Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Commercial stocks of SARS-CoV-2 RNA may report low concentration values, leading to artificially increased apparent sensitivity of diagnostic assays

View ORCID ProfileErik Jue, View ORCID ProfileRustem F. Ismagilov
doi: https://doi.org/10.1101/2020.04.28.20077602
Erik Jue
aDivision of Biology and Biological Engineering
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Erik Jue
Rustem F. Ismagilov
aDivision of Biology and Biological Engineering
bDivision of Chemistry and Chemical Engineering
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Rustem F. Ismagilov
  • For correspondence: rustem.admin@caltech.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

In response to the rapidly evolving COVID-19 pandemic, the U.S. Food and Drug Administration (FDA) has rapidly issued 49 emergency use authorizations (EUAs) for SARS-CoV-2 in vitro diagnostic test-kits. A critical metric in the performance evaluation for a diagnostic test kit is the analytical sensitivity, which is measured by the limit of detection (LOD). Commercial RNA stocks with known titers are used to determine LOD. We identified a problem with the titer reported for the commercial stocks when examining the analytical sensitivity of the reverse transcription quantitative PCR (RT-qPCR) protocol that is recommended by the Centers for Disease Control and Prevention (CDC) using plasmid DNA from Integrated DNA Technologies (IDT), synthetic RNA from BEI Resources (BEI), and extracted genomic RNA from BEI. We detected 3/3 positives for reactions containing synthetic RNA at a concentration of 0.1 copies/reaction (based on the supplier’s label concentration). The apparent better-than-single-molecule performance is a statistically highly unlikely event, indicating a potential inaccuracy in the supplier’s quantification of the stock material. Using an ultrasensitive and precise assay, reverse transcription digital PCR (RT-dPCR), we independently quantified concentrations of commercial SARS-CoV-2 plasmid DNA and SARS-CoV-2 RNA stocks. For plasmid DNA, the actual concentration measured by RT-dPCR was 11% of the nominal label concentration. For synthetic RNA, the actual concentration measured by RT-dPCR for one lot was 770% of the label concentration and for a different lot was 57% of the label concentration. For genomic RNA, the concentration measured by RT-dPCR for one lot was 240% of the label concentration and for a different lot it was 300% of the label concentration. This SARS-CoV-2 genomic RNA from BEI Resources has been used in at least 11 approved FDA Emergency Use Authorizations as of April 27, 2020. Such deviations of reported RNA or DNA stock concentrations from true concentrations can result in inaccurate quantification and calculation of LOD. Precise and accurate reporting of DNA and RNA stock concentrations by commercial suppliers will enable accurate quantification of assay performance, which is urgently needed to improve evaluation of different assays by diagnostic developers and regulatory bodies.

Competing Interest Statement

R.F.I. receives droplet digital PCR patent royalties from Bio-Rad and has a financial interest in Talis Biomedical Corp.

Funding Statement

This work was funded in part by an Innovation in Regulatory Science Award (IRSA) from the Burroughs Wellcome Fund, a grant from the Jacobs Institute for Molecular Engineering for Medicine (Caltech) and NSF Graduate Research Fellowship DGE-144469 (to E.J.).

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Footnotes

  • California Institute of Technology 1200 E. California Blvd., Pasadena, CA, 91125 United States

Data Availability

All data will be made available at CaltechDATA upon publication.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted May 04, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Commercial stocks of SARS-CoV-2 RNA may report low concentration values, leading to artificially increased apparent sensitivity of diagnostic assays
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Commercial stocks of SARS-CoV-2 RNA may report low concentration values, leading to artificially increased apparent sensitivity of diagnostic assays
Erik Jue, Rustem F. Ismagilov
medRxiv 2020.04.28.20077602; doi: https://doi.org/10.1101/2020.04.28.20077602
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Commercial stocks of SARS-CoV-2 RNA may report low concentration values, leading to artificially increased apparent sensitivity of diagnostic assays
Erik Jue, Rustem F. Ismagilov
medRxiv 2020.04.28.20077602; doi: https://doi.org/10.1101/2020.04.28.20077602

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (269)
  • Allergy and Immunology (549)
  • Anesthesia (134)
  • Cardiovascular Medicine (1747)
  • Dentistry and Oral Medicine (238)
  • Dermatology (172)
  • Emergency Medicine (310)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (653)
  • Epidemiology (10779)
  • Forensic Medicine (8)
  • Gastroenterology (583)
  • Genetic and Genomic Medicine (2933)
  • Geriatric Medicine (286)
  • Health Economics (531)
  • Health Informatics (1918)
  • Health Policy (833)
  • Health Systems and Quality Improvement (743)
  • Hematology (290)
  • HIV/AIDS (627)
  • Infectious Diseases (except HIV/AIDS) (12496)
  • Intensive Care and Critical Care Medicine (684)
  • Medical Education (299)
  • Medical Ethics (86)
  • Nephrology (321)
  • Neurology (2780)
  • Nursing (150)
  • Nutrition (431)
  • Obstetrics and Gynecology (553)
  • Occupational and Environmental Health (597)
  • Oncology (1454)
  • Ophthalmology (440)
  • Orthopedics (172)
  • Otolaryngology (255)
  • Pain Medicine (190)
  • Palliative Medicine (56)
  • Pathology (379)
  • Pediatrics (864)
  • Pharmacology and Therapeutics (362)
  • Primary Care Research (333)
  • Psychiatry and Clinical Psychology (2630)
  • Public and Global Health (5338)
  • Radiology and Imaging (1002)
  • Rehabilitation Medicine and Physical Therapy (594)
  • Respiratory Medicine (722)
  • Rheumatology (329)
  • Sexual and Reproductive Health (288)
  • Sports Medicine (278)
  • Surgery (327)
  • Toxicology (47)
  • Transplantation (149)
  • Urology (125)