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Abstract

We study the dynamics of epidemics in a networked metapopulation model. In each subpopulation, rep-
resenting a locality, the disease propagates according to a modified susceptible-exposed-infected-recovered
(SEIR) dynamics. In the modified SEIR dynamics, individuals reduce their number of contacts as a func-
tion of the weighted sum of cumulative number of cases within the locality and in neighboring localities.
We consider a scenario with two localities where disease originates in one locality and is exported to the
neighboring locality via travel of exposed (latently infected) individuals. We establish a lower bound on the
outbreak size at the origin as a function of the speed of spread. Using the lower bound on the outbreak
size at the origin, we establish an upper bound on the outbreak size at the importing locality as a function
of the speed of spread and the level of preparedness for the low mobility regime. We evaluate the critical
levels of preparedness that stop the disease from spreading at the importing locality. Finally, we show how
the benefit of preparedness diminishes under high mobility rates. Our results highlight the importance of
preparedness at localities where cases are beginning to rise such that localities can help stop local outbreaks
when they respond to the severity of outbreaks in neighboring localities.
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1. Introduction

Early detection of disease outbreaks at their loca-
tion of origin provide a chance for local containment
and time to prepare in other locations. Such prepa-
ration may enable locations connected to the origin
to become more aware of the outbreak and develop
a stronger response to the disease especially when it
is not contained. The success of containment strate-
gies is highly dependent on the ability of prompt-
ly detecting most infectious individuals in a given
location. The recent outbreak of the COVID-19
virus has shown that successful containment efforts
are highly challenging when many latently infect-
ed and asymptomatic but infectious individuals can
travel undetected between locations [1].

In the ongoing COVID-19 outbreak, localities in
the US are continuing to see alarming surges in the
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number of cases and hospitalized individuals at dif-
ferent times, driven in part by differences in intro-
duction and lift-off of the epidemic in local commu-
nities [2]. Reducing mobility between localities can
delay the overall epidemic progression. However,
prior research suggests that the final outbreak size
is not strongly affected by travel restrictions unless
combined with a strong reduction in transmission
within the locality [3, 4, 5, 6]. In the US, local
authorities have implemented non-pharmaceutical
interventions, e.g., declaring emergency or issuing
stay at home orders, at different times. Community
response to these interventions differ across locali-
ties [7, 8]. Hence, there is growing concern that
mismatched timing of response efforts could lead to
a failure of containment [9].

Here we develop a simplified model to assess
the combined effects of mobility, local response
to disease prevalence, and the level of alertness
prior to disease surge in a locality. To do
so, we consider a networked-metapopulation mod-
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el [10, 11, 12, 13] where the disease progresses
according to susceptible-exposed-infected-recovered
(SEIR) dynamics within each population or locality
(similar to [14]). Within each population suscep-
tible individuals can become exposed via contact
with infected individuals in the same locality. SEIR
models are a standard approach to model epidemio-
logical dynamics including pandemic influenza [15]
and COVID-19 [16].

In the present context, we extend SEIR models
to include the effects of behavior changes on local
disease progression. We assume individuals change
their behavior and reduce their contacts propor-
tional to disease severity, i.e., the ratio of infect-
ed and recovered, in the population [17, 18]. In
addition, behavior in a locality can be affected by
the disease severity in neighboring localities. That
is, individuals in a locality can take protective mea-
sures, e.g., social distancing, based on disease sever-
ity in a neighboring locality. Our aim is to quan-
tify the combined effects of inter-locality mobility,
preparedness-based behavior change, and behavior
changes in response to local disease prevalence. As
we show, behavior changes driven by awareness of
neighboring outbreaks can reduce the spread of a
newly imported disease in connected populations.

2. Methods

We consider a networked metapopulation model
of epidemic dynamics. At each population, the dis-
ease propagates according to SEIR dynamics given
a homogeneous population. In addition, we assume
there is constant travel in and out of each popula-
tion. The flow of travelers constitute only healthy
(susceptible) individuals, and those that are latent-
ly infected (exposed). The dynamics at locality i
are given as follows:

Ṡi = −βi
SiIi
Ni

+
∑
j∈Ni

λji
Sj

Sj + Ej
− Si
Si + Ei

∑
j∈Ni

λij (1)

Ėi = βi
SiIi
Ni
− µEi

+
∑
j∈Ni

λji
Ej

Sj + Ej
− Ei
Si + Ei

∑
j∈Ni

λij (2)

İi = µEi − δIi (3)

Ṙi = δIi, (4)

where βi is the transmission rate at location i,
λij is the flow of individuals from location i to
neighboring location j, µ denotes transition rate
from exposed (pre-symptomatic) to infected (symp-
tomatic), and δ is the recovery rate. We denote
the neighboring localities of i with Ni. We assume
total flow in and out of a location are equal, i.e.,
λij = λji. The total mobility flow from i to j
include susceptible and exposed individuals propor-
tional to their size in the population. We assume
infected individuals are successfully detected, and
thus cannot travel between localities. The model
does not include mobility of recovered individuals.
Mobility of recovered individuals may reduce the
outbreak in localities as they may serve as barriers
and reduce the outbreak [19]. Here, we neglect pos-
sible barrier effects of recovered mobility individuals
in order to focus on the effects of awareness-based
social distancing.

The transmission rate at location i depends on
the inherent infection rate β0 and social distancing
due to cumulative disease prevalence,

βi = β0

1− ωii
Ii +Ri
Ni

−
∑
j∈Ni

ωij
Ij +Rj
Nj

αi

.

(5)
In the social distancing model, individuals reduce
their interaction with others proportional to the
ratio of cumulative cases, defined as the ratio of
infectious and recovered in the population, at locali-
ty i and neighboring localities of i [17, 18, 20]. Here,
we consider social distancing in a broader sense as
the impact of all individual and public health mea-
sures that reduce social contact between individuals
(e.g. in the case of COVID-19 this may include
six feet physical distancing, restriction on social
and economic activities, and partial lock downs).
The term inside the parentheses is the awareness at
locality i caused by disease prevalence. The weight
constant ωii ∈ [0, 1] determines the importance of
disease prevalence at locality i versus the impor-
tance of disease prevalence at neighboring Ni local-
ities, ωij ∈ [0, 1]. We assume the weights sum to
one, i.e.,

∑
j∈Ni

⋃
i ωij = 1. The exponent constant

αi represents the strength of response to the disease
awareness. It determines the overall distancing at
locality i based on the awareness. If αi = 0, there is
no distancing response to the awareness at locality
i. Note that the awareness term inside the paren-
theses is always less than or equal to 1. Thus, the
larger αi is, the larger is the distancing response at
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Figure 1: Networked SEIR model with no-distancing. Two localities are connected with travel rates λij ∈ {1%, 0.01%, 0.001%}.
The disease propagates in both localities according to SEIR dynamics with no response to disease prevalence, i.e., αi = 0. Blue
and red lines show the ratio of susceptible and infected individuals in a locality, respectively. The differences in time of peaks
are 10, 38, 51 days respectively for λij ∈ {1%, 0.01%, 0.001%}. Final outbreak sizes of localities 1 and 2 are almost identical
for low mobility regimes.
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Figure 2: Percentage reduction in outbreak size and ratio of
infected at peak with respect to increasing social distancing
exponent (αi). We measure the reduction with respect to
the no-distancing case (αi = 0). In both cases, the mobility
per day is λ12 = λ21 = 0.001% of the population.

locality i to disease prevalence. We refer to the case
with αi = 1 as the linear distancing model.

In the following, we consider two localities with
equal population sizes N1 = N2, unless otherwise
stated. The disease starts at locality 1 with 0.1% of
the population in exposed state, and spreads over to
locality 2 via undetected exposed individuals trav-
eling from 1 to 2. The travel between localities does
not change the population sizes, i.e., we assume
λ12 = λ21. We set β0 = 5

8 , µ = 1
3 , and δ = 1

4
based on the rates estimated at [1] for the COVID-
19 outbreak in China. The reproduction number at
locality i is Ri = β0

δ = 2.5 for i ∈ {1, 2}. Note that
the standard SEIR model is recovered when αi = 0
and λij = 0 for all localities.

3. Results

3.1. Mobility and Social Distancing

As a baseline we consider no distancing response,
i.e., αi = 0 for all i = {1, 2} (Figure 1). We find
that Locality 2 follows an almost identical disease
trajectory as Locality 1 approximately 38 days after
Locality 1 when λij = 0.01%. The difference in
peak times of the two localities increases from 10
days to 51 days as λij decreases from 1% to 0.001%
(Figure 1). Moreover, as the mobility rate increas-
es, the outbreak at Locality 1 becomes larger than
the outbreak at Locality 2—see Figure 1(Left). The
intuition is that early on there is a larger influx of
susceptible individuals to Locality 1 from Locali-
ty 2, compared to the flow of exposed individuals.
This causes a slightly higher peak at Locality 1 com-
pared to Locality 2. This difference in outbreak
sizes is negligible compared to the effects of social
distancing.

Next, we consider the effect of social distancing.
For this, we assume localities only put weight on
disease prevalence at their own locality, i.e., ωii = 1
for i ∈ {1, 2}. Figure 2 shows the percentage reduc-
tion in final outbreak size and peak ratio of infected
at Locality 2 as localities become more responsive,
i.e., as αi increases. When the distancing is linear
αi = 1, the reductions in peak and outbreak size
are near 25%. Reduction in both metrics reach-
es 70% when αi = 5. This range of values of the
impact of social distancing on disease transmission
is consistent with empirical estimates for COVID-
19 in Europe and the US [21, 22]. While outbreak
size continues to decrease with αi increasing, there
does not exist a critical threshold of αi that stops
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the disease spread in a locality. The failure to stop
an outbreak with awareness is due to the propor-
tionality of the social distancing to the cumulative
number of cases [17].

3.2. A lower bound on the outbreak size at the ori-
gin

Final size relationships for SEIR dynamics with-
out mobility connect the strength of an epidemic
(reproduction number) to the number of individu-
als not infected at the end of the epidemic S(∞).
In the present case, such relationships constitute an
analogous lower bound for the outbreak size at the
origin in a scenario without mobility (λij = 0) and
ω12 = 0,

S(∞)−
(

1 + α1R1(1− S(∞))

)− 1
α1

= 0, (6)

where R1 = β0

δ is the reproduction number at the
origin. Above, we assume compartments (S, E,
I, R) in the model dynamics represent the frac-
tion of population in the corresponding stage of the
disease. In obtaining the relation in (6), we con-
sider a modified social distancing model in which
we also include fraction of exposed E in the dis-
tancing term—see Appendix A. When individuals
reduce their interactions proportional to the cumu-
lative number of exposed cases, the social distanc-
ing is stronger than (5). Thus, the solution to (6)
for S(∞) is an upper bound for the fraction of final
susceptible individuals, which means it is a lower
bound for the fraction of final recovered individuals
(R(∞)). For the linear distancing case α1 = 1, we
obtain the closed form solution to (6),

S(∞) = R−11 , R(∞) = 1−R−11 . (7)

Figure 3 compares the actual outbreak sizes with
the upper bound for S(∞) obtained by solving (6)
for different values of α1. We observe that the upper
bound solution, denoted with (Ŝ(∞)), is loose by
a constant amount that is approximately equal to
0.04 in both k = 1 and k = 3. We also note that
this upper bound provides a good approximation of
the outbreak size at Locality 2 when mobility is low
and ω21 = 0.

3.3. Adopted awareness

We analyze the effect of awareness at Locality 2
caused by the outbreak in Locality 1. We denote
the weight ω21 associated with this awareness as the

0 0.2 0.4 0.6 0.8 1
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Figure 3: Upper bound values of S(∞) obtained by solving
(6) for k = 1 and k = 3. We let R1 = 2.5. Lines correspond
to the left hand side of (6). Circle dots show the solution to
(6). Diamond dots are S(∞) values obtained by simulating
the SEIR model in (1)-(4) with βi given in (5). For k = 0, we
use standard speed-size relations for the SEIR model without
social distancing [23]. Note that the relation for the standard
SEIR model is exact. Thus, diamond and circle dots overlap
for k = 0. The difference between the upper bound for S(∞)

(Ŝ(∞)) and the simulated S(∞) is relatively constant for
different values of α1.

adopted awareness weight. We assume Locality 1’s
awareness is not shaped by the outbreak at Local-
ity 2, i.e., ω11 = 1. In this scenario, the adopted
awareness should be interpreted as individuals in
Locality 2 reducing contacts, e.g., practice social
distancing, based on the awareness created by the
outbreak at Locality 1. When the disease starts in
one location (Locality 1) and moves to a neighbor-
ing locality (Locality 2) via travel of exposed, the
adopted awareness distancing term at Locality 2 is
a measure of its preparedness.

We begin by using the lower bound for the out-
break size at the origin (R̂1(∞)) to obtain an upper
bound for the outbreak size at Locality 2 as a func-
tion of ω21. There exists a time T > 0 such that
for all t > T , we have R̂1(∞) < I1(t) +R1(t) where
R̂1(∞) is obtained by solving (6) for Ŝ1(∞) and
setting R̂1(∞) = 1 − Ŝ1(∞). Consider the social
distancing model β2(t) in (5). For t > T , we have

β2(t) < β0

(
1− ω21R̂1(∞)− ω22(I2 +R2)

)α2

.

(8)
As mobility slows down, i.e., λ12 → 0, the thresh-
old time T approaches zero as well. Thus, in the
slow mobility regime, the inequality above holds for
almost all times. By ignoring the social distancing
based on local awareness, we obtain the following

4
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upper bound on the infection rate at the importing
locality (Locality 2),

β2(t) < β0

(
1− ω21R̂1(∞)

)α2

. (9)

Note that the right hand side is a constant that
depends on the lower bound of the outbreak size at
the origin and the strength of response at Locality
2 (α2). Given the constant upper bound in (9), we
use the speed-outbreak size relation for the stan-
dard SEIR model, e.g., see [23, 24], to obtain a
lower bound for S2(∞) at neighboring locality,

1− S̃2(∞) + R̃−12 log(S̃2(∞)) = 0. (10)

where we define

R̃2 :=
β0
δ

(
1− ω21R̂1(∞)

)α2

. (11)

The solution to (10) given by S̃2(∞) provides a low-
er bound for S2(∞) in the SEIR model with social
distancing (1)-(5). Note that we obtain the speed-
outbreak size relation for the standard SEIR model
when α2 = 0. In Appendix B, we demonstrate
how the solution to (10) changes as a function of
strength of responses at localities—see Figures S1-
S2.

We compare the outbreak size at Locality 2 from
simulating (1)-(5) with the upper bound obtained
by solving (10) for a range of adopted awareness
values ω21 ∈ [0, 1] (Figure 4). We observe that the
upper bound is loose when the adopted awareness
is close to zero. This is reasonable since in deriving
the bound we removed the social distancing with
respect to local disease prevalence. The accuracy of
the upper bound improves as the adopted awareness
constant increases. Indeed, as per our assumptions,
as λ21 → 0, the upper bound would tend to the
actual outbreak size when ω21 = 1.

Both the outbreak size at Locality 2 and the
associated upper bound monotonically decrease as
adopted awareness (w21) increases for the given
strengths of response at the origin α1 ∈ {1, 3}.
This means Locality 2 is better off reacting to
the outbreak at Locality 1, as this will lead to an
early strong response to the disease. Indeed, the
decrease of the outbreak size at Locality 2 with
respect to the adopted awareness constant is faster
when the response at Locality 1 is weak—compare
blue and black lines within Top and Bottom panels
in Figure 4. The reason for this is that a weak-
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Figure 4: Outbreak size at Locality 2 with respect to adopt-
ed awareness ω21. (Top) Weak (α2 = 1) and (Bottom)
Strong (α2 = 3) responses at Locality 2. Mobility is set
to λ = 0.001%. Weak and strong responses at Locality 1
correspond to α1 = 1 (black) and α1 = 3 (blue), respective-
ly. The outbreak size at Locality 2 decreases with increasing
adopted awareness values. The decrease is sharper when
response at the origin is weak. Corresponding theoretical
upper bound values (shown by dashed lines) are tighter at
larger adopted awareness values. In the Bottom figure, the
critical threshold values ω∗

21 above which disease does not
propagate approximately equal to 0.5 and 0.8 respectively
for weak (black) and strong (blue) responses at the origin.

er response at Locality 1 results in a higher ratio
of cumulative cases, which means higher awareness
at Locality 2. Going in the other direction, if the
strength of response at Locality 1 further increas-
es (α1 > 3), it is possible that increasing adopted
awareness increases the outbreak size at Locality 2.
This means the monotonic decrease in the outbreak
size at Locality 2 with respect to increasing adopted
awareness is contingent on the strength of response
at Locality 1 and the mobility constants.

The preparedness at Locality 2 can result in stop-
ping the outbreak from spreading at Locality 2.
Indeed, we observe in Figure 4 (Bottom) that there
exists a critical threshold for the adopted aware-
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ness constant w21 > 0.4 above which outbreak size
is near zero for Locality 2.

Next, we use the upper bound for the outbreak
size at Locality 2 to compute an upper bound for
the critical threshold value of the adopted aware-
ness constant given α1 and α2 values. In order to
obtain this threshold, we rely on the result that
when R2 < 1, the disease will die out in a standard
SEIR model. Note that R2 < R̃2 with R̃2 is as
defined in (11). Thus, the disease will not spread
at Locality 2 if R̃2 < 1. Solving this condition for
ω21, we get the following threshold

ω21 >
1−R−1/α2

1

R̂1(∞)
(12)

where R1 = β0

δ is the reproduction number and

R̂1(∞) is the lower bound on the outbreak size
at the origin obtained by solving (6). From (12),
we see that the critical threshold value for adopt-
ed awareness (ω∗21) increases with increasing α1 and
decreases with increasing α2. In Figure 4 (Bottom),
we see that the theoretical critical threshold values
are close to the actual (simulated) ω21 values above
which the disease does not propagate in Locality 2.

For α1 = 1, we obtain a close form solution for
R̂1(∞) in (7), which yields

ω21 >
1−R−1/α2

1

1−R−11

. (13)

The threshold value above is an increasing function
of α2. That is, Locality 2 can avoid an outbreak
with a smaller adopted awareness constant (ω21) as
α2 increases. For α2 = 1, we have the right hand
side equal to 1. This means there does not exist
a level of preparedness, i.e., a value of ω21 ∈ [0, 1],
such that the disease is eliminated at Locality 2.
This confirms the results shown in Figure 4 (Top)—
see solid and dashed black lines decreasing toward
0 as ω21 goes to 1. At ω21 = 1, the adopted aware-
ness is equal to the right hand side of (13) where
the prediction is that the disease can still spread in
Locality 2.

3.4. Effect of adopted awareness on total outbreak
size

While the above analyses show that Locality 2
can benefit from a heightened awareness due to a
weak response at Locality 1, this awareness is a
direct result of the lack of control at Locality 1.
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Figure 5: Total of outbreak sizes at localities 1 and 2 with
respect to adopted awareness ω21. (Top) Weak (α2 = 1) and
(Bottom) strong (α2 = 3) responses at Locality 2. Mobility
is set to λ = 0.001% . Weak and strong response at Local-
ity 1 correspond to (α1 = 1) and (α1 = 3), respectively.
There exists a critical adopted awareness constant value in
Top where the total outbreak size is lower in the scenario
where both localities respond weakly compared to the sce-
nario where Locality 1 has a strong response. The critical
value for the adopted awareness constant value can be found
by looking at the intersection of the solid black line with the
solid blue line for the corresponding mobility value. When
both localities respond strongly to the disease in Bottom
figure, such a critical adopted awareness constant value does
not exist.

Indeed, a larger outbreak at Locality 1 yields a low-
er outbreak size at Locality 2. Here, we address
conditions in which the reduction in the outbreak
size at Locality 2 due to the increase in the out-
break size at Locality 1 is larger than the increase
in the outbreak size at Locality 1.

We begin by focusing on the total outbreak size
defined as the sum of outbreak sizes in both locali-
ties, i.e., R1(∞)+R2(∞), as a global measure of the
effects of adopted awareness. We find that when the
response at Locality 2 is weak (α2 = 1), there exists
a level of preparedness (ω21 ≈ 0.7) above which the
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total outbreak size is smaller when the response at
Locality 1 is weak—see blue line dip below the black
line around ω21 ≈ 0.7 in Figure 5 (Top). In con-
trast, when the response at Locality 2 is strong,
there does not exist an adopted awareness constant
value where a weak response at Locality 1 is bet-
ter than a strong response at Locality 1 in terms of
total outbreak size—see Figure 5 (Bottom). Last-
ly, the total outbreak size is always lower when the
response at Locality 2 is strong—compare Figures
5 (Top) and (Bottom). These observations indicate
that we obtain the best outcome in terms of total
outbreak size when both localities respond strongly,
and Locality 2 has an adopted awareness constant
value above the critical threshold value.

In Figure 5, we also provide a theoretical approx-
imation of the total outbreak size computed by
adding the upper bound for the outbreak size in
the origin (R̂1(∞)) to the lower bound for the
outbreak size at Locality 2 (R̃2(∞)). This total
(R̂1(∞) + R̃2(∞)) is neither an upper bound nor
a lower bound. We see that the approximation
error is mostly dominated by the error in the upper
bound R̃2(∞) for small values of the adopted aware-
ness constant. The approximation is a lower bound
of the total outbreak size for all adopted awareness
values above the critical adopted awareness con-
stant computed using (12)—see dashed lines in Fig-
ure 5(Bottom) lying below the corresponding solid
lines.

3.5. Effects of mobility rates

Thus far, we have focused our analysis on the
effects of adopted awareness given a slow mobili-
ty regime (λ12 = 0.001%). As per the discussion
in Section 3.1, the outbreak times between locali-
ties get closer as mobility increases. Given higher
mobility rates, the cumulative number of cases at
Locality 1 will be lower by the time disease begins
to spread at Locality 2. Thus, we expect the ben-
efit of adopted awareness at Locality 2 to be lower
with increasing mobility.

We measure the benefit of adopted awareness
(ω21) by comparing the outbreak size at Locality
2 given a positive adopted awareness value ω21 > 0
with the outbreak size when adopted awareness
constant is zero, i.e., ω21 = 0. Following the dis-
cussion above, given a positive adopted awareness
constant value ω21 > 0, the potential benefit of
adopted awareness reduces as mobility increases
(Figure 6). We see that the decrease in the ben-
efit of preparedness is slow up until a mobility rate
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Figure 6: Benefit of adopted awareness with respect to
mobility rates. (Top) Weak and (Bottom) strong responses
at the origin. The strength of response at Locality 2 is weak
α2 = 1. The benefit is measured as the reduction in final size
with respect to the zero-adopted awareness constant scenario
ω21 = 0. Let F2(ω21, λ12) denote the final outbreak size at
Locality 2 with respect to ω21 and λ12. The benefit of alert-
ness is defined as F2(0, λ12) − F2(ω21, λ12). Weak response
at the origin, higher adopted awareness leads a smaller out-
break size at Locality 2 (Top). Given a strong response at
the origin, higher adopted awareness can lead to higher out-
break sizes (Bottom). Strong response at the origin reduces
the magnitude of the benefit of adopted awareness.

value. After a certain mobility value λ12 ≈ 0.05%,
the decrease in the benefit of adopted awareness
is sharper. Regardless, we observe that when the
response at the origin is weak, it is better to have
a higher level of adopted awareness—see Figure 6
(Top). The magnitude of benefits of adopted aware-
ness is reduced when the response at the origin
is strong—see Figure 6 (Bottom). Indeed, low-
er adopted awareness values can yield smaller out-
break sizes at Locality 2 for high mobility—observe
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that the benefit value dips below zero at higher
mobility rates in Figure 6 (Bottom).

Thus far, we assumed the total flow of individu-
als from one locality to another is fixed and do not
depend on the severity of the outbreak. An alterna-
tive is to let mobility rates be dependent on aware-
ness. Flow to a locality that is experiencing a severe
outbreak can reduce, and similarly flow from locali-
ties with widespread outbreaks toward regions with
less severe outbreaks can increase—see Appendix
C for one such awareness driven mobility dynam-
ics. Another alternative is to reduce the overall
flow to and from locality based on the current size
of the outbreak. In a two locality setting where one
locality is the origin, such awareness-driven mobil-
ity dynamics delay the time disease takes-off in the
neighboring locality, increasing the time for neigh-
boring locality to be better prepared. In turn, the
benefit of awareness increases similar to the effect
of reduction in mobility rates discussed above.

3.6. Effects of population sizes

We consider scenarios where the two localities
have differing population sizes N1 6= N2. In the
model dynamics given in (1)-(5), we assume the
populations mix at a fixed rate λij . Thus, the
population size differences would not affect the
flow implying that former results would continue
to hold even when N1 6= N2. We consider an
alternative mobility model where the mobility con-
stants λij represent the flow rates in order to ana-
lyze the effects of population size differences—see
Appendix C. In this alternative model, the amount
of flow from one locality to another depends on
the size of the originating compartment (S1, E1, S2,
or E2) This model provides identical results when
N1 = N2. When the initial population sizes are dif-
ferent (N1 6= N2), the mobility dynamics will gener-
ate flows such that the population sizes will change
over time. In turn, this will affect the ratio of the
cumulative infected R2(∞)/N2(∞) where we note
that N2(∞) represents the size of the population in
Locality 2 at time t =∞.

The effect of population differences is negligible
when mobility is low (Fig. S4). The small differ-
ences in outbreak sizes are caused by the change
in population sizes. For instance, when the pop-
ulation size at Locality 1 is larger than Locality
2 (N1 > N2), individuals flow from Locality 1 to
Locality 2 increasing the population size of Locali-
ty 2. In turn, the fraction of recovered individuals
in Locality 2 gets lower because its final population

size is larger N2(∞) > N2. A secondary effect of
different population sizes manifests when the origin
goes through a worse outbreak and the importing
locality is prepared. In this case, there is a larger
migration of susceptible individuals from Locality
2 to Locality 1. This magnifies the outbreak ratio
in Locality 2. All of the aforementioned effects are
more pronounced when mobility rate is higher.

4. Conclusions

We developed a mathematical model to analyze
the impact of social distancing efforts on disease
dynamics among interconnected populations. We
assumed that social distancing efforts at a given
location is a function of both disease prevalence
within the population and outbreak dynamics at
neighboring localities. Our analysis showed that it
is beneficial to reduce travel between localities giv-
en the inability to detect latently infected individ-
uals (consistent with earlier findings [1]). However,
this benefit is contingent on how prepared neigh-
boring localities are for the importation of cases.
We used the term adopted awareness to determine
the importance given to preparedness at neighbor-
ing localities. We assumed the preparedness at
importing localities is an increasing function of the
outbreak size at the origin. The increasing func-
tion assumption implied that neighboring localities
increase their levels of preparedness as the sever-
ity of the disease at the origin increased. That
is, the severity of the outbreak at the origin trig-
gers social distancing efforts at neighboring locali-
ties by local authorities making non-pharmaceutical
interventions, e.g., declaring state of emergency or
issuing stay at home orders. We derived an upper
bound on the outbreak size at importing localities
as a function of the outbreak size at the origin
and strength of response at the importing locali-
ty. Using this upper bound, we identified a critical
threshold for adopted awareness weight that would
eliminate the disease at importing localities.

It is not surprising that increased levels of pre-
paredness reduces the outbreak size at localities
neighboring the origin. However, the level of pre-
paredness is dependent on the outbreak size at the
origin. Thus, levels of preparedness increase at
a locality when a neighboring locality has a larg-
er outbreak size. Our results show that increased
levels of preparedness at neighboring localities can
yield lower total outbreak sizes even when the
response at the origin is weak (Figure 5(Top)). The
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theoretical and numerical results mentioned above
hold under a low mobility regime in which there is a
lead time for increased alertness levels at importing
localities based on the outbreak size at the origin.
We also find that the benefit of adopted awareness
is robust to small variations in mobility, awareness-
driven mobility dynamics (Appendix C), hetero-
geneous population sizes (Section 3.6) and to vari-
ation in the inherent infection rate of the disease
(Appendix D).

Overall, our findings imply that if there are multi-
ple localities with outbreaks, the jurisdictions with
less severe outbreaks should be looking at their
worse-off neighbor rather than their best-off neigh-
bor, and implementing social distancing measures
accordingly. We note that this finding provides fur-
ther support for related work showing that coordi-
nation of responses can stop outbreaks when discor-
dant responses do not [9]. The effects of awareness-
driven social distancing and disease preparedness
of connected communities during an epidemic out-
break should be further assessed using epidemiolog-
ical models that account for important biological
features of the disease. For instance, experiments
on temporal viral shedding of COVID-19 estimate
nearly half of the secondary cases happen by being
in contact with individuals in pre-symptomatic
stage [25]—see [26, 27] for other analysis of the
impact of asymptomatic spreading. Here, we do
not make a distinction between symptomatic and
asymptomatic infected individuals; further exten-
sions could incorporate such differences, e.g., [1, 27].
In addition, the current model does not account
for the mobility of recovered individuals and their
impact on reducing transmission, given disease-
specific modification of behavior [19]. Such holis-
tic approaches to modeling that include mechanis-
tic social distancing terms in complex epidemiolog-
ical models can provide an essential perspective on
effective control of the pandemic [21]. This paper
takes a step in this direction by providing analyt-
ical and numerical results on the importance of
awareness-driven behavior and preparedness, and
mobility.

Appendix A. A lower bound on the out-
break size at the origin

We derive a closed form solution for the outbreak
size at the origin for the SEIR model in (1)-(4) when
mobility is not included (λij = 0). We modify the

social distancing model at the origin (Locality 1)
by

β̂1 = β0 (1− (E1 + I1 +R1))
α1 = β0S

α1
1 (A.1)

where we assumed N1 = 1 to simplify notation.
The social distancing model above assumes that
individuals distance with respect to the cumulative
number of cases including the exposed individuals
which were not included in (5). We note that this
assumption is for analysis purposes only and allows
us to compute a lower bound on the outbreak size
for the original model in (5).

We define the following quantity to be the weight-
ed sum of exposed and infected individuals

Y (t) := E(t) + I(t). (A.2)

The force of infection is given by

λ(I) := β0I. (A.3)

Given the force of infection and the reproduction
number R1 = β0

δ , we can show that

Ẏ = λ(I)

(
Sα1+1 − 1

R1

)
(A.4)

Then we have the constant of motion of the SEIR
model ((1)-(4)) with the distancing model (A.1) as

Y (t) + S(t)+
1

R1

S(t)−α1

α1
=

Y (0) + S(0) +
1

R1

S(0)−α1

α1
(A.5)

for any t. In identifying the above constant of
motion, we divide dY/dt by dS/dt in (1), simpli-
fy terms, and integrate the resultant relation from
time 0 to t. These steps are similar to the steps used
to establish speed-outbreak size relations for stan-
dard SEIR models without social distancing, e.g.,
see [23, 24]. Now letting t→∞ and using the fact
that S(0) = 1, Y (0) = 0, Y (∞) = 0, we obtain the
speed of spread versus final size relation in (6) for
α1 > 0.

The social distancing function in (A.1) includes

exposed individuals. That is, we have β̂1(t) < β1(t)
for all t where β1(t) is as defined in (5). Thus the
final size R(∞) in (7) is a lower bound on the out-
break size at the origin.
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Appendix B. An upper bound for the out-
break size at the importing
locality

Figures S1 and S2 show the lower bound on S(∞)
obtained by solving (10). Top and bottom figures
illustrate the change in the lower bound as a func-
tion of the strength of response at the origin. In
accordance with the SEIR model (1)-(5), a strong
response at the origin leads to a larger outbreak
at Locality 2—compare diamond points in top and
bottom panels in Figures S1 and S2. Similarly, the
lower bound values S̃2(∞) are lower in the bottom
figures. Indeed, in both figures a weak response
at the origin compounded by a strong response
at Locality 2 guarantee that the disease does not
spread in the Locality 2—see blue circles and dia-
monds in top figures.

The adopted awareness constant (ω21) is smaller
in Figure S1 than in Figure S2. We observe that
the lower bound for S(∞) is tighter when ω22 is
smaller. This is expected since as ω22 decreases
the importance given to prevalence at Locality 2
(I2 + R2) in (8). Thus the difference between the
right hand sides of social distancing approximations
in (8) and (9) decreases.

Appendix C. Alternative mobility dynam-
ics

Awareness-driven mobility dynamics: We
consider a model where the flows between areas
increase or decrease proportional to the ratio of cur-
rent number of infected between localities, i.e.,

λij(t) = λij

(
1 + Ii(t)

1 + Ij(t)

)κ
, (C.1)

where λij and κ are positive constants. κ deter-
mines the strength of mobility change as a function
of the disease severity ratio. In the above model,
the mobility flow from i to j increases as the ratio
between the current outbreak size at locality i and
locality j increases.

Fig. S3 shows how the ratio in (C.1) changes
over time, indicating an increased flow at first from
Locality 1 to Locality 2, and then an increased flow
from Locality 2 to Locality 1 later. The difference
in peak times of localities reduces as κ increas-
es. For instance, if κ = 5, the reduction in the
difference between peak times of localities ranges
from 2% to 8% as adopted awareness constant ω21
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Figure S1: Lower bound values for S(∞). We assume low
adopted awareness ω21 = 1/2. We let R1 = 2.5 and λ =
0.0001%. (Top) Weak and (Bottom) strong response at the
origin. Lines correspond to the left hand side of (10). Circle
dots show the solution to (10), i.e., intersection of lines with
zero. Diamond dots are S(∞) values obtained by simulating
the SEIR model in (1)-(4) with βi in (5).

increases from 0 to 1. This reduction in the dif-
ference between peak times do not lead to a mean-
ingful change in the final outbreak sizes—see Fig.
S3(Right).

Population size dependent mobility dynam-
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Weak response at the origin (α1 = 1)
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Figure S2: Lower bound values for S(∞). We assume high
adopted awareness ω21 = 3/4. We let R1 = 2.5 and λ =
0.0001%. (Top) Weak and (Bottom) strong response at the
origin. Lines correspond to the left hand side of (10). Circle
dots show the solution to (10), i.e., intersection of lines with
zero. Diamond dots are S(∞) values obtained by simulating
the SEIR model in (1)-(4) with βi in (5).

ics: The modified model is as follows,

Ṡi = −βi
SiIi
Ni

+
∑
j∈Ni

λjiSj
Sj

Sj + Ej
− Si
Si + Ei

∑
j∈Ni

λijSi

(C.2)

Ėi = βi
SiIi
Ni
− µEi

+
∑
j∈Ni

λjiEj
Ej

Sj + Ej
− Ei
Si + Ei

∑
j∈Ni

λijEi

(C.3)

İi = µEi − δIi (C.4)

Ṙi = δIi. (C.5)

We note that the population sizes are changing over
time when N1 6= N2 even if λij = λji. We refer
to the population size at locality i at time t using
Ni(t).

Given this modified model, we consider different
population sizes for the origin (N1) with the ratio
of the initial population sizes (N1/N2) ranging from
0.1 to 100 in Fig. S4. When the ratio (N1/N2) is
smaller than 1, the model above yields a positive net
flow from locality 2 to locality 1. When the ratio is
larger than 1, the model above yields a positive net
flow from locality 1 to locality 2.

Appendix D. Sensitivity of benefit of
awareness to variation in the
infection rate

We consider the sensitivity of benefit of aware-
ness with respect to variability in the inherent infec-
tion rate of the disease (β0). The infection rate
affects the peak time and outbreak size at both
localities which makes the direction of its effect on
the benefit of awareness non-trivial. In particular,
if infection rate β0 increases, the difference in peak
times of two localities decreases, e.g., compare peak
time difference values at β0 = 0.5 and β0 = 0.75 on
the purple line in Fig S5. This creates less time
for Locality 2 to prepare. At the same time, when
the infection rate β0 is high, the outbreak size at
the origin increases which leads to an increase in
awareness at the Locality 2. We find that the lat-
ter effect slightly dominates the former effect yield-
ing a minor increase in the benefit of awareness as
the infection parameter β0 increases—see Fig. S5.
Moreover, the benefit of awareness is larger at larger
values of the adopted awareness constant regardless
of the mobility and infection rate values—compare
the y-axis values of different colored lines in Fig.
S5.
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