and 1, 318 

respectively, the daily growth rate is zero. Also, average of the GR in Fars Province during 319 

41 days was 0.49, whereas this rate in world and Iran was observed as 1.15 and 1.10, 320 

respectively. Fig 7 shows that the highest GR of death cases in world and Iran was nearly 321 

equal during March 08 (GR=2.17) and March 03 (GR=2.50). In contrast, the lowest rate of 322 

death case was observed on March 09 (GR=0.87), April 08 (GR=0.87), and March 04 323 

(GR=0.60).    324 

Results of active cases in 31 provinces of Iran country by March 25 is presented in Fig 8. 325 

Observations indicate that the number of active cases in the 100,000 population vary from 0.4 326 

to 13.1. This figure also shows that provinces of Bushehr and Fars have the lowest 327 

cumulative rate of active cases, whereas the highest rate was observed in Qom, Semnan, 328 

Mazandaran, Gilan, and Golestan. The Qom Province was the first place in Iran where the 329 

outbreak of COVID-19 was recorded. 330 

Fig 8. Results of active cases in 31 provinces of Iran country by March 25, 2020 331 

 332 

 333 

A comparison among age class of death cases in China, Iran, and Fars Province is presented 334 

in Table 1. Percentage of death cases in China was related to February 29, whereas for Iran 335 

and Fars Province it is related to March 14 and March 31, respectively. Following Table 1 336 
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show that age class > 50 years old lie in the highest class of death rate. So, this age class of 337 

above 50 years is highly sensitive to COVID-19. 338 

Table 1 Comparison of age in death cases of China, Iran, and Fars Province 

Country China Iran Fars Province 

Age Death Rate (%) Death Rate (%) Death Rate (%) 

>50 years old 93.7 84.15 78 

10- 50 years old 6.3 15.46 22 

<10 years old 0 0.39 0 

 339 

Validation outcome of outbreak risk map 340 

The ROC-AUC curve cross-validation technique is utilized in this research for validating the 341 

COVID-19 outbreak risk map generated by SVM. The model achieved an AUC value of 342 

0.786 and a standard error of 0.031 indicating a good predictive accuracy when cross-verified 343 

using the remaining 30% testing dataset collected on March 20, 2020 (Fig 9 and Table 2). 344 

Table 2 Area under the curve based on data from March 20, 2020 

Area 

Standard 

Error 

Asymptotic 

Significant 

Asymptotic 95% Confidence 

Interval 

Lower Bound Upper Bound 

0.786 0.031 0.000 0.726 0.846 

 345 

Fig 9. Receiver operator characteristic (ROC) curve based on testing data from March 20, 346 

2020 347 

When tested with active case locations on March 29, 2020, the model achieved an increased 348 

AUC value of 0.799 which proves the stable and good forecast precision of the outbreak risk 349 
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map (Fig 10 and Table 3). Also, change detection on April 10, 2020 show that accuracy of 350 

the built models is increased to 86.6% (AUC=0.868) (Fig 11 and Table 4). 351 

Table 3 Area under the curve based on data from March 29, 2020 

Area 

Standard 

Error 

Asymptotic 

Significant 

Asymptotic 95% Confidence 

Interval 

Lower Bound Upper Bound 

0.799 0.022 0.000 0.756 0.841 

 352 

Table 4 Area under the curve based on data from April 10, 2020 

Area 

Standard 

Error 

Asymptotic 

Significant 

Asymptotic 95% Confidence 

Interval 

Lower Bound Upper Bound 

.868 .015 .000 .838 .898 

 353 

Fig 10. Receiver operator characteristic (ROC) curve based on data from March 29, 2020 354 

Fig 11. Receiver operator characteristic (ROC) curve based on data from April 10, 2020 355 

 356 

Comparison of Fars province and Iran infection cases  357 

Two tools have been applied to compare the general trend of infection in Fars province and 358 

Iran. The first one is a third-degree polynomial model that is presented in Fig 12. Another 359 

quantitative model is an ARMA presented in Table 5. Fig 12 shows the trend of infection 360 

cases in Iran and Fars province, where predicted values extraordinarily keep pace with the 361 

actual values. 2R  values also indicate that estimated models have significant predictive power.  362 

The infection cases are increasing over the selected horizon.  363 

Fig 12. Actual cases versus estimated cases in Fars province and Iran 364 
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The first derivative of the estimated model which turns it to a second-degree polynomial 365 

equation, represents the daily infection cases. Based on the daily infection model, there is a 366 

turning point for both Iran and provincial cases. It was found that the turning point for 367 

provincial daily infection is 75. In other words, after 75 days the decreasing trend in the daily 368 

infection is expected.  369 

Table 5 The results of autoregressive and moving average (ARMA) model for COVID-19 
infection cases of Fars province and Iran  

 Regressor Coefficient Standard error t-statistics probability 

Fars province Constant 596.015 478.41 1.24 0.221 

 AR(1) 1.432 0.056 25.33 0.000 

 AR(3) -0.438 0.056 -7.79 0.000 

 Ma(4) 0.474 0.122 3.89 0.000 

      

 Adjusted 2R  0.997    

 Q(1)a 1.653   0.199 

 Q(2)a 1.875   0.392 

 Heteroskedasticity 
(ARCH) 

0.832   0.367 

 Jarque Berra 1.083   0.581 

 Inverted AR roots 0.99    

 Inverted Ma roots -0.85    

Iran Constant 43360.05 32082.85 1.35 0.184 

 AR(1) 1.489 0.015 99.48 0.000 

 AR(3) -0.492 0.014 -35.01 0.000 

 MA(1) 0.848 0.075 4.16 0.000 

      

 Adjusted 
2R  0.999    

 Q(1)a 1.169   0.194 

 Q(2)a 1.785   0.410 

 Heteroskedasticity 
(ARCH) 

1.149   0.289 

 Jarque Berra 0.088   0.956 

 Inverted AR roots 0.96    

 Inverted Ma roots 0.59    

a )p(Q is the significance level of the Ljung–Box statistics in which the first p of the residual autocorrelations are jointly equal 370 

to zero. 371 

 372 
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The corresponding value for Iran is 211 that is much higher than the provincial one. There are 373 

some evidences showing that a turning point in infection is expected. For instance, it has been 374 

reported for SARS incidence [43], HAV [44], ARI [45], and for A (H1N1)v [46]. It is worth 375 

noting that a turning point means that after passing the peak it is expected to show a 376 

deceasing trend. In the 38th day of infection, Fars province accounts for around 2.84% of the 377 

total Iranian cases while its population share is more than 6% (Statistical Center of Iran, 378 

2016). Regarding the values obtained for turning points and the infection share, the measures 379 

taken by the provincial government may be considered more effective than those taken in 380 

other provinces as a whole. However, it should be taken into consideration that Fars province 381 

experienced its first infection cases 7 days after Qom and Tehran, provinces that are 382 

considered as starting point for virus outbreak in Iran. This might have given the provincial 383 

governmental body and the households to take measures to cope with the widespread 384 

outbreak. It is worth noting that the comparison of the specified models is more appropriate 385 

to investigate the effectiveness of the measures taken by the corresponding health body rather 386 

than using it to predict the future values.  387 

The ARMA time series models for infection variables of the Fars province and Iran are 388 

presented in Table 5. These models may show the generating process of the variables in time 389 

horizon. It is worth noting that in order to have more comparable models, a 38-day time 390 

horizon is selected. This is the period of time that data are available, staring on 19th of 391 

February for Iran and one week later for Fars province. As shown in Table 4, the both series 392 

are generated by an ARMA (2, 1) process. However, the absolute values of the AR terms for 393 

Fars province are lower than those of Iran, indicating a slower process of increasing trend for 394 

Fars province compared to those of Iran. However, regarding the values for AR roots, the 395 

autoregressive (AR) process for both models isn’t explosive. Benvenuto et al. [42] also found 396 

that COVID-2019 spread tends to reveal slightly decreasing spread. In addition, 397 
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Heteroscedasticity (ARCH) were found to be insignificant in both models, indicating that the 398 

infection cases tend to show insignificants fluctuations. This is the fact that is not easily 399 

captured in the trends shown in Fig 12. Generally speaking, the diagnostic statistics indicate 400 

that the estimated models are acceptable since Q-statistics reveal that the residuals are not 401 

significantly correlated and the Jarque Berra statistic support the normality of residuals at 402 

conventional significance level. Also, ARCH effect was not significant, indicating a low 403 

volatility in the infection cases trend. In addition, all AR and MA roots were found to lie 404 

inside the unit circle, indicating that ARMA process is (covariance) stationary and invertible. 405 

Discussion 406 

There is a great necessity for new robust scientific outcomes that could aid in containing and 407 

preventing the COVID-19 pandemic from spreading. The spatial mapping of COVID-19 408 

outbreak risk can aid governments and policy-makers in implementing strict measures in 409 

certain regions of a city or a country where the risk of outbreak is very high. It is therefore 410 

crucial to identify the regions that would have high outbreak risk through predictive 411 

modelling with the help of machine learning algorithms (MLAs). In recent times, MLAs have 412 

demonstrated promising results in forecasting the epidemic outbreak risk [17]. In this 413 

research, the SVM model showing good forecast accuracy was used for mapping the outbreak 414 

risk of COVID-19. Similarly, Mohammadinia et al. [20] revealed that GWR and SVM had 415 

the highest precision in mapping the occurrence of leptospirosis. Ding et al. [47] employed 416 

three MLAs including SVM, RF and GBM for mapping the transmission risk assessment of 417 

mosquito-borne diseases and disclosed that all three MLAs acquired excellent validation 418 

outcome. Machado et al. [48] also applied RF, SVM and GBM in modelling the porcine 419 

epidemic diarrhoea virus and demonstrated 90% specificity values in case of SVM. Tien Bui 420 

et al. [17] stated that SVM achieved an AUC value of 0.968 in mapping the susceptibility to 421 

malaria. The ability to classify inseparable data classes is the greatest benefit of SVM model 422 
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[49]. It is among the most precise and robust MLA [50]. SVM can be useful and has higher 423 

prediction accuracy when it comes to handling a small dataset. However, Huang and Zhao 424 

[51] demonstrated that SVM also yields excellent precision in predictive modelling when a 425 

large dataset is utilized. The algorithm have a very low probability to overfit and is not 426 

disproportionately impacted by noisy data [49]. Behzad et al. [52] revealed that SVM had 427 

huge capacity in simplification and had enduring forecast accuracy. It should be also noted 428 

that the predictive exactness of SVM model largely depends on the choice of kernel function 429 

[50]. Among the four kernel functions of SVM, RBF has been proved to generate high 430 

accuracy models [49]. SVM includes diverse kinds of categorization functions which are 431 

responsible for assessing overfitting and simplifying data that needs a minor tuning of model 432 

parameters [53]. The significance of each effective factor employed in this research is 433 

assessed using ridge regression. Since, there is no previous study in COVID-19 that outlines 434 

the proper effective factors. The outcome of this research can be very helpful for scientists in 435 

experimenting the same and additional effective factors for COVID-19 outbreak risk 436 

mapping. The proximity factors including distance from bus stations, distance from hospitals, 437 

distance from bakeries were most influential in forecasting the COVID-19 outbreak risk 438 

whereas other proximity factors such as distance from ATMs, distance from attraction sites, 439 

distance from fuel stations, distance from mosques and distance from road had the moderate 440 

influence which is followed by MTCM, density of cities and density of villages. It should be 441 

noted that climatic factors including MTWM, PWM and PDM had the least significance in 442 

mapping the outbreak risk. From this, it can be concluded that precipitation factors PWM and 443 

PDM are not associated with the transmission of COVID-19 in Fars Province whereas in case 444 

of temperature factors MTCM had moderate influence in mapping COVID-19 outbreak risk 445 

but MTWM exhibited a least significance. This outcome reveals that proximity factors had 446 

high influence in the transmission of SARS-CoV-2. In addition, the study conducted 447 
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disclosed that increase in temperature will not decline the SARS-CoV-2 cases, although it has 448 

been also revealed that increase in temperature and absolute humidity could decrease the 449 

death of patients affected by COVID-19 [54]. A third-degree polynomial and ARMA models 450 

were applied to examine the behaviour of infection in Fars province and Iran. The general 451 

trend of infection in Iran and Fars province are similar while more explosive behavior for 452 

Iran’s cases is expected. The methodology and effective factors used in this research can be 453 

adapted in studies investigated in other parts of the world for preventing and controlling the 454 

outbreak risk of COVID-19. 455 

 456 

Conclusions 457 

Mapping of SARS-CoV-2 outbreak risk can aid decision makers in drafting effective policies 458 

to minimize the spread of the disease. In this research, GIS based SVM was used for mapping 459 

the COVID-19 outbreak risk in Fars Province of Iran. Sixteen effective factors including 460 

MTCM, MTWM, PWM, PDM, distance from roads, distance from mosques, distance from 461 

hospitals, distance from fuel stations, human footprint, density of cities, distance from bus 462 

stations, distance from banks, distance from bakeries, distance from attraction sites, distance 463 

from automated teller machines (ATMs) and density of villages were selected along with the 464 

locations of active cases of SARS-CoV-2. The results of ridge regression revealed that 465 

distance from bus stations, distance from hospitals, and distance from bakeries had the 466 

highest significance and the outcome was utilized in mapping the outbreak risk of the 467 

pandemic with the help of SVM. The generated model had good predictive accuracy of 0.786 468 

and 0.799 when verified with the locations of active cases during March 20 and March 29, 469 

2020. The Iranian government should take restrict preventive measures for controlling the 470 

outbreak of SARS-CoV-2 in Shiraz as a tourism destination and the counties having high 471 
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risk.  Based on the results of polynomial and an ARMA model, the infection behavior is not 472 

expected to reveal an explosive process, however; the general trend of infection will last for 473 

several months especially in the Iran as a whole. A more slowly trend is expected in Fars 474 

Province, demonstrating extensive home quarantine and travel and movement restrictions 475 

were good strategies for disease control in Fars province. The main policy implication is that 476 

the infection cases, to some extent, may be controlled using more effective measures. 477 

Although, the estimated models may be used to predict the infection in following days, 478 

however; this contribution is less significant than the other implications derived from them. 479 

Generally speaking, it is expected to encounter a decreasing trend, however; this may be 480 

reversed if the ongoing attempts are slowed down, pointing out the need to keep the measures 481 

like quarantine or even to try more restricting attempts.     482 
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