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Abstract  85 

Coronavirus 2019 (COVID-19), caused by the SARS-CoV-2 virus, has become the 86 
deadliest pandemic in modern history, reaching nearly every country worldwide and 87 
overwhelming healthcare institutions. As of April 20, there have been more than 2.4 88 

million confirmed cases with over 160,000 deaths. Extreme case surges coupled with 89 
challenges in forecasting the clinical course of affected patients have necessitated 90 
thoughtful resource allocation and early identification of high-risk patients. However, 91 
effective methods for achieving this are lacking. In this paper, we use electronic health 92 
records from over 3,055 New York City confirmed COVID-19 positive patients across 93 
five hospitals in the Mount Sinai Health System and present a decision tree-based 94 

machine learning model for predicting in-hospital mortality and critical events. This 95 
model is first trained on patients from a single hospital and then externally validated on 96 
patients from four other hospitals. We achieve strong performance, notably predicting 97 
mortality at 1 week with an AUC-ROC of 0.84. Finally, we establish model 98 
interpretability by calculating SHAP scores to identify decisive features, including age, 99 
inflammatory markers (procalcitonin and LDH), and coagulation parameters (PT, PTT, 100 

D-Dimer). To our knowledge, this is one of the first models with external validation to 101 
both predict outcomes in COVID-19 patients with strong validation performance and 102 
identify key contributors in outcome prediction that may assist clinicians in making 103 
effective patient management decisions.  104 
 105 
  106 
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Introduction 107 

Despite substantial, organized efforts to prevent disease spread, over 2.4 million people 108 
have tested positive for SARS-CoV-2 worldwide, and there have been more than 109 
169,000 deaths to date(1–3). As a result of this pandemic, hospitals are being filled 110 

beyond capacity and face extreme challenges with regards to personnel staffing, 111 
personal protective equipment availability, and ICU bed allocation. Additionally, patients 112 
with COVID-19 demonstrate varying symptomatology, making successful and safe 113 
patient triaging difficult. While some infected patients are asymptomatic, others suffer 114 
from severe acute respiratory distress syndrome, multiorgan failure, and death(4). 115 
Identification of key patient characteristics that govern the course of disease across 116 

large patient cohorts is lacking but important, particularly given the potential it has to aid 117 
physicians and hospitals in predicting disease trajectory, to allocate essential resources 118 
effectively, and to improve patient outcomes. With these needs in mind, we report the 119 
development of a decision tree-based machine learning model trained on electronic 120 
health records from patients with confirmed COVID-19 status at a single center in the 121 
Mount Sinai Health System in New York City to predict critical events and mortality; 122 

validate this algorithm at four other hospital centers; and perform a saliency analysis 123 
using SHAP (SHapley Additive exPlanation) values to identify the most important 124 
features used by this model for outcome prediction. 125 
 126 
Results 127 

Clinical Data Source and Study Population 128 

We retrieved electronic health records for 3,055 COVID-19-positive inpatient 129 
admissions at five hospitals between March 9, 2020 and April 11, 2020 within the Mount 130 
Sinai Health System (MSHS). These data included patient demographics, past medical 131 
history, and admission vitals and labs (Table 1, Supplementary Table 2). Relevant 132 
patient events (intubation, discharge to hospice care, or death) were recorded and 133 
subsets were constructed at 3, 5, 7, and 10 day intervals after admission (Figure 1). Of 134 
these patients, 17.0% to 31.6% had a critical event (intubation, discharge to hospice 135 

care, or death) and 6.0% to 21.5% died over the observed time frames (Supplementary 136 
Table 1). In contrast, the control group consisted of patients with all other discharge 137 
dispositions and those that were still hospitalized.  138 
 139 
Classifier training and performance 140 
Given the large number of patients in the analysis and presence of missing variables in 141 

the data, we used XGBoost(5), a boosted decision-tree based machine learning (ML) 142 
model, to predict either a critical event or death of a patient within the aforementioned 143 
time frames. Patients from the Mount Sinai Hospital (MSH) were split into a training and 144 
validation set for the model. To increase model generalizability and help minimize bias, 145 
the model’s performance was assessed on a test set composed entirely of patients from 146 
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the other hospitals (OH) in the MSHS. While multiple time limits for event occurrence 147 
were assessed, the results and discussion in this letter focus predominantly one week 148 
after admission. As a control, both simple and generalized additive logistic regression 149 
models were trained to assess performance, given their ubiquity as the preferred model 150 

in current COVID research pieces.  151 
 152 
After training, the classifier robustly predicted the presence of a critical event at three, 153 
five, seven, and 10 days (Figure 2 and Supplementary Table 4) as measured by area 154 
under the receiver operating characteristic curve (AUC-ROC = 0.74 for OH, 0.83 for 155 
MSH at 1 week) and area under the precision-recall curve (AUPRC = 0.58 for OH, 0.49 156 

for MSH at 1 week). We were able to achieve similar performance at predicting critical 157 
events at longer intervals, namely 15 and 20 days (Supplementary Table 5). As a 158 
baseline comparison, the logistic regression models (Supplementary Table 6) 159 
performed more poorly in prediction by AUC-ROC (0.52 - 0.74) and AUC-PRC (0.19 - 160 
0.37) for critical events at three days relative to the XGBoost model (AUC-ROC = 0.77, 161 
AUC-PRC = 0.43). With respect to mortality, the model achieved high specificity (0.79 - 162 

0.92 for OH) and AUC-ROC (0.79 - 0.92 for OH) with similar AUPRC (0.38 - 0.65 OH) 163 
as with critical events. As the event time window increased, the performance of the 164 
classifier by the AUPRC value improved, which likely stems from the infrequency of 165 
deaths at earlier time points that created a class imbalance for mortality. Comparatively, 166 
all logistic regression models underperformed significantly in prediction by AUC-ROC 167 
(0.61-0.70) and AUC-PRC (0.06 - 0.18) for mortality.  168 
 169 

Identifying important features in the model 170 
To identify the most salient features driving model prediction, SHAP (SHapley Additive 171 

exPlanations) values(6) were calculated for the highest-performing model in the cross-172 
validation set during hyperparameter tuning (Figure 3). Among the top features, both 173 
high and low levels of lactate dehydrogenase (LDH), procalcitonin, and D-dimer were 174 
strong drivers for predicting a critical event at 1 week, while elevated prothrombin time 175 

(PT) and partial thromboplastin time (PTT) favored the classifier to predict a critical 176 
event. For mortality, both high and low values for age, procalcitonin, and red blood cell 177 
distribution width (RDW) were the strongest effectors in guiding mortality prediction by 178 
the model within 1 week of admission. Other important variables for increasing the 179 
prediction for death included an elevated troponin, LDH, lymphopenia (i.e. low 180 
lymphocyte percentage), white blood cell count (WBC), aspartate aminotransferase 181 

(AST), and D-dimer. Finally, using SHAP interaction scores, we discovered that 182 
covariate interactions between features, relative to each feature’s independent 183 
importance, contributed less to the model’s prediction (Supplementary Figures 1-4).  184 
 185 
Discussion 186 
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We highlight several important findings that have implications in clinical medicine. First, 187 
we offer robust prediction algorithms pertaining to the most clinically severe outcomes 188 
based solely on admission metrics. This insight provides the likely hospital course for 189 
patients up to 10 days into the future. High sensitivity in predicting mortality within three, 190 

five, and seven days of admission (0.86 - 1.0) suggests that this model can potentially 191 
be used by clinicians in gauging the acute clinical course of an admitted patient. The 192 
model’s high specificity, particularly for mortality at days three (specificity = 0.92) and 193 
five (specificity = 0.86), suggest its role for augmenting clinicians’ decision-making when 194 
identifying patients at immediate risk of impending clinical decompensation and 195 
potentially guide allocation of more intensive care upon admission. 196 

 197 
Additionally, our framework permits a clinically relevant understanding of the model’s 198 
most salient features defining its decision boundaries. Age was the most important 199 
feature for mortality prediction in COVID-19+ patients, with a notable exponential rise of 200 
feature contribution as age increased (Figure 3)(7, 8). Elevations in serum LDH, 201 
although nonspecific markers of inflammation, are implicated in pulmonary endothelial 202 

cell injury and in COVID-19+ patients(9–11). Equivalently, procalcitonin has been 203 
implicated as a biomarker of underlying infection and sepsis risk(12, 13). Elevated 204 
RDW, which may be an index for enhanced patient frailty and risk of adverse 205 
outcomes(14), was also a strong driver of mortality. Other salient features like 206 
leukocytosis(15), a natural response to inflammation, in combination with virally-driven 207 
lymphopenia(16, 17), have also been associated with COVID-19 burden. Additionally, 208 

elevated troponins(18, 19), renal dysfunction from elevated creatinine(20), anemia, vital 209 
instability (low oxygen saturation, tachycardia, hypotension), elevated ferritin(10, 19), 210 
high lactate, and acidosis were also contributors to driving model prediction towards 211 
mortality. With growing evidence of COVID-19-induced hypercoagulable states in these 212 
patients(10, 21, 22), it is promising that our model recognized the feature importance of 213 
coagulability markers, such as PT, PTT, and D-dimer (Figure 3). Thus, this 214 
corroboration of the features learned by XGBoost and highlighted by the SHAP analysis 215 

with those findings from pathophysiological principles and more recent correlative 216 
studies exploring COVID-19 patients(2, 3, 18, 23–25) gives additional credibility to these 217 
findings.  218 
 219 
Just as interesting as the features present in the SHAP value analysis were those that 220 
were not. For example, because race is both poorly represented (“Unknown”) and 221 

categorized inadequately in electronic health records, the model did not find race to be 222 
important for outcome prediction and instead opted to favor more objective data (vitals, 223 
labs). Contrary to our expectation, age was not identified as a significant feature for 224 
critical event prediction in these primary analyses. However, SHAP value analyses for 225 
critical event prediction at longer time frames (10, 15, and 20 days) revealed an 226 
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increasing importance on age for outcome prediction (Supplementary Figure 5). This 227 
trend suggests the model’s decision to capture acute events by relying on more 228 
objective measures not confounded by other factors that are cached into age, which 229 
may better represent illness severity. However, over time, age may become a better 230 

marker for critical event prediction, by offering a more stable container of clinical 231 
information, given its invariance to change relative to other features. As such, the 232 
classifier becomes optimized for predicting severe events earlier in the course of illness. 233 
 234 
The results of our models should be considered in light of several limitations. First, we 235 
base our predictions solely on a patient’s admission labs (i.e. within 36 hours); while this 236 

restriction encourages the use of this model in patient triage, events during a patient’s 237 
hospital stay after admission may drive their clinical course away from the prior 238 
probability. Furthermore, not all patient labs are drawn at admission, which introduces 239 
an element of missingness in our dataset. For example, unlike the general patient 240 
population, patients on anticoagulation therapy, who likely have comorbidities 241 
increasing their baseline risk, will have coagulation labs (PT, PTT) taken on admission. 242 

However, the shift away from predicting death by the model in the absence of PT/PTT 243 
(Figure 3) suggests that missingness in coagulation labs is a proxy for this lower 244 
baseline risk secondary to not having comorbid conditions that require anticoagulation 245 
therapy. Additionally, patients admitted to the hospital later in the crisis were both 246 
beneficiaries of improved patient care protocols from experiential learning, but also 247 
victims of resource constraints from overburdened hospitals. These effects, while 248 

possibly negated by our large sample size, may also induce temporal variation between 249 
patient outcomes. Furthermore, inherent limitations exist when using EHRs, especially 250 
those integrated from multiple hospitals. In order to facilitate timely dissemination of our 251 
results, we chose not to manually chart review patient notes that may have otherwise 252 
provided additional potential features, such as symptoms and clinical course, to 253 
incorporate in our model. Because all five hospitals operate in a single health system, 254 
system-wide protocols in lab order sets and management protocols were an additional 255 

source of bias that may lower external validity. Other interhospital effects such as 256 
shuttling COVID-19 cases to certain hospitals for balancing systemic patient burden 257 
may also imbalance case severity across hospitals and care management between 258 
hospitals; certainly, this was the case for MSW, where mortality at 3-days was far lower 259 
(1.7%) than other hospital sites. This was ultimately a major reason to restrict model 260 
training to a single center and perform testing out of sample in another hospital center. 261 

Finally, though XGBoost is superior to other models at handling missing data, a notable 262 
drawback is its bias towards continuous features instead of categorical ones, given 263 
increased information represented in the form(28). However, collinearities between 264 
some categorical features in this dataset may be present with other continuous features, 265 
as exhibited by covariance strength between hypertension and systolic BP and 266 
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creatinine in Supplemental Figure 4, which can then serve as vehicles for capturing 267 
these categorical pieces of information.  268 
 269 
In conclusion, the COVID-19 pandemic unequivocally represents an unprecedented 270 

public health crisis. Healthcare institutions are facing extreme difficulties in managing 271 
resources and personnel. Physicians are treating record numbers of patients and 272 
continuously expose themselves to a highly contagious and virulent disease with 273 
varying symptomatology. Only few therapeutic options have demonstrated improvement 274 
to patient outcomes. As COVID-19 moves outside of the current epicenter in New York 275 
City, healthcare institutions will see a larger influx of affected patients and can benefit 276 

from immediate insights regarding assessment of disease severity(29, 30). These 277 
models successfully predict critical illness and mortality up to 10 days in advance in a 278 
diverse patient population from admission information alone and provide important 279 
markers for acute care prognosis that can be used by healthcare institutions to improve 280 
care decisions at both the physician and hospital level for management of COVID-19 281 
positive patients. 282 

  283 
Materials and Methods 284 
 285 

This study has been approved by the Institutional Review Board at the Icahn School of 286 
Medicine at Mount Sinai (IRB- 20-03271). 287 
 288 

Clinical Data Source and Study Population 289 
In this study, patient data came from five hospitals within the Mount Sinai Hospital 290 
System (MSHS): the Mount Sinai Hospital (MSH) located in East Harlem, Manhattan; 291 
Mount Sinai Morningside (MSM) located in Morningside Heights, Manhattan; Mount 292 
Sinai West (MSW) located in Midtown and the West Side, Manhattan; Mount Sinai 293 
Brooklyn (MSB) located in Midwood, Brooklyn; and Mount Sinai Queens (MSQ) located 294 
in Astoria, Queens. The dataset was obtained from different sources and aggregated by 295 

the Mount Sinai COVID Informatics Center (MSCIC).  296 
 297 
We included patients who were over 18 years old that had a laboratory-confirmed 298 
COVID-19 infection, and were admitted between March 9 and April 11, 2020 to any of 299 
the hospitals previously mentioned. A confirmed case of COVID-19 was defined by a 300 
positive reverse transcriptase polymerase chain reaction (RT-PCR) assay of a 301 

nasopharyngeal swab. We excluded patients who had a positive COVID-19 RT-PCR 302 
result more than two days after admission. Additional exclusion criteria are presented in 303 
Figure 1. Full patient characteristics by site are provided in Supplementary Table 1.  304 
 305 
Study Data 306 
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Demographics included age, sex, as well as reported race, and ethnicity. Race was 307 
collapsed into seven categories based off of the most recent US census race 308 
categories: American Indian or Alaskan Native, Asian, Black or African-American, 309 
Other, Native Hawaiian or Other Pacific Islander, Unknown, and White. Ethnicity was 310 

collapsed into three categories: Hispanic/Latino, Non-Hispanic/Latino, and Unknown. 311 
We obtained demographics, diagnosis codes (International Classification of Diseases-312 
9/10-Clinical Modification (ICD-9/10-CM) codes and procedures), as well as vital signs 313 
and laboratory measurements during hospitalization. A pre-existing condition was 314 
defined as the presence of ICD-9/10-CM codes associated with specific diseases. We 315 
chose to include as covariates conditions that have been previously reported to have 316 

increased incidence in hospitalized COVID-19 patients, specifically: atrial fibrillation, 317 
asthma, cancer, coronary artery disease, chronic kidney disease, chronic obstructive 318 
pulmonary disease, diabetes mellitus, heart failure, hypertension, and stroke(15, 23–25, 319 
31).  320 
 321 
We included laboratory measurements and vital signs near the time of admission for 322 

prediction. Specifically, because records for laboratory values and vitals may appear 323 
with some lag, only the first available value within 36 hours of admission was included, 324 
otherwise the value was assigned as missing. Height was absent in a large percentage 325 
of the patients (18.2%). Because height is generally invariant in the adult population, 326 
and given the resource constraint of the pandemic, it was common for triage nurses to 327 
use the height from a previous and recent admission. In an effort to be as cohesive in 328 

our data gathering methods as possible, these earlier records were not retrieved for this 329 
dataset. However, weight was used as the next approximate proxy for body habitus, 330 
with additional information being presented through sex and age for body habitus as 331 
well.  332 
 333 
All lab orders from the five hospitals were queried for patients included in this study 334 
within the timeframe of interest. Due to discrepancies in how labs were named in 335 

different hospitals, a comprehensive review of all lab field names was conducted by a 336 
multidisciplinary team of clinical and statistical experts to ensure that there was a direct 337 
mapping between all sites. Additionally, many labs represented a single component 338 
(e.g. sodium), but were acquired from either an arterial blood gas (ABG), venous blood 339 
gas (VBG), and basic metabolic panel (BMP). Based on the utility of these lab values in 340 
clinical practice and the similarity between their statistical distributions, labs derived 341 

from a VBG or BMP were collapsed into a single category (i.e. ‘SODIUM’) and those 342 
derived from an ABG were moved to a separate category (i.e. ‘SODIUM_A’). Finally, the 343 
earliest lab, by time of result, in the set of all lab order names that were combined into a 344 
single lab category was chosen as the representative lab value for that category. 345 
Finally, lab data below the 0.5th and above the 99.5th percentiles were removed to 346 
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avoid inclusion of any obvious outliers that could represent incorrect documentation and 347 
measurement error.  348 
 349 

Definition of Outcomes 350 

The two primary outcomes were 1) death versus survival or discharge, and 2) critical 351 

illness versus survival or discharge, through time horizons of 3, 5, 7, and 10 days. 352 

Critical illness is defined as discharge to hospice, intubation ≤ 48 hours prior to ICU 353 

admission, or death. To address potential concerns of censoring by limiting exploration 354 

of only these time frames, particularly in the case of model enrichment for acute critical 355 

events, we also predicted critical events at days 15 and 20.  356 

 357 
Statistical Analysis 358 
Our primary model was fit with the Extreme Gradient Boosting (XGBoost) 359 
implementation of boosted decision trees on continuous and one-hot encoded 360 
categorical features. The XGBoost algorithm provides state-of-the-art prediction results 361 
through an iterative process of averaging in decision trees (we used 100) fit to the 362 

residual error of the prior ensemble. While each tree is too simple to accurately capture 363 
complex phenomena, the combination of many trees in the XGBoost model 364 
accommodates non-linearity and interactions between predictors. Missing data values 365 
are routed through split points based on the direction to minimize loss. XGBoost models 366 
were trained and evaluated using 10-fold stratified cross validation. For each fold, 367 
hyperparameter tuning was performed by randomized grid searching directed towards 368 

maximizing the sensitivity metric over 2,000 discrete grid options. Cross-validation was 369 
performed inside each grid option. We present the model hyperparameters for all 370 
experiments in Supplementary Table 3. The performance of the models were measured 371 
using the area under the receiver operator characteristic curve (AUC-ROC), area under 372 
the precision-recall curve (AUC-PRC), F1-score, sensitivity, and specificity. To interpret 373 
the significance of input features on the model’s prediction, SHAP values across all 374 

features on the best-performing model, by AUC-ROC, in the cross-validation set were 375 
calculated. Finally, we tested these models built on patient data from MSH on patients 376 
from four other hospitals (Figure 1). 377 
 378 
As a baseline, we also fit a logistic regression model and a generalized additive logistic 379 
model to compare our XGBoost model. We decided to use a generalized additive model 380 
because of its ability to extend generalized linear models by allowing for non-linear 381 

functions of features. Four main models were generated: 1) Logistic regression using 382 
only Age 2) Generalized Additive Model using only Age 3) Logistic Regression with all 383 
available features 4) Generalized Additive Model using all available features. Since 384 
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these models do not have a built in method of dealing with missing data, we dropped 385 
features with over 70% missingness and samples that lacked values for the remaining 386 
feature space. The models were trained and evaluated using 10-fold stratified cross 387 
validation on patient data from MSH and subsequently evaluated on patient data from 388 

the other hospitals. The same metrics were recorded for these models; however, this 389 
model was only trained at outcome prediction on Day 3, which was the time frame at 390 
which model AUC-ROC was highest for the XGBoost classifier. Performance results for 391 
this classifier are represented in Supplementary Table 5.   392 
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 495 
 496 

Fig 1. Study Design and Workflow. 497 
A) Procedure for patient inclusion in our study. B) Strategy and design for experiments. Patient clinical data from Mount 498 

Sinai Hospital (MSH) was used to train and validate our machine learning model. We then test these models on patients 499 
from four other external hospitals within the Mount Sinai Health System: Mount Sinai Brooklyn (MSB), Mount Sinai 500 
Morningside (MSM), Mount Sinai Queens (MSQ), and Mount Sinai West (MSW). C) Machine learning experimental 501 

design. We train on data from admission to predict mortality and critical illness outcomes.502 
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 503 
 504 

Fig 2. Machine learning experimental results.  505 

In all plots, the orange line reflects training at Mount Sinai Hospital (MSH) and testing 506 
via cross-validation. The blue line reflects testing the model built on patient data from 507 
MSH on external patients from all other hospitals (OH) A) Area under the receiver 508 

operator characteristic curve (AUC-ROC) for predicting critical illness at seven days 509 
since admission. B) Area under the precision-recall curves (AUPRC) for predicting 510 

critical illness at seven days since admission. C) AUC for predicting mortality at seven 511 
days since admission. D) AUPRC for predicting critical illness at seven days since 512 

admission. 513 
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 514 

 515 
 516 
Fig 3. SHAP Summary and Dependency Plots. 517 
SHAP summary plots for critical event (A) and mortality (D) at 7 days show the SHAP values for the most important 518 

features for the respective XGBoost model. Features in the summary plots (y-axis) are organized by their mean absolute 519 
SHAP values (x-axis), which represents the importance of that feature in driving the classifier’s prediction, for patients. 520 
Values of those features for each patient (i.e. a particular LDH value) are colored by their relative value. (B) and (C) 521 

represent dependency plots, which similarly demonstrate how different values of those features can affect the SHAP 522 
score and ultimately impact classifier decisions, for prothrombin time (PT) and D-Dimer, respectively, for critical event 523 
prediction. (E) and (F) represent dependency plots for age and procalcitonin levels. Patients with missing values for a 524 

feature in the dependency plot are clustered in the shaded area to the left. 525 
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Table 1. Characteristics of Hospitalized Covid-19 Patients at Baseline (n= 3055) 526 
 527 

Characteristics of Admission MSH  Other locations 

Demographics 

Sex, n (%) 

Male 704 (57.5) 1070 (58.5) 

Female 521 (42.5) 760 (41.5) 

Race, n (%) 

Other 537 (43.8) 749 (40.9) 

Caucasian 293 (23.9) 435 (23.8) 

African American 273 (22.3) 503 (27.5) 

Unknown 64 (5.2) 60 (3.3) 

Asian 44 (3.6) 65 (3.5) 

Pacific Islander 14 (1.1) 18 (0.9) 

Ethnicity, n (%) 

Non-Hispanic Latino 676 (55.2) 1133 (61.9) 

Hispanic/Latino 333 (27.2) 503 (27.5) 

Unknown 216 (17.6) 194 (10.6) 

Age, Median (IQR) 62.1 (49.4-71.8) 68.33 (56.9-78.8) 

Age group, n (%) 

18-30 56 (4.6) 37 (2.0) 

31-40 139 (11.6) 93 (5.1) 

41-50 133 (10.9) 158 (8.6) 

51-60 242 (19.8) 309 (16.9) 

61-70 320 (26.1) 431 (23.5) 

71-80 202 (16.5) 422 (23.1) 

81-90 102 (8.3) 308 (16.8) 

At least 90 31 (2.5) 72 (3.9) 

Previous Medical History, n (%) 

Hypertension (%) 462 (37.7) 686 (37.5) 

Atrial Fibrillation (%) 86 (7.0) 130 (7.1) 

Coronary Artery Disease (%) 171 (13.9) 307 (16.8) 

Heart failure (%) 110 (8.9) 181 (9.9) 

Stroke (%) 98 (8) 118 (6.5) 
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Chronic Kidney Disease (%) 136 (11.1) 158 (8.6) 

Diabetes (%) 313 (25.5) 466 (25.5) 

Asthma (%) 115 (9.4) 132 (7.2) 

Chronic Obstructive Pulmonary Disease  
(%) 65 (5.3) 103 (5.6) 

Cancer (%) 112 (9.1) 94 (5.1) 

Vital Signs at Hospital Admission, Median (IQR) 

Heart Rate (bpm) 89 (78 -100) 89 (78 - 100) 

Pulse Oximetry (%) 96 (94 - 98) 96 (94 - 98) 

Respiration Rate (breaths / minute) 20 (18 - 20) 18 (18 - 20) 

Temperature (F) 98.7 (98.1 - 99.9) 97.9 (98.6 - 99.5) 

Systolic Blood Pressure (mmHg) 124 (112 - 138) 127 (112 - 142) 

Diastolic Blood Pressure (mmHg) 69 (61 - 78) 72 (65 - 81) 

Weight (kg) 80.9 (68.9 - 95.3) 78.9 (68.04 - 91.7) 

Admission Laboratory Parameters, Median (IQR) 

Metabolic markers 

Sodium (mEq/L) 137 (135 - 140) 138 (135 -141) 

Potassium (mEq/L) 4 (3.6 - 4.5) 4.2 (3.9 - 4.7) 

Creatinine (mg/dL) 0.9 (0.7 - 1.4) 1.0 (0.8 -1.6) 

Lactate (mg/dL) 1.7 (1.3 - 2.2) 1.4 (1.1 - 2.0) 

Hematological markers 

White Blood Cells (103/µL) 6.8 (5.2 - 9.8) 7.7 (5.7 - 10.5) 

Lymphocyte Percentage 13.1 (7.8 - 20.7) 14.1 (8.9 - 21.4) 

Hemoglobin (mEq/L) 12.5 (11.1 - 13.7) 12.8 (11.4 - 14) 

Red Blood Cell Distribution Width (%) 14.4 (13.6 -15.6) 12.7 (12.1 - 13.9) 

Platelets (#) 212 (162 - 279.3) 194 (148 - 260) 

Liver Function 

Alanine Aminotransferase (units/L) 31 (19 - 54) 31 (20 - 53) 

Aspartate Aminotransferase (units/L) 41.5 (29 - 67) 47 (31 - 74) 

Albumin (g/dL) 3 (2.6 - 3.3) 3 (2.6 - 3.3) 

Total Bilirubin (mg/dL) 0.6 (0.4 - 0.8) 0.6 (0.4 - 0.8) 

Coagulation markers 

Prothrombin Time (s) 14.3 (13.5 - 15.7) 14.2 (13.5 - 15.5) 

Partial Thromboplastin Time (s) 32.5 (29.2 - 37.1) 33.3 (30 - 38.8) 
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Gases 

PCO2 (mmHg) 37 (41 - 47) 41 (35 - 47) 

pH 7.4 (7.4 - 7.4) 7.4 (7.3 - 7.4) 

Inflammatory markers 

C Reactive Protein (mg/L) 152.3 (83.1 - 205.6) 124.6 (62.3 - 214.5) 

Ferritin (ng/mL) 720 (343.5 - 1813.8) 818 (388 - 1966) 

D-Dimer (ng/mL) 1.3 (0.7 - 2.5) 1.5 (0.9 - 3.0) 

Creatinine Phosphokinase (units/L) 156 (80 - 505) 237.5 (187.8 - 440.5) 

Lactate Dehydrogenase (units/L) 417 (315 - 559) 450 (346.3 - 610.8) 

Procalcitonin (ng/mL) 0.2 (0.1 - 0.6) 0.2(0.1 - 0.7) 

Cardiac markers 

Troponin I (ng/mL) 0.1 (0.02 - 0.2) 0.2 (0.1- 0.9) 
 528 
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 529 
 530 
Supplementary Fig 1.SHAP Interactions: Critical Event at 7 Days. 531 

Heatmap demonstrating the composite SHAP interaction scores between features for patients from the best performing k-532 
th validation fold for critical event prediction at 7 days. The intensity along the diagonal represents independent 533 
contributions of a feature towards model prediction (i.e. mean absolute SHAP values in Figure 3). Covariant interactions 534 
between features is significantly less relative to the intensity of the independent contributions of each feature towards 535 

model prediction. 536 
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 537 
 538 
Supplementary Fig 2. SHAP Interactions: Critical Event at 7 Days (Univariate Effect Removal). 539 

Heatmap demonstrating the composite SHAP interaction scores between features for patients from the best performing k-540 
th validation fold for critical event prediction at 7 days. Univariate feature contributions along the diagonal have been set to541 
0 to better examine the relative strength of covariance between features. 542 

-
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 543 
 544 
Supplementary Fig 3. SHAP Interactions: Mortality at 7 Days. 545 

Heatmap demonstrating the composite SHAP interaction scores between features for patients from the best performing k-546 

th validation fold for mortality prediction at 7 days. The intensity along the diagonal represents independent contributions 547 
of a feature towards model prediction (i.e. mean absolute SHAP values in Figure 3). Covariant interactions between 548 
features is significantly less relative to the intensity of the independent contributions of each feature towards model 549 
prediction. 550 
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 551 
 552 
Supplementary Fig 4. SHAP Interactions: Mortality at 7 Days (Univariate Effect Removal). 553 

Description: Heatmap demonstrating the composite SHAP interaction scores between features for patients from the best 554 
performing k-th validation fold for mortality prediction at 7 days. Univariate feature contributions along the diagonal have 555 

been set to 0 to better examine the relative strength of covariance between features.  556 
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 557 
Supplementary Fig 5. Importance of Age Over Time Frames 558 

Mean absolute SHAP value for age (blue) to represent importance in prediction of critical event occurrence over different 559 
time frames (7, 10, 15, and 20 days).560 
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Supplementary Table 1. Baseline Patient Characteristics by Hospital. 561 

Characteristics, such demographics, clinical history, vital signs, and laboratory tests, for 562 
all patients included in the study and delineated by the hospital site at which the patient 563 
was admitted. 564 
 565 

Characteristics or Admission MSQ MSB MSH MSW MSM 

Demographics 

Sex, n (%) 

Male 291 (63.4) 207 (58.9) 317 (56.6) 255 (55.4) 704 (57.47) 

Female 168 (36.6) 144 (41.0) 243 (43.4) 205 (44.6) 521 (42.53) 

Race, n (%) 

Other 33 (7.2) 9 (1.9) 44 (3.6) 16 (4.6) 7 (1.3) 

African American 50 (10.9) 191 (41.5) 273 (22.3) 68 (19.4) 
194 
(34.6) 

Caucasian 264 (57.5) 91 (19.8) 537 (43.8) 131 (37.3) 
263 

(46.9) 

Asian 9 (1.9) 0 (0) 14 (1.1) 4 (1.1) 5 (0.9) 

Pacific Islander 16 (3.5) 19 (4.1) 64 (5.2) 5 (1.4) 20 (3.6) 

Unknown 87 (18.9) 150 (32.6) 293 (23.9) 127 (36.2) 71 (12.7) 

Ethnicity, n (%) 

Hispanic/Latino 230 (50.1) 322 (70) 676 (55.2) 251 (71.5) 330 (58.9) 

Non-Hispanic Latino 188 (40.9) 17 (3.7) 333 (27.2) 92 (26.2) 206 (36.8) 

Unknown 41 (8.9) 121 (26.3) 216 (17.6) 8 (2.3) 24 (4.3) 

Age - Median(IQR) 
66  
(56-77) 

65.3 
(51.7-76.4) 

68.8  
(56.0-80.1) 

72  
(63-82) 

62.1 
(49.4-71.8) 

Age group, n (%) 

18-30 10 (2.2) 16 (4.6) 7 (1.3) 4 (0.9) 56 (4.6) 

31-40 16 (3.5) 38 (10.8) 32 (5.7) 7 (1.5) 139 (11.4) 

41-50 49 (10.7) 32 (9.1) 60 (10.7) 17 (3.7) 133 (10.9) 

51-60 92 (20.0) 62 (17.7) 90 (16.1) 65 (14.1) 242 (19.8) 

61-70 110 (23.9) 71 (20.2) 123 (21.9) 127 (27.6) 320 (26.1) 

71-80 108 (23.5) 73 (20.8) 120 (21.4) 121 (26.3) 202 (16.5) 

81-90 64 (13.9) 51 (14.5) 101 (18.0) 92 (20) 102 (8.3) 

At least 90 10 (2.2) 8 (2.3) 27 (4.8) 27 (5.9) 31 (2.5) 

Previous Medical History, n (%) 

Hypertension (%) 228 (49.7) 120 (34.2) 210 (37.5) 128 (27.8) 462 (37.7) 
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Atrial Fibrillation (%) 45 (9.8) 18 (5.1) 40 (7.1) 27 (5.9) 86 (7.0) 

Coronary Artery Disease  
(%) 95 (20.7) 46 (13.1) 85 (15.2) 81 (17.6) 171 (13.9) 

Heart failure (%) 51 (11.1) 27 (7.7) 61 (10.9) 42 (9.1) 110 (8.9) 

Stroke (%) 43 (9.4) 22 (6.3) 39 (6.9) 14 (3.0) 98 (8) 

Chronic Kidney Disease (%) 54 (11.8) 20 (5.7) 58 (10.4) 26 (5.6) 136  (11.1) 

Diabetes (%) 154 (33.6) 68 (19.4) 143 (25.5) 101 (21.9) 313 (25.6) 

Asthma (%) 42 (9.2) 32 (9.1) 45 (8.0) 13 (2.8) 115 (9.4) 

Chronic Obstructive  
Pulmonary Disease (%) 35 (7.6) 16 (4.6) 31 (5.5) 21 (4.6) 65 (5.1) 

Cancer (%) 20 (4.4) 30 (8.5) 33 (5.9) 11 (2.4) 112 (9.1) 

Vital Signs at Hospital Admission, Median (IQR) 

Heart Rate (bpm) 89  
(78 – 101) 

89  
(78-100.2) 

89  
(78-100) 

85  
(76-96) 

89  
 (79-101.3) 

Oxygen Saturation (%) 95  
(93-97) 

96  
(94-98) 

96  
(94-98) 

96  
(94.5-98) 

96  
(94-98) 

Respiration Rate (breaths /  
minute) 

18  
(18-20) 

18  
(18-19.3) 

20  
(18-22) 

18  
(17- 20) 

20  
(18-22) 

Temperature (F) 
98.8  
(98.2-99.7) 

98  
(97.3-98.7) 

98.7  
(98.1-99.9) 

98.7  
(98-99.6) 

99  
(98.2-100) 

Systolic Blood Pressure  
(mmHg) 

70  
(63-78) 

70  
(62.75-80) 

69  
(61-78) 

74  
(65.5-84) 

74  
(66.8-82) 

Diastolic Blood Pressure  
(mmHg) 

123  
(110-138) 

130  
(112-145) 

124  
(112-138) 

126  
(111-137) 

128.5  
(114-144) 

Weight (kg) 76.3  
(65.2-90.7) 

79.4  
(68.1-92.9) 

80.9  
(69.0-95.3) 

78.8  
(67.6-90.7) 

79.6  
(69.1-92.2) 

Admission Laboratory Parameters, Median (IQR) 

Metabolic Markers 
Sodium (mEq/L) 138  

(136-141) 
139  
(137-142) 

137  
(135-140) 

137  
(134-139) 

138  
(135-141) 

Potassium (mEq/L) 4.3  
(3.9-4.7) 

4.3  
(3.8-4.7) 

4  
(3.6-4.5) 

4.2  
(3.9-4.7) 

4.2  
(3.8-4.7) 

Creatinine (mg/dL) 1  
(0.8-2.1) 

1.2  
(0.9-2.1) 

0.9  
(0.7-1.4) 

0.9  
(0.7-1.3) 

1.0  
(0.8-1.7) 

Lactate (mg/dL) - 
1.94  
(1.1-2.9) 

1.7  
(1.3-2.2) 

1.5 
(1.1-2) 

1.3  
(1-1.8) 

Hematological Markers 
White Blood Cells (103/µL) 7.9  

(5.9-10.5) 
7.5  
(5.4-10.5) 

6.8 
(5.2-9.8) 

7.7  
(5.6-10.9) 

7.5  
(5.7-10.5) 

Lymphocyte Percentage 12 
(7.1-18.3) 

14.7  
(8.9-22.7) 

13.1  
(7.8-20.1) 

16.1  
(9.6-23.1) 

13.05  
(9-20.5) 

Hemoglobin (mEq/L) 12.6  
(11.1-13.8) 

12.5  
(11.2-13.8) 

12.5  
(11.1-13.7) 

13  
(11.6-14.2) 

13  
(11.6-14) 
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Red Blood Cell Distribution 
Width (%) 

12.8  
(12.1-14.2) 

13.1  
(12.5-14.1) 

14.4  
(13.6-15.6) 

12.5  
(12-13.5) 

12.6  
(12.1-13.7) 

Platelets (#) 188  
(146-259) 

205.5 
(153-266.2) 

212  
(162-279.3) 

197  
(152-264) 

187  
(144-252) 

Liver Function  
Alanine Aminotransferase 

(units/L) 
34  
(21-55) 

28  
(19-49) 

31  
(19-54) 

30  
(19-54) 

32  
(19-54.8) 

Aspartate Aminotransferase 
(units/L) 

50  
(34-76.8) 

42  
(28-74) 

41.5 
(29-67) 

48.5  
(32-77) 

45  
(31-71) 

Albumin (g/dL) 2.7  
(2.3-3.2) 

3.4  
(3.1-3.7) 

3  
(2.6-3.3) 

3  
(2.6-3.3) 

2.9  
(2.5-3.1) 

Total Bilirubin (mg/dL) 0.6  
(0.4-0.7) 

0.6  
(0.4-0.7) 

0.6  
(0.4-0.8) 

0.5  
(0.4-0.8) 

0.6 
(0.4-0.8) 

Coagulation Markers 
Prothrombin Time (s) 14  

(13.4-17.2) 
14.6 
 (13.5-16.1) 

14.3  
(13.5-15.7) 

13.9 
(13.4-14.9) 

14.2  
(13.6-15.3) 

Partial Thromboplastin  
Time (s) 

35.7  
(32.2-61.2) 

35.2 
(32.3-38.6) 

32.5  
(29.2-37.2) 

32.1  
(29.8-37.5) 

32.9  
(29.4-38.7) 

Gases 

PCO2 (mmHg) 
- 

40  
(34.3-46) 

41  
(37-47) 

41.5  
(36.3-48) 

41  
(35-47) 

pH 

- 
7.4  
(7.3-7.4) 

7.4  
(7.4-7.4) 

7.4  
(7.3-7.4) 

7.4  
(7.3-7.4) 
 
 

Inflammatory Markers 

C Reactive Protein (mg/L) 207.2  
(159.4-233.4) 

147.7  
(90.7-243.3) 

152.3  
(83.1-205.6) 

104.9  
(50.6-190.4) 

 125.4  
 (62.7-201.6) 

Ferritin (ng/mL) 968  
(473.6-2378.3) 

999.5  
(522.2-2228.5) 

720 
(343.5-1813.8) 

713.5  
(305.8-1466) 

763  
 (360-  1784) 

D-Dimer (ng/mL) 1.5  
(1.0-2.9) 

2.3  
(1.1-4.1) 

1.3  
(0.7-2.5) 

1.4  
(0.7-2.6) 

1.5  
(0.9-2.9) 

Creatinine Phosphokinase  
(units/L) 

237.5  
(187.8-440.5) - 

156 
(80-505) -  - 

Procalcitonin (ng/mL) 0.3  
(0.1-0.8) 

0.4  
(0.2-1.4) 

0.2  
(0.1-0.6) 

0.2  
(0.1-0.5) 

0.2  
(0.1-0.7) 

Lactate Dehydrogenase  
(units/L) 

468  
(359.5-628) 

489  
(390-637.5) 

417  
(315-559) 

448  
(345-651.5) 

427  
(324-559) 

Cardiac Markers 
Troponin I (ng/mL) 0.2  

(0.1-0.9) - 
0.1  
(0.0-0.2) - - 

Outcomes  

Critical 
0  
(0-1) 

0  
(0-1) 

0  
(0-1) 

0  
(0-1) 

0  
(0-1) 

Mortality 
0  
(0-0) 

0 
(0-0) 

0  
(0-0) 

0  
(0-0) 

0  
(0-0) 
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Supplementary Table 2. Baseline Patient Feature Analysis. 566 

Missingness, means, standard deviations, interquartile ranges, and histograms for all 567 
features in the dataset.  568 
 569 

Variable Missing 
(N) 

Present 
(%) Mean Standard 

Deviation 
IQR 
- 0% 

IQR - 
25% 

IQR - 
50% 

IQR - 
75% 

IQR - 
100% Histogram 

Demographics 

Age 0 100% 64.5 16.5 18.3 54.4 65.7 76.5 102 
▁▃▇▇▂ 

Sex 0 100% 0.581 0.494 0 0 1 1 1 ▆▁▁▁▇ 

ED Admission 0 100% 0.973 0.164 0 1 1 1 1 
▁▁▁▁▇ 

Other Admission 
Type 

0 100% 0.113 0.316 0 0 0 0 1 
▇▁▁▁▁ 

Never Smokers 0 100% 0.521 0.5 0 0 1 1 1 ▇▁▁▁▇ 

Smoking Status: 
Never Asked 

0 100% 0.0426 0.202 0 0 0 0 1 
▇▁▁▁▁ 

Passive Smokers 0 100% 0.000982 0.0313 0 0 0 0 1 ▇▁▁▁▁ 

Former Smokers 0 100% 0.205 0.403 0 0 0 0 1 ▇▁▁▁▂ 

Active Smokers 0 100% 0.0383 0.192 0 0 0 0 1 ▇▁▁▁▁ 

Asian 0 100% 0.0357 0.186 0 0 0 0 1 ▇▁▁▁▁ 

African American 0 100% 0.254 0.435 0 0 0 1 1 ▇▁▁▁▃ 

Other Race 0 100% 0.421 0.494 0 0 0 1 1 ▇▁▁▁▆ 

Pacific Islander 0 100% 0.0105 0.102 0 0 0 0 1 ▇▁▁▁▁ 

Unknown Race 0 100% 0.0406 0.197 0 0 0 0 1 ▇▁▁▁▁ 

White 0 100% 0.238 0.426 0 0 0 0 1 ▇▁▁▁▂ 

Hispanic 0 100% 0.274 0.446 0 0 0 1 1 ▇▁▁▁▃ 

Non-Hispanic 0 100% 0.592 0.492 0 0 1 1 1 ▆▁▁▁▇ 

Unknown 
Ethnicity 0 100% 0.134 0.341 0 0 0 0 1 ▇▁▁▁▁ 

 

Past Medical 
History          
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Atrial Fibrillation 0 100% 0.0707 0.256 0 0 0 0 1 ▇▁▁▁▁ 

Asthma 0 100% 0.0809 0.273 0 0 0 0 1 ▇▁▁▁▁ 

CAD 0 100% 0.156 0.363 0 0 0 0 1 ▇▁▁▁▂ 

Cancer 0 100% 0.0674 0.251 0 0 0 0 1 ▇▁▁▁▁ 

CKD 0 100% 0.0962 0.295 0 0 0 0 1 ▇▁▁▁▁ 

COPD 0 100% 0.055 0.228 0 0 0 0 1 ▇▁▁▁▁ 

Diabetes 0 100% 0.255 0.436 0 0 0 1 1 ▇▁▁▁▃ 

Heart Failure 0 100% 0.0953 0.294 0 0 0 0 1 ▇▁▁▁▁ 

Hypertension 0 100% 0.376 0.484 0 0 0 1 1 ▇▁▁▁▅ 

Stroke 0 100% 0.0707 0.256 0 0 0 0 1 ▇▁▁▁▁ 

Vitals 
         

Pulse 0 100% 89.5 16.7 46 78 89 100 150 ▂▇▇▂▁ 

Pulse Oximetry 11 100% 95.2 3.24 76 94 96 98 99 
▁▁▁▃▇ 

Respiration Rate 4 100% 20.2 4.2 7 18 19 20 46 
▁▇▁▁▁ 

Temperature 6 100% 98.9 1.4 95.2 98 98.7 99.7 103 
▁▇▇▂▁ 

Diastolic BP 5 100% 71.7 12.2 39 63 71 80 107 
▁▆▇▅▁ 

Systolic BP 6 100% 127 21.3 72 112 126 140 189 
▁▆▇▃▁ 

Weight 192 94% 82.5 20.6 40 68 79.6 93 174 ▃▇▃▁▁ 

Labs 
         

ALT 111 96% 47.5 56.1 8 19 31 54 597 ▇▁▁▁▁ 

AST 124 96% 64.9 73.4 13 30 44 72 905 ▇▁▁▁▁ 

CRP 1901 38% 144 94.8 1.91 63.7 127 215 457 ▇▆▅▂▁ 

D-Dimer 763 75% 2.53 3.15 0.28 0.79 1.43 2.75 18.8 ▇▁▁▁▁ 

Ferritin 546 82% 1529 2161 36 369 776 1901 17466 ▇▁▁▁▁ 

LDH 588 81% 498 261 171 328 436 585 2165 ▇▂▁▁▁ 

Procalcitonin 661 78% 1.71 7.64 0.03 0.09 0.21 0.68 154 ▇▁▁▁▁ 
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WBC 9 100% 8.39 4.31 1.9 5.4 7.4 10.3 40 ▇▃▁▁▁ 

Albumin 885 71% 2.97 0.518 1.2 2.6 3 3.3 4.1 
▁▂▇▇▃ 

CPK 2768 9% 435 757 17 82.5 173 500 8103 ▇▁▁▁▁ 

Creatinine 667 78% 1.73 2.22 0.37 0.74 0.97 1.55 16.1 ▇▁▁▁▁ 

Hemoglobin 669 78% 12.5 2.01 6.2 11.3 12.7 13.9 17.1 
▁▂▇▇▂ 

Lactate 1703 44% 1.86 1.09 0.7 1.2 1.6 2.2 9.9 ▇▁▁▁▁ 

Lymphocyte (%) 871 72% 15.7 9.58 1 8.5 13.6 20.9 54.1 ▇▇▃▁▁ 

PCO2 2087 32% 42.4 9.54 23 36 41 47 87 ▃▇▂▁▁ 

pH 2085 32% 7.38 0.0833 7.01 7.35 7.39 7.43 7.53 
▁▁▂▇▅ 

Platelets 668 78% 221 97.8 27 155 202 268 734 ▅▇▂▁▁ 

Potassium 641 79% 4.21 0.684 2.9 3.7 4.1 4.6 7 ▅▇▃▁▁ 

PT 2284 25% 15.4 4.25 12.2 13.5 14.3 15.6 48.1 ▇▁▁▁▁ 

PTT 2293 25% 36.2 13.6 22 29.6 32.9 38 153 ▇▁▁▁▁ 

RDW 688 78% 14 2.12 11.1 12.6 13.6 14.8 25.9 ▇▅▁▁▁ 

Sodium 639 79% 138 5.48 123 135 138 141 163 
▁▇▃▁▁ 

Bilirubin (Total) 984 68% 0.691 0.445 0.3 0.4 0.6 0.8 4.4 ▇▁▁▁▁ 

Troponin-I 2605 15% 0.589 1.78 0.01 0.02 0.06 0.24 15.9 ▇▁▁▁▁ 

Outcomes          

Critical Event 0 100% 0.166 0.372 0 0 0 0 1 ▇▁▁▁▂ 

Mortality 0 100% 0.0606 0.239 0 0 0 0 1 ▇▁▁▁▁ 
  570 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2020. ; https://doi.org/10.1101/2020.04.26.20073411doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.26.20073411
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplementary Table 3. Final XGBoost Model Hyperparameters. 571 

Final hyperparameters for the XGBoost classifier at day 7 for critical event and mortality 572 
prediction after tuning using a grid-search to optimize for AUC-ROC. 573 
 574 

Hyperparameter Critical outcome Mortality 

 3 Days 5 Days 7 Days 10 Days 3 Days 5 Days 7 Days 10 Days 

reg_alpha 1.0 0.10 0.01 0.1 1.0 1.0 0.1 0.1 

min_child_weight 5.0 3.0 3.0 7.0 5.0 1.0 1.0 5.0 

max_depth 9.0 6.0 6.0 6.0 6.0 9.0 6.0 6.0 

learning_rate 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 

gamma 0.4 0.3 0.2 0.1 0.3 0.2 0.3 0.4 

colsample_bytree 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.5 

  575 
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Supplementary Table 4. Model Performance Across Each Hospital. 576 

Performance of the XGBoost classifier by hospital site, as measured by accuracy 577 
(ACC), area under the receiver operating curve (AUCROC), area under the precision 578 
recall curve (AUCPRC), F1-score (F1), sensitivity (SENS), and specificity (SPEC). “OH” 579 

refers to all hospitals in the external validation set (i.e. MSW, MSM, MSB, MSQ). 580 
Outcomes are structured by “<outcome>_<day>”, where outcome is either a critical 581 
event (CRITICAL) or mortality (MORTALITY) and the time frame it was predicted over. 582 
“OUTCOME PROP” refers to the portion of the dataset with the respective outcome. 583 
 584 

FACILITY OUTCOME PATIENTS PROP 
OUTCOME ACC AUCROC AUCPRC F1 SENS SPEC 

MSH CRITICAL_3 1225 0.17 0.90 0.89 0.71 0.59 0.84 0.90 
  CRITICAL_5 1156 0.22 0.84 0.84 0.67 0.53 0.75 0.85 
  CRITICAL_7 1052 0.25 0.81 0.83 0.66 0.53 0.71 0.83 
  CRITICAL_10 931 0.28 0.80 0.83 0.67 0.57 0.70 0.82 
  MORTALITY_3 1225 0.03 0.97 0.87 0.26 0.03 1.00 0.97 
  MORTALITY_5 1156 0.05 0.95 0.84 0.37 0.13 0.56 0.95 
  MORTALITY_7 1052 0.07 0.93 0.87 0.49 0.21 0.71 0.94 
  MORTALITY_10 931 0.12 0.90 0.84 0.50 0.36 0.65 0.91 
MSQ CRITICAL_3 459 0.20 0.81 0.79 0.52 0.21 0.60 0.82 
  CRITICAL_5 440 0.29 0.73 0.79 0.59 0.21 0.67 0.73 
  CRITICAL_7 414 0.36 0.69 0.77 0.65 0.31 0.71 0.68 
  CRITICAL_10 390 0.41 0.69 0.80 0.73 0.46 0.80 0.67 
  MORTALITY_3 459 0.14 0.86 0.77 0.42 0.00  - 0.86 
  MORTALITY_5 440 0.23 0.80 0.76 0.56 0.21 0.92 0.79 
  MORTALITY_7 414 0.30 0.74 0.77 0.61 0.25 0.86 0.73 
  MORTALITY_10 390 0.37 0.68 0.78 0.67 0.29 0.74 0.67 
MSB CRITICAL_3 460 0.17 0.85 0.77 0.45 0.20 0.75 0.85 
  CRITICAL_5 426 0.28 0.75 0.80 0.63 0.19 0.93 0.74 
  CRITICAL_7 397 0.35 0.68 0.76 0.61 0.17 0.81 0.67 
  CRITICAL_10 370 0.41 0.65 0.80 0.71 0.32 0.79 0.63 
  MORTALITY_3 460 0.10 0.90 0.79 0.39 0.04 1.00 0.90 
  MORTALITY_5 426 0.21 0.80 0.83 0.58 0.11 1.00 0.80 
  MORTALITY_7 397 0.28 0.75 0.82 0.66 0.22 1.00 0.74 
  MORTALITY_10 370 0.36 0.67 0.79 0.67 0.19 0.88 0.66 
MSW CRITICAL_3 351 0.12 0.89 0.81 0.46 0.31 0.53 0.90 
  CRITICAL_5 331 0.15 0.86 0.78 0.45 0.43 0.57 0.89 
  CRITICAL_7 307 0.16 0.87 0.81 0.52 0.44 0.64 0.89 
  CRITICAL_10 280 0.20 0.83 0.80 0.58 0.49 0.59 0.87 
  MORTALITY_3 351 0.02 0.98 0.89 0.09 0.00  - 0.98 
  MORTALITY_5 331 0.03 0.97 0.86 0.23 0.00  - 0.97 
  MORTALITY_7 307 0.05 0.95 0.88 0.38 0.00 0.00 0.95 
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  MORTALITY_10 280 0.07 0.95 0.80 0.41 0.40 1.00 0.95 
MSM CRITICAL_3 560 0.16 0.82 0.73 0.34 0.20 0.36 0.85 
  CRITICAL_5 525 0.22 0.78 0.73 0.41 0.30 0.50 0.81 
  CRITICAL_7 481 0.26 0.76 0.75 0.50 0.34 0.63 0.78 
  CRITICAL_10 420 0.32 0.75 0.78 0.64 0.50 0.68 0.76 
  MORTALITY_3 560 0.06 0.94 0.89 0.43 0.00  - 0.94 
  MORTALITY_5 525 0.10 0.90 0.87 0.48 0.04 1.00 0.90 
  MORTALITY_7 481 0.14 0.87 0.84 0.49 0.14 1.00 0.87 
  MORTALITY_10 420 0.20 0.84 0.84 0.61 0.34 0.82 0.84 
OH CRITICAL_3 1830 0.17 0.84 0.77 0.43 0.23 0.57 0.85 
  CRITICAL_5 1722 0.24 0.78 0.76 0.51 0.26 0.65 0.79 
  CRITICAL_7 1599 0.29 0.73 0.74 0.52 0.30 0.60 0.75 
  CRITICAL_10 1460 0.34 0.73 0.79 0.66 0.44 0.77 0.73 
  MORTALITY_3 1830 0.08 0.92 0.83 0.38 0.03 1.00 0.92 
  MORTALITY_5 1722 0.15 0.86 0.82 0.52 0.08 1.00 0.86 
  MORTALITY_7 1599 0.20 0.82 0.84 0.58 0.18 0.86 0.82 
  MORTALITY_10 1460 0.26 0.79 0.83 0.64 0.40 0.74 0.79 

 585 
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 587 
Supplementary Table 5. Model Performance At Extended Time Frames. 588 

Performance of the XGBoost classifier on validation set from MSH and external 589 
validation set (MSB, MSW, MSQ, MSM), as measured by accuracy (ACC), area under 590 

the receiver operating curve (AUCROC), area under the precision recall curve 591 
(AUCPRC), F1-score (F1), sensitivity (SENS), and specificity (SPEC). “OH” refers to all 592 
hospitals in the external validation set (i.e. MSW, MSM, MSB, MSQ). Outcomes are 593 
structured by “<outcome>_<day>”, where outcome is either a critical event (CRITICAL) 594 
or mortality (MORTALITY) and the time frame it was predicted over. “OUTCOME 595 
PROP” refers to the portion of the dataset with the respective outcome. 596 
 597 
FACILITY OUTCOME PATIENTS PROP 

OUTCOME ACC AUCROC AUCPRC F1 SENS SPEC 

MSH CRITICAL_15 792 0.27 0.81 0.84 0.68 0.60 0.71 0.84 
  CRITICAL_20 719 0.25 0.82 0.85 0.68 0.58 0.70 0.85 
  MORTALITY_15 792 0.16 0.87 0.86 0.58 0.58 0.64 0.89 
  MORTALITY_20 719 0.18 0.86 0.87 0.64 0.54 0.67 0.87 
OH CRITICAL_15 1320 0.37 0.72 0.75 0.66 0.53 0.68 0.73 
  CRITICAL_20 1254 0.36 0.75 0.81 0.71 0.57 0.75 0.75 
  MORTALITY_15 1320 0.32 0.74 0.81 0.65 0.40 0.75 0.74 
  MORTALITY_20 1254 0.34 0.75 0.84 0.72 0.51 0.77 0.75 
 598 
 599 
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Supplementary Table 6. Logistic Regression and Generalized Additive Model 601 
Performance. 602 
Performance of the four models using only Age and all the features, as measured by 603 
accuracy (ACC), area under the receiver operating curve (AUCROC), area under the 604 
precision recall curve (AUCPRC), F1-score (F1), sensitivity (SENS), and specificity 605 
(SPEC). Models are structured by “<model>_<feature space>”, where model is either a 606 
logistic regression (LOG) or generalized additive model (GAM) and the features used in 607 
the model. 608 

MODEL OUTCOME PATIENTS PROP 
OUTCOME ACC AUCROC AUCPRC F1 SENS SPEC 

LOG_AGE CRITICAL_3 3055 0.17 0.83 0.57 0.22 0 1 0 
  MORTALITY_3 3055 0.06 0.92 0.70 0.18 0 1 0 
GAM_AGE CRITICAL_3 3055 0.17 0.83 0.52 0.19 0.01 1 0.003 

 
MORTALITY_3 3055 0.06 0.98 0.62 0.14 0 1 0 

LOG_ALL CRITICAL_3 1278 0.18 0.81 0.74 0.33 0.31 0.90 0.29 

 
MORTALITY_3 1278 0.02 0.96 0.67 0.06 0.07 0.98 0.07 

GAM_ALL CRITICAL_3 1278 0.18 0.82 0.74 0.37 0.35 0.92 0.31 

 
MORTALITY_3 1278 0.02 0.98 0.62 0.14 0 1 0 

 609 
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