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Abstract—COVID-19 pandemic has posed significant
challenges globally. Countries have adopted different
strategies with varying degrees of success. Epidemiol-
ogists are studying the impact of government actions
using scenario analysis. However, the interactions between
the government policy and the disease dynamics are not
formally captured.

We, for the first time, formally study the interaction
between the disease dynamics, which is modelled as a
physical process, and the government policy, which is
modelled as the adjoining controller. Our approach enables
compositionality, where either the plant or the controller
could be replaced by an alternative model. Our work is
inspired by the engineering approach for the design of
Cyber-Physical Systems (CPSs). Consequently, we term
the new framework Compositional Cyber-Physical Epidemi-
ology (CCPE). We created different classes of controllers
and applied these to control the disease in New Zealand
and ltaly. Our controllers closely follow government deci-
sions based on their published data. We not only reproduce
the pandemic progression faithfully in New Zealand and
ltaly but also show the tradeoffs produced by differing
control actions.

The ongoing Coronavirus Disease 2019 (COVID-
19) presents an unprecedented global crisis with over
2,718,155 infections and 190,636 deaths as of 24th April
2020. There are now widespread calls for new techniques
for intervention, including methods of rapid testing even
at the home [1]. While Epidemiologists are studying the
dynamics of the diseases using computational models,
governments are trying to “flatten the curve” [2] to reduce
the health impacts. This is achieved through Nonphar-
maceutical Interventions (NPIs), such as lockdowns and
social distancing methods.

Many governments, like the New Zealand government,
have also worked closely with the scientific community
to arrive at critical decisions. For example, tools such
as CovidSIM [3] use epidemiological models to create
simulation scenarios based on which predictions can
be made. However, there is no clear methodology to
formally capture and classify criteria-based actions of the
government [4] as mathematical models. Given the wide
variability of government actions globally, how can we
formally assess them while studying their impact?

While at the policy level there has been minimal en-
gineering thinking to provide solutions, it is evident that
the pandemic and its control bears many similarities with
the well known engineering domain of Cyber-Physical
Systems (CPSs) [5], [6]. In a CPS, a physical process

such as the electrical conduction of the human heart
(known as the Plant) is controlled by an adjoining device
such as a pacemaker, also known as a Controller [7].
This closed-loop system mimics the behaviour of a piece-
wise continuous phenomena, where the plant’s dynamics
is modelled using a set of Ordinary Differential Equations
(ODEs). The plant makes discrete mode switches based
on the actions of a discrete controller.

In the setting of COVID-19, we may view the plant as
the dynamics of disease progression, already modelled
faithfully using several epidemiological models [8], [9].
The adjoining controller is a state machine that can
induce mode switches in the plant. Such a closed-loop
system may be depicted as shown in Figure 1a and
we term this approach Compositional Cyber-Physical
Epidemiology (CCPE). Here, the plant provides the state
of the pandemic encapsulated as a vector of variables
X (t), while the controller affects the state of the plant by
trying to alter the value of the reproduction number R,
which represents the average number of new infections
for each infectious person, so as to “flatten the curve” [2].

There is recent evidence that such engineering think-
ing may have relevance for COVID-19. The Institute of
Electrical and Electronics Engineers (IEEE) published an
article citing the benefits of the application of such feed-
back control theory [10], which is evidence of concurrent
thinking along our lines. However, their work is primarily
based on studying the impact of fictitious controllers
over a simple disease model, without considering the
actual data from the current pandemic. Also, the studied
controller needs a continuously changing value of the
reproduction number Ry, which is infeasible. We instead
utilise a dynamical model of the disease that is being
used by the New Zealand government [11]. We then
propose controllers based on actual R, values being
used by the same government in its decision making [4].
Likewise, we develop a methodology for R, values in ltaly,
which mimics the ltalian government’s actions. We then
develop controllers to closely follow what is happening in
an alternative setting, where unlike New Zealand the R,
values used in decision making are not published openly.

A. Plant and Controller Dynamics

This paper advocates that a compositional design ap-
proach is needed to include the NPI techniques with

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.


mailto:p.roop@auckland.ac.nz
https://doi.org/10.1101/2020.04.26.20081125
http://creativecommons.org/licenses/by-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.04.26.20081125; this version posted May 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-ND 4.0 International license .

the existing epidemiological models. Such an approach,
which we term CCPE, would allow for more realistic
modelling which can be used in the decision making
of a government, with the goal of both minimising the
death toll while reducing the economic impact of any
restrictions.

The transmission dynamics of an infection through a
population can be captured by a Susceptible, Exposed,
Infected, Removed (SEIR) model [8], [9], which incorpo-
rates coupled ODEs, and has been utilised previously
in the context of COVID-19 [11]. These ODEs capture
the progression of a disease through the population, as
people become infected, progress through their infection,
and infect others. SEIR models include variables which
represent the population during an epidemic which can
be in a range of states: susceptible (S), exposed (E),
pre-symptomatic (P), infectious (I), recovered (R) and
deaths (D). The infected and recovered cases are further
categorized into untested (I,,, R,) and confirmed cases
(I., R.) to enable control mechanisms which are specific
to confirmed cases. The key parameter determining if a
virus can cause an epidemic is the reproduction number
Ry and depends on both the transmissibility of the virus
and social distancing. For Ry > 1 the virus will spread un-
til herd immunity has been established, while for Ry < 1
the transmission will progressively decay until the virus is
eradicated [9]. In addition to Ry, further parameters are
used for capturing aspects such as the fatality rate and
testing rate.

Government interventions can be used to modify each
of these parameters such as the use of NPIs to reduce
the reproduction number, or increased testing to isolate
more confirmed cases. These responses vary between
countries and typically vary over time depending on the
local situation [12], [13]. For example, New Zealand has
implemented an alert system for COVID-19 [14] which
comprises four levels of increasingly strict interventions.
In this case, the four levels can be modelled as a discrete
controller which can interact with the continuous SEIR
model as a type of CPS.

B. Formal Modelling

The use of formal modelling for biological processes
has been advocated by Fisher and Henzinger [15], which
makes a distinction between computational models and
executable models. More recently, Bioengineers have
adopted an executable model called Hybrid Input-Output
Automata (HIOAs) [7], [16] for developing abstract mod-
els. These abstractions are used to achieve behaviour
from cellular [17] to organ levels [18], [19]. These abstract
models are also “executable” in the sense that hardware
and software implementations may be derived from them
so that they work as virtual organs [20], [18], [21].

An HIOA captures both the continuous (i.e. the popula-
tion model) and discrete (i.e. the government controller)
dynamics through the use of an automata with included
ODEs. The conversion of the SEIR model into an HIOA

results in the formal model of Figure 1b, where the two
locations capture whether the Intensive Care Unit (ICU)
capacity has been exceeded. The formal nature of these
models means that they can be used in simulation and
code generation frameworks with relative ease [22], [23].
Further, there exist definitions for Hybrid Networks [20]
which enable the composition of multiple HIOAs to pro-
duce complex systems, rather than just individual compo-
nents. This compositionality fits well with the previously
mentioned desired CCPE approach for capturing both the
epidemiological model and government interventions.

These models of hybrid systems can be designed
through a custom framework named Hybrid Automata
Modelling Language (HAML) [20], which allows for the
specification of both single automata and combined net-
works. Additionally, this tool provides a semantics for their
execution along with an integrated compilation approach
to both software and hardware [20]. Hence, HAML-based
approach is ideal for CCPE, as developed in this paper.
In the near future, this HAML-based CCPE approach
could be easily extended to create compositional eco-
nomic models such as [2] to perform holistic cost-benefit
analysis for pandemics, say using Pareto optimality [24].

To illustrate our methodology we have selected New
Zealand and ltaly, who have adopted contrasting ap-
proaches in the disease management. We show that
in the case of the four level New Zealand control, we
are able to make decisions around the optimal criteria
for switching between the control modes to minimise the
impact of the virus. Our methodology is generic enough
and has the potential to be adopted to other alternative
settings.

RESULTS
A simple controller in the New Zealand context

The proposed CCPE approach is first demonstrated
using the New Zealand COVID-19 context using a simple
controller we term Nz-C1. The Nz-C1 control strategy is to
initiate a strong lockdown measure, which is introduced
early and is not lifted until the new infections approach
zero. We use the dataset, which contains the number
of cases (both confirmed and probable), recovered, and
deaths for every day from 20th March 2020 to 21st April
2020 (overall 33 days including the starting day). Also,
on 26th March 2020 (six days after the first date in our
data), the New Zealand government initiated their level
four lockdown measures, which are scheduled to be in
place until 27th April 2020. Then, level three starts from
28th April 2020.

First, we examine the accuracy of our CCPE approach
by comparing it to the New Zealand data as a means
to increase confidence in our predicted future disease
dynamics, as per Figure 1. In our framework, we propose
the modelling of both the plant and controller as HIOA [6].
We create a simple controller (Figure 1c), which transi-
tions into a lockdown mode (LD) six days after the start.
The controller modes are depicted as two different states
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Fig. 1: The proposed compositional design of Compositional Cyber-Physical Epidemiology and simulation results. For (d), (e), and (f), day 0
corresponds to 20th March 2020. The first 32 days of (d) are compared with the available New Zealand data.

of the system, namely Pre-LD and LD respectively. Within
every mode, we encapsulate a condition that determines
the maximum time control can reside in a given mode,
which is known as the invariant. In the LD mode, however,
no such invariant is specified. In this case, the invariant
is by default true and hence control can remain in this
location forever. In contrast, control can remain in the
Pre-LD mode, when the current time ¢ is less than 6 days.
The rate of change of time is modelled as an ODE ¢ = 1
within both modes.

Transitions between modes happen when some condi-
tions are satisfied. For example, the transition from Pre-LD
to LD happens when the current value of ¢ becomes 6.
When a transition triggers, some variables are updated.
For example, when this transition triggers, the value of
time ¢ is reset (by the reset action, which is denoted
t’ = 0). Also the value of Ry is set to 0.316.

For this model, we use the previously described values
for Ry of 2.5 and 0.316 for pre-lockdown and lockdown
respectively. Figures 1d through 1f show the results of
this simulation for three main metrics. Day 32 in the graph
corresponds to the last day observed in the New Zealand
data (21st April 2020). On this date, the simulated model
predicts 1447 confirmed cases, while in reality there were
1445, an error of only 2 cases. Overall, the correlation
coefficient is 0.997321.

With this simple controller which remains in lockdown
indefinitely (i.e. until a vaccine arrives), the cumulative
infection count converges to 1670. Furthermore, in Fig-
ure 1e, we can observe that the active infections are

almost zero, meaning that the disease has been erad-
icated, on day 120 (4 months). Finally, the total number
of deaths in this scenario is expected to be 33.

CCPE model of the New Zealand Government control
strategy

Next, we investigate the disease dynamics in New
Zealand over a longer period of time (600 days) with a
more complex model which closely follows the govern-
ment’s strategy of four different alert levels (Figure 2). The
previous controller (Figure 1c) is extended by incorporat-
ing a control policy that reflects these alert levels. This
new controller is called Nz-c2 and is shown in Figure 2a.

NZ-C2, in contrast to NZ-C1, tries to set the alert level in
order to determine an appropriate reproduction number
Ry for the current situation. We have based our work on
the reports released by the New Zealand government and
the analysis of R, values and associated alert levels [4].

For New Zealand, Table Il presented in the Methods
section, lists major interventions and their associated rel-
ative reproduction number changes indicating how they
increase/decrease the R,. According to [25], the initial
value of Ry is 2.5 without any control, which corresponds
to alert level 0 in our model. In summary, the Ry values
for alert levels 4 through 1 are 0.316, 0.827, 1.384, 1.570
respectively. The maximum value of Ry is 2.5, which
corresponds to level 0.

The controller HIOA which captures the transitions
between these levels is shown in Figure 2a. Here, the
conditions for increasing the alert level are based on the
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Fig. 2: The controller and simulation results corresponding to the New Zealand system for fighting COVID-19

current number of infected cases (I..). For example, from
level two if I. > k;3 then the alert level immediately rises
to three. On the other hand, the alert level can go down
if the increasing rate of new cases per day (C) is less
than a certain amount. For example, from level three if
C < dk;; then the alert level decreases to level two. In
addition, to avoid frequent oscillations between levels, a
minimum duration within a level before being able to drop
down to a lower level is added and is set to be either 15
or 30 days.

The simulation results for this controller are shown
in Figure 2b, where we also include the presence of
a vaccine from day 365. In contrast to the scenario of
continuing the lockdown based on the previous controller
Nz-C1l, we observe gradual step downs in the control
level. Although there will be 46 deaths, 13 more than
the previous lockdown scenario, the four-level approach
allows for society to begin its return to normalcy from

day 39 in order to minimise economic damage relative to
the controller Nz-C1.

Modelling Italy’s control strategy

The CCPE approach can be adapted to the inter-
vention techniques of other countries. For example in
Italy, the government does not have an explicitly out-
lined intervention system, instead the control actions are
progressively released as they are needed. We use the
published stringency index [12] for Italy across time in
order to create an approximation of their control strat-
egy in our framework. For example, on 23rd February
2020, the stringency index was listed as 66.67, while
subsequent measures increased this to 71.43, 90.48,
and finally 95.24 [12]. We create an approximate discrete
controller for this approach (Figure 3a), where the phases
correspond to a degrees of stringency mentioned earlier.
Note that the date of first observation point in the Italy
data is 23rd February 2020.
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Fig. 3: The controller and simulation results corresponding to the Italy system for fighting COVID-19

The control flow of the Italy model called 1-C1 in Fig-
ure 3ais as follow. From the initial state Phase 0, transition
(1) leads to Phase 1. This transition is triggered based on
time, according to the historical actions of ltaly govern-
ment. For instance, Italy was in Phase 0 on 23rd February
2020, and moved to Phase 1 by closing the schools and
universities on 4th March 2020. Similarly, transitions @
and @ are triggered based on the time when historical
actions were imposed. Countrywide lockdown was issued
on 10th March 2020 and the nation entered Phase 2. On
20th March 2020, the government further tightened the
control by reducing the public transportation and initiated
Phase 3. For ltaly, according to our estimation based
on [12], the reproduction number R is 6.3533 in Phase
0, 4.8051 in Phase 1, 3.2693 in Phase 2, and 0.5216 in
Phase 3.

From Phase 3 in Figure 3a, we apply the same control
strategy presented in Figure 2a. That is, the control level
can decrease based on C and time remained in a level,
or the control level can increase based on I.. Precisely,
the same level changing conditions are used for Italy. In
this way, we can examine the performance of the same

controller in different countries. We set 10, 5, and 0.01
for dk;3, dki2, and dk;;, respectively. Also, k3, k2, and
k;; are 6046, 3023, and 605, respectively. Additionally,
the constraint to level four (k,) is equal to the hospital
capacity of approximately 483,694 [11].

The simulation results for the Italy model are shown
in Figure 3b. First, we can observe that the control
strictness rises to phase three as per the existing data,
and remains there until day 199. When control goes
down to phase two, the active infection count (I.) starts
to increase again, causing a second wave of infections
and necessitating the return to phase three. This likely
indicates that there is a need for an additional phase be-
tween three and two for Italy, which is able to contain the
disease without being as strict as phase three. Overall,
the simulation predicts that approximately 37,000 deaths
and 287,000 confirmed cases are expected in ltaly.

Modelling other controllers

We can examine various “what if” scenarios of COVID-
19 in New Zealand, as a result of varying intervention
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Fig. 4: Examples of government interventions with only lockdown action

techniques. A simple control policy in previous work has
consisted of only two levels, essentially a full lockdown
and no control [11]. Precisely, a complete lockdown (level
four) is triggered if the currently active infection count
exceeds the hospital ICU capacity ({I. > k}), while in
times where the currently active infection count is less
than the half of the hospital capacity ({I. < k./2}), the
lockdown is removed (level zero), as shown in Figure 4a.

The simulation results for this model in our framework
are shown in Figure 4b. As expected, the control level
frequently switches between four and zero as the number
of active cases oscillates. Interestingly, a number of one-
month lockdown happens after day 63. Although the
peaks of oscillation in the infection case graph gradu-
ally diminishes over time, the final number of deaths is
extremely high and control remains in the lockdown for
a long period of time, causing drastic impacts on the
economy.

DISCUSSION

The compositional approach of CCPE allows the flex-
ibility of formal modelling and validation of government
control strategies to manage a pandemic. We have
shown the ability of CCPE to model the dynamics of
COVID-19 in conjunction with the various intervention
techniques that governments employ. Table | compares
the controllers used in this paper. As we can see, in the
case of New Zealand, the controller Nz-C2 achieves much
better overall outcome compared to the simple controller
NZ-C1. While the lockdown for Nz-c1 lasts for over 120
days to achieve a near-zero infection count, the economic
impact of such a long lockdown may be catastrophic.
In contract, the controller Nz-C2 has a gradual lifting of
restrictions, which reaches level 1 much faster. Also, the
overall risk of this strategy is a marginal increase in the
number of deaths. In contrast to these two controllers, is
the third control strategy Nz-c3, which introduces oscil-
lations. We can see immediately the impact of a poorly
managed control strategy, which may lead to three orders
of magnitude more deaths. Finally, we also present the
controller for ltaly, which is modelled based on the actions
of their government and as reported in [12].

CCPE allows the formal modelling of complex con-
trollers. This enables the systematic evaluation of various
control strategies in order to determine the best approach
for a country which minimises the economic and social
impacts, in addition to achieving the best healthcare
outcome.

While the CCPE framework as presented here is based
on the SEIR model [11], there is nothing that restricts
our framework to such a model. Any continuous model
which can be captured through a series of ODEs is able
to be used which can open the door to more accurate
simulation techniques, such as the enhanced version
used by CovidSIM [3], or even microscale modelling.
We have already shown this ability by suggesting some
modification to SEIR to better account for contact tracing
and isolation. This is presented in the Methods section
and is denoted as the revised plant model PL-2 in Table I.

The effectiveness of the CCPE framework relies on
the fidelity of the transmission model and parameter
estimation, requiring expertise in both epidemiology and
statistical analysis. As such, the estimation of Ry is tech-
nically challenging [26] and the value varies due to differ-
ent model assumptions and estimation procedures [25],
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TABLE I: A summary of Compositional Cyber-Physical Epidemiology case studies

Figure Plant Controller Confirmed cases Deaths Description Social Impact
1 PL-1 NZ-C1 1670 33 Indefinite lockdown  Lockdown lasts for 120 days
2 PL-2 NZ-C2 2314 46 Four level control Business can operate after day 39, and a near zero
infection count is achieved on day 397
4 PL-1 NZ-C3 960,000 29,600 Two level control Infection count oscillates until it reaches zero on day 409
3 PL-1 I-C1 287,000 37,000 Three level control A near zero infection count is achieved after 420 days

[27], [28], [29], [30]. While the World Health Organization
(WHO) estimates that the basic Ry ranges between 1.4
to 2.5 [31], Liu et al. suggested that the value is expected
to be higher based on evolving research [32].

To apply the CCPE framework to other countries,
the Ry value should be examined. However, this repro-
duction number varies based on the control measures
implemented by each country [26], [33], [27], [34], [35].
To investigate the interaction between government in-
terventions and disease transmission dynamics, action-
specific Ry values are essential. Apart from the control
actions, many factors, such as population density [36],
mobility [27], and spatial heterogeneity [37], affect the Ry
value.

The ability for our CCPE framework to work across
a range of these different country-specific plant models
and various control designs creates a useful tool for
designing strategies to fight COVID-19. The analysis of
counter-measures and their impact on dealing with the
disease has traditionally been limited to simple “if-else”
style controllers, and here we show the ability to model
counter-measures which are able to include some form
of state in their logic.

OUTLOOK

In this work, we evaluated the composition of a con-
troller with an epidemiological model. However, the CCPE
framework is far more flexible. HIOA-based modelling can
be composed with any number of other HIOA. Further
HIOAs could be used which take into account aspects
such as legislation, culture, economy structure, admin-
istration, etc. [38], [39], [40]. For example, an economic
model could be added [2], which takes into account the
various measures being applied in order to provide a
metric of the financial toll. Such a model could then be
used to design a controller which not just minimises the
number of deaths in the population, but also reduces the
economic impact in a form of bi-criteria optimisation [41],
[24].

In our work, the criteria used for switching between
modes of the controller were based on comparing the
number of active cases to the ICU capacity. Instead,
control mechanisms could be created which take into
account additional information, such as the climate, to
more accurately capture the decision-making process.
Moreover, we could further refine the dynamical modes
to better represent the rate of testing.

Finally, a robust estimation approach of action spe-
cific Ry values within context of geographical and social
heterogeneity should be systematically investigated in

the future. COVID-19 is still relatively new and there
exists a large variation in potential reproduction numbers
between studies. We note that the accuracy of any
epidemiological model depends on the accuracy of its
reproduction number, and so further improvements in this
area would be of great benefit. For example, there is
the potential for the adoption of an approach as recently
proposed in [10] if the reproduction number could be
approximated as a continuous function. While this is a
challenging proposition, our work opens the door for
more engineering researchers to create an impact on
current and future pandemics. A momentum is already
in evidence as reported in [42] to show how Engineers
are coming together to contribute to this cause in various
ways.

METHODS
The SEIR model of COVID-19

The modified SEIR model [11] consists of variables
which represent the various sub-populations during an
epidemic: susceptible (.5), exposed (F), pre-symptomatic
(P), infectious (I), recovered (R), and deaths (D). The in-
fectious and recovered cases are further categorized into
untested (I,,, R,) and confirmed (., R.). The dynamics
of the transmission between these sub-populations can
be described by a series of coupled ODEs, shown in
Equations 1 through 8.

% = BS(eP+ I, + 1) (1)
% — BS(eP + I + 1) — aF )
%§:aE—5P (3)
%:5P—(fy+c)]u (4)
% =cl, — I, )
%iﬂzﬂlfCFRﬂu (6)
%i%:ﬂl—CFRﬂ; (7)

D=1-S-F-P-1,-1.—R,— R. (8)

The Case Fatality Ratio (CFR) depends on the number
of active people in the ICU and the ICU capacity. If the
number of active people in the ICU is within the ICU
capacity then the CFR is simply equal to some lower
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bound CF Ry (1%). When this limit is exceeded, the CFR
is decided by a mixture of patients who are receiving ICU
care (CFRy) and those who are not (CFR;). The result
of this is a piecewise function as in Equation 9 where
CFR;, (2%) is the maximum fatality rate, nycy denotes
the maximum ICU beds, N is the population size, and
preu is the proportion of total cases which require ICU
attention.

patients = N x (I, + I.) X prov 9

CFRa =CFRy — CFRy

CFRy

CFR = { CFR, — CFRy—1CV_
patients

if patients < nrcy
otherwise

The SEIR model can be described as an HIOA, shown
earlier in Figure 1b. X is the vector of all epidemic vari-
ables initialized to X, A is the matrix of the parameters,
and X = AX is the matrix representation of Equations 1
through 8). When the ICU demand N,., is less than
or equal to the maximum ICU capacity n;cr, the HIOA
stays in the location Below ICU with a CFR of CFR;.
Otherwise, control goes to the location Beyond ICU and
the CFR is defined by Equation 9.

In the model (Equations 1 and 2), the reproduction
number R, determines the transmission rate g as per
Equation 10. Here, ¢ is the relative infectiousness in
the presymptomatic period, § is the transition rate from
presymptomatic to infectious, and ~ is the transition rate
from infectious to recovered.

/04 1)y

These transition rates are decided by the virus nature,
while Ry depends on the contacts and the transmissibil-
ity [9]. The government control measures can impact this
reproduction number, and hence also 3, by reducing:

« physical contacts (e.g. travel restriction, self-
isolation, work at home, close schools, etc.), or

« the transmissibility (e.g. hand washing, public disin-
fection efforts, etc.)

In order to start the propagation of the disease through
the population we start with an initial number of cases
(I.) which matches with the initial number of reported
cases. Typically, our simulations start after a country has
reached 100 total cases as this is a likely point where
local transmission, if not community transmission, has
started to occur. Additionally, this allows us to isolate
the population from the rest of the world and ignore the
potential inflow and outflow of infected people as travel
is heavily restricted by this point in time.

We propose a revision of the recent SEIR model [11]
in this paper to account for better management of the
pandemic using improved case isolation and contact
tracing. In Table |, we denote the SEIR model [11] as
the plant model pPL-1 while our revised model is marked
as the plant model pL-2. This is since case isolation and

B (10)

contact tracing could significantly reduce Ry for identified
cases (i.e. I.) [34]. We use different parameters for the
transmission rate g (Equations 1 and 2) such that the
confirmed cases have lower transmissivity due to the
combined effects of isolation and contact tracing. The
resultant refined model replaces Equations 1 and 2 with
Equations 11 and 12.

ds
T —p1S(eP + 1) — 251,

dFE
E == 515(6P+ Iu) + 52-[(: — aE

(11)

(12)

The New Zealand model of COVID-19

For the epidemiological model of New Zealand, we use
base reproduction number of 2.5 as is widely reported
without control measures in place [25]. To investigate
the interaction between government interventions and
disease transmission dynamics, we need to introduce
various reproduction numbers for the different action
control strategies and stages. The estimation of R is
technically challenging [26] and a number of studies have
been done [43], [29], [32], [28], [35]. However, these
values are not specific to certain control policies.

We identified which interventions are applied in the
New Zealand alert levels, indicated in Table Il by a tick
(v) or a cross (X) to capture if a given intervention is
applied (respectively not applied) in a given alert level.
Each intervention is also weighted in its effectiveness,
with the weighted sum being 2.184. A triangle (A) is used
when an intervention is partially applied. In this case, half
the weight is considered. At the bottom of Table II, we
show the calculated reproduction numbers for each alert
level by taking into account both the base reproduction
number R, and the interventions applied. In summary,
the R, values for alert levels 4 through 1 are 0.316, 0.827,
1.384, 1.570 respectively. The maximum value of Ry is
2.5, which corresponds to level 0.

The controller Nz-C2, in Figure 2a, matches a given
alert level to its corresponding R, value. Initially, the
control starts from Pre-LD and move to LD just like the
previous controller in Figure 1c. After 33 days this corre-
sponds to 27th April 2020, which is the scheduled start of
Level 3. After this point, the control enters Level 3, and
the reproduction number is set to 0.827. The transitions
from Pre-LD to LD and LD to Level 3 are taken based
on time, like Nz-C1 since these mimic known time based
government actions.

Subsequently, the government decisions, which are yet
unknown, will have to be mimicked using more complex
mechanisms. We use the following strategy to determine
the transition conditions, which will not be time based
alone, as follows. First we denote the rate of new cases
per day as C, the current number of infected cases is
1., and k, denote the upper bound values of hospital
capacity. We consider the following parameter values
based on the published data from New Zealand [11]. We
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TABLE II: A list of the interventions involved at each alert level in New Zealand, and the reproduction number derivation

Intervention Weight Level4 Level3 Level2 Level1 Level 0
Widespread testing 0.186 v v v v X
Temperature checkpoints 0.093 v v v v X
Contact tracing 0.186 4 4 v v X
Close contacts of confirmed cases ordered to self-isolate  0.093 v v v v X
Large scale disinfection efforts 0.046 v v v X X
Distribution of PPE to at-risk workers 0.093 v v v v X
Hygiene public awareness efforts 0.186 v v v v X
International travel ban 0.186 v v X X
Domestic travel restrictions 0.093 v v X X
People forced to remain home 0.186 v X X X X
Bans on outdoor gatherings over 500 people 0.093 v v 4 v X
Bans on indoor gatherings over 100 people 0.093 v v X X X
Bans on recreational sports 0.046 v v X X X
Bars and restaurants close 0.186 v X X X
Schools close 0.186 v X X X
Tertiary education facilities close 0.093 v X X X
Small food retailers close 0.093 v X X X X
Non-essential retail business close 0.093 v X X X
Summation 2.184 2.184 1.673 1.116 0.930 0
Base reproduction number (Ry) 2.5 25 2.5 25 2.5
Final R value 0.316 0.827 1.384 1.570 25

set ki3, k2, and k;; as 500, 250, and 50, respectively.
The maximum hospital capacity k., is 40,000. dk;s, dko,
and dk;; are 10, 5, and 0.01, respectively. Finally, in our
results, we assume that a vaccine will arrive 365 days
after 20th March 2020. At this time, the number of sus-
ceptible people decreases to zero, assuming widespread
adoption of an effective vaccine.

The conditions for increasing the alert level are based
on the current number of infected cases (I.). For ex-
ample, from level two if I. > ki3 then the alert level
immediately rises to three. On the other hand, the alert
level can go down if the increasing rate of new cases
per day (C) is less than a certain amount. For example,
from level three if C' < dk;; then the alert level decreases
to level two. In addition, to avoid frequent oscillations
between levels, a minimum duration within a level before
being able to drop down to a lower level is added and is
set to be either 15 or 30 days.

From Level 3, the alert level can go down to Level
2 if the increasing rate of new cases per day (C) is
less than a control parameter dk;3. For transition @
30 days is the minimum time of remaining in Level 3
before entering Level 2. This timing constraint is included
to avoid undesirable switching between levels. On this
transition, the reproduction number is set to 1.384.

The Italy model of COVID-19

Unlike New Zealand, Italy does not issue a systemic
intervention strategy for COVID-19. Instead, the gov-
ernment releases the actions incrementally as they are
needed. The Oxford COVID-19 Government Response
Tracker (OxCGRT) [12] provides a stringency index of
the measures taken by various governments around the
world. According to the stringency index of ltaly’s inter-
ventions, we divide the transmission trajectory into four
phases. Considering that the initially reported cases are
mostly imported rather than community transmission, the
starting point of the analysis is 23rd February 2020, when

the reported number of cases is 155. As a first attempt,
we use the SEIR model [11] and curve fitting to estimate
policy-specific reproduction numbers for ltaly. We use
the MATLAB® function 1sqcurvefit to search for these
reproduction numbers for each phase by minimizing the
square of the residual error between the SEIR simula-
tion and the reported data citedong2020interactive. The
resulting reproduction numbers are listed in Table Ill.

TABLE IlI: Estimated reproduction numbers for each phase in ltaly

Phase 0 Phase 1 Phase 2 Phase 3

23 Feb to 4 4 Mar to 10 10 Mar to 20 20 Mar to 7
Mar Mar Mar Apr

Rro R Rpo Rp3

6.3533 4.8051 3.2693 0.5216

The controller is shown in Figure 3a. For dropping
alert levels, we have values of 10, 5, and 0.01 for dk;s,
dkj2, and dk;; respectively. The population of ltaly (V)
is 60,461,828 and we have level changing constraints of
6046, 3023, and 605 for k3, ki2, and k;; respectively.
Additionally, the constraint to level four (k,) is equal to
the hospital capacity of approximately 483,694 [11].

HAML

Hybrid Automata Modelling Language (HAML) [20] is a
recently developed tool in our group for the compositional
modelling and verification of CPSs. To create the CCPE
system in HAML we simply create two automata, one
each for the plant and controller, and compose them
as a single network. For the plant model, Listing 1a,
we have an automata with an input R, value which
is used to determine the rate of reproduction in the
model. Additionally, there are two outputs for the number
of currently infected (and tested) people, I., and the
rate of change in the number of cases (Cy.). The two
locations of Figure 1b are shown which have the same
flow constraints but differ in their calculation of the CFR to
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1 inputs:

2 RO:

3 outputs:

4 Ic:

5 C_dot:

6 parameters:

7 N:

8 eps:

9 alpha:
10 delta:
11 gamma:
12 CFRO:
13 CFR1:
14 n_ICU:
15  p_ICU:

16 locations:
17 below_ICU:

18 invariant: patients <= n_ICU

19 flow:

20 S: -beta * S * (eps * P + Iu + Ic)
21 E: beta * S * (eps * P + Iu + Ic) - alpha * E
22 P: alpha * E - delta * P

23 Iu: delta * P - (gamma + c) * Iu

24 Ic: ¢ = Iu - gamma * Ic

25 Ru: gamma * (1 - CFR) * Iu

26 Rc: gamma * (1 - CFR) * Ic

27 D: gamma * CFR = (Iu + Ic)

28 C: ¢ * Iu

29 update:

30 beta: RO / (eps / delta + 1 / gamma)
31 C_dot: c * Iu

32 patients: N % (Iu + Ic) * p_ICU

33 CFR: CFRO

34 transitions:

35 - to: beyond_ICU

36 guard: patients > n_ICU

37 beyond_ICU:

38 invariant: patients > n_ICU

39 flow:

40 S: -beta * S * (eps * P + Iu + Ic)
41 E: beta * S * (eps = P + Iu + Ic) - alpha = E
42 P: alpha * E - delta * P

43 Iu: delta * P - (gamma + c) * Iu

44 Ic: ¢ = Iu - gamma * Ic

45 Ru: gamma * (1 - CFR) * Iu

46 Rc: gamma * (1 - CFR) = Ic

47 D: gamma * CFR * (Iu + Ic)

48 C: ¢ * Iu

49 update:

50 beta: RO / (eps / delta + 1 / gamma)
51 C_dot: c * Iu

52 patients: N * (Iu + Ic) = p_ICU

53 CFR_d: CFR1 - CFRO

54 CFR: CFR1 - CFR.d * n_ICU / patients
55 transitions:

56 - to: below_ICU

57 guard: patients <= n_ICU

(a) SEIR model specification (Figure 1b)

1 inputs:
2 Ic:
3 C_dot:
4  outputs:
5 RO:
6 locations:
7 PrelD:
8 invariant: t <= 6
9 flow:
10 t: 1
11 update:
12 RO: RO_LO
13 transitions:
14 - to: LD
15 guard: t >= 6
16 update:
17 t: 0
18 LD:
19 invariant: t <= 33
20 flow:
21 t: 1
22 update:
23 RO: RO_L4
24 transitions:
25 - to: Level3
26 guard: t >= 33
27 update:
28 t: 0
29 Level3:
30 invariant: Ic < k_u & (C_dot > dk_13 || t < P_min)
31 flow:
32 t: 1
33 update:
34 RO: RO_L3
35 transitions:
36 - to: Leveld
37 guard: Ic >= k_u
38 - to: Level2
39 guard: CS_dot <= dk_13 && t >= P_min
(b) Controller specification (NZ-C2) (Figure 2a)
1 definitions:
2 Plant: ... (Listing 1a)
3 Controller: ... (Listing 1b)
4  instances:
5 Plant: Plant
6 Controller: Controller
7 mappings:
8 Plant.RO: Controller.RO
9 Controller.Ic: Plant.Ic
10 Controller.C dot: Plant.C_dot

(c) Network specification (Figure 1a)

Listing 1: Example HAML specifications for the Compositional Cyber-Physical Epidemiology system

create a piecewise implementation of Equation 9 through
the use of update constraints.

The discrete controller has external inputs and outputs
which mirror those of the plant model, having two inputs,
I. and Cy,, and a single output, Ry. Listing 1b shows this
controller captured in HAML, using locations for each of
discrete modes that it can be in. When the number of
current confirmed cases (/..) reaches an upper bound for
each location then the control progresses to a higher alert

level, while when the change in number of cases (Cyo¢)
reaches a lower bound then control transitions to a lower
alert level. The values of R, for each control location are
taken from Table II.

Finally, composition between these two components
simply requires mapping their respective inputs and out-
puts together. This is achieved by defining each of the
previous models, creating a single instance for each, and
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then providing the mapping of their variables, as shown
in Listing 1c.
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