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Abstract

Background: While social distancing efforts have been successful at slowing the spread of SARS-CoV-
2, these measures cannot be sustained indefinitely. In this paper, we examine how serological testing can
reduce the risk of relaxing social distancing measures while also providing a way for test-positive individuals
to return to more normal levels of activity.

Methods: We use an SEIR-like compartmental model that accounts for serological test status to examine
if widespread serological testing can reduce the adverse effects of relaxing social distancing measures, in
terms of total deaths and health system burden. In our model, social distancing measures are relaxed to
a greater extent for those who test positive compared to those who have not been tested or test negative,
allowing a return to work and partial restoration of other social contacts to pre-pandemic levels. All in-
dividuals preferentially interact with those who have tested positive, such that seropositive individuals act
as immunological ‘shields.” We consider a range of potential testing capacities and the implications of an
imperfect test for this strategy.

Results: Although relaxing social distancing interventions increases total deaths, serologic testing as
a part of this strategy can reduce population risk. If social distancing restrictions are relaxed by 50% in
tandem with monthly serological testing of the general United States (US) population, 174,000 deaths
would be averted and 67% of the US population would be released from social distancing after 1 year, as
compared to a scenario without serological testing. Sustaining moderate levels of social distancing can help
to flatten the epidemic curve, reducing health system burden below the US critical care capacity.

Implications: Modeling studies suggest that serological testing can be used to relax social distancing
measures preferentially for seropositive individuals, insofar as antibodies can be established as a correlate

“These authors contributed equally to this work

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.


https://doi.org/10.1101/2020.04.24.20078576
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.04.24.20078576; this version posted May 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

of protection against SARS-CoV-2 infection. Implementing a strategy of serological testing and shielding
can reduce population risk while offsetting the severe social and economic costs of a sustained shutdown.

1 Introduction

SARS-CoV-2 emerged in central China in late 2019 leading to an ongoing pandemic of COVID-19, with
over 2.5 million detected cases and over 175,000 deaths globally as of April 23, 2020 [1]. In the United
States, 600,000 cases and 25,000 deaths were reported by that date [1]]. Unprecedented ‘social’ or ‘physical’
distancing measures have been put in place to reduce transmission and thereby blunt the epidemic peak (i.e.
“flatten the curve”). Beginning early in March, U.S. states began to close schools, suspend public gatherings,
and encourage employees to work from home if possible. On March 17, 2020, the US federal government
issued national social distancing guidelines, leading to wider implementation of such policies throughout
the country. At present, 95% of the U.S. [2] and over 30% of the global population is under some form of
lockdown or government-issued shelter-in-place order [3]]. However, the U.S. federal guidelines are set to
expire on April 30, 2020, which may result in some activities resuming and facilities re-opening in a matter
of weeks [4].

While initial data suggests that early social distancing guidelines may have initially helped slow the spread
of COVID-19 in many countries, including the United States, relaxation of social distancing will result in
increased contacts and therefore transmission increasing once again in the community. A return to ‘business
as usual’ without any restrictions would see a return to exponential growth in cases, rapidly exceeding the
capacity of health services [5].

With the goal of maintaining the reproductive number at or less than one, strategic public health efforts could
allow a gradual return to some activities [4]]. Some degree of social distancing is likely to be maintained,
whereby people have fewer (potentially infectious) contacts. Strict distancing measures can remain in place
for individuals at higher risk including the elderly and people with underlying health conditions. However,
widespread serological testing programs may be useful to inform social distancing recommendations in the
next phase of the U.S. epidemic.

Although rigorous population-based serosurveys of SARS-CoV2 in the United States have yet to yield results,
it is highly likely that infections far outnumber documented cases [6]. To the extent that detectable anti-
bodies serve as a correlate of immunity, serological testing may be used to identify protected individuals
[[7]. Germany, for example, has plans to test millions of people and to provide ‘immunity passports’ to those
who test positive [8]]. Moreover, it has been proposed that immune individuals could be returned to society
in a more efficient way by having them act as ‘shields’ [9]. In this strategy, shields would preferentially
replace susceptible individuals in physical interactions, such that more contacts are between susceptible and
recovered (immune) individuals rather than between susceptible and potentially infectious individuals.

Such strategies, however, rely on a serological test that can correctly identify immune individuals. At the
moment a small number of serological assays for detection of SARS-CoV-2 antibodies have been approved
for emergency use by Food and Drug Administration (FDA) [10] with many others currently in development
(e.g. [11])). These tests and likely others that become available will be imperfect[[12,[13]]. For the purpose of
informing social distancing, specificity (rather than sensitivity) is of primary concern. An imperfect test will
inevitably lead to false positive results, which in this context leads to individuals being incorrectly classified
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as immune. If used as a basis to relax social distancing measures, this error could lead to an increase in
transmission. The probability that a person with a positive test truly has immunity (the positive predictive
value) will change over the course of the epidemic as true prevalence increases.

Here, we evaluate the epidemiological consequences of using mass serological testing to inform the relax-
ation of social distancing measures as the COVID-19 epidemic progresses.

2 Methods

2.1 Model structure

We modeled the transmission dynamics of SARS-CoV-2 using a deterministic, compartmental SEIR-like
model. (Figure [1) We assume that after a latent period, infected individuals progress to either undocu-
mented or documented infection. A fraction of symptomatic cases are severe enough to seek care and
become documented infections. A proportion of those with documented infection are hospitalized, with a
subset of those requiring critical care. Surviving cases, both undocumented or documented, recover and
are assumed to be immune to reinfection (Table 1). All individuals who have not tested positive and are
not currently experiencing symptoms of respiratory illness are eligible to be tested. All hospitalized cases
are tested prior to discharge. Recovered individuals are moved to the test positive group at a rate that is
a function of the test sensitivity. Susceptible, latently infected, and undocumented cases may falsely test
positive and are moved to the test positive group at a rate that is a function of test specificity. False positives
may become infected, but the inaccuracy of their test result is not recognized unless they develop symptoms
that are sufficiently severe to warrant hospitalization and health providers correctly diagnose COVID-19,
overriding the history of a positive antibody test. The ordinary differential equations corresponding to this
model are included in the supplemental material. All models were run using R in the package ‘deSolve’ in R
version 3.6.2. Code is available at https://github.com/lopmanlab/Serological_Shielding.

There are three age groups represented in the model: children and young adults (<20 years), working adults
(20-64 years), and elderly (65+ years). We modeled age-specific mixing based on POLYMOD data adapted
to the population structure in the United States [14] [15]]. Contacts in this survey were reported based on
whether they occurred at home, school, work, or another location. We model an outbreak that begins with
the first cases in the U.S., which were estimated to have occurred in mid-January [16, [17]. We assume the
U.S. outbreak began on January 15, which we seed with 171 infections (60 in children, 71 in adults, and 40
in the elderly; initial conditions were calibrated to the initial time course of the outbreak).

2.2 Interventions
2.2.1 Social Distancing

On March 17, the U.S. federal government released guidance recommending working from home, postpon-
ing unnecessary travel, and limiting gatherings to less than 10 people [[18]]. Some states and municipalities
issued their own guidance before this date, others after. To account for variations in timing, we assumed that
national social distancing began on March 25th. Although adherence to these measures varies geographically
and is generally difficult to measure, we made several assumptions about how these policies have changed
location-specific contacts. First, we assume that under these measures, all contacts at school and daycare
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Figure 1: A) Overall model diagram. Serological antibody testing is shown by dashed arrows. Red dashed
arrows indicate false positives (i.e., someone is not immune, but they are moved to the test positive group)
and occur at a rate that is a function of 1-specificity. True positives occur at a rate that is a function of the
sensitivity. *Documented infections in the test-positive group have similar severity to documented infections
in the not tested/test negative group, but symptoms may not be recognized as being caused by SARS-CoV-
2 unless symptoms are severe enough to warrant hospitalization. B) Schematic of modeled interventions.
General social distancing reduces work, school and other contacts beginning on March 25, 2020 and these
contacts are gradually reintroduced beginning on May 9, 2020 with schools and daycares re-opening on
September 1, 2020.
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were eliminated and that contacts at non-home, non-work, non-school (‘other’) locations were reduced by
75%. We assume that contacts at home remain unchanged. To address differences in work-based contacts
by occupation type, we classified the working adult population into three subgroups based on occupation:
those with occupations that enable them to work exclusively from home during social distancing, those con-
tinuing to work but reduced their contacts at work by 90% (e.g., customer-facing occupations such as retail),
and those continuing to work with no change in their contact patterns (e.g., frontline healthcare workers).
The percent reduction in other contacts, percent contact reductions for essential workers who can reduce
their contacts, and the timing of the start of national social distancing were calibrated by fitting to incidence
observed in the US under social distancing such that the estimated number of deaths was within an order
of magnitude to that reported on April 16, 2020. This corresponds to a 64.7% reduction in overall contacts
for working-age adults, which is consistent with initial data from reductions in face to face contacts, which
ranged from 50-85% [[19].

2.2.2 Phased re-opening

Overall. We consider a phased approach to re-opening that begins to relax social distancing restrictions on
May 1, 2020 and that these changes begin to affect contact patterns one week later on May 9, 2020. At
this time, we assume that schools and daycares remain closed but that social distancing measures for the
general population can be relaxed, by allowing work and other contacts to be increased. To represent this,
we scale ‘work’ and ‘other’ contacts to a proportion of their value under general social distancing based on
a scalar constant, ¢, such that ¢ = 1 is equivalent to the scenario in which social distancing measures as put
into place on March 17 are maintained and ¢ = 0 is equivalent to a return to pre-pandemic contact levels for
both ‘work’ and ‘other’ contacts for essential workers and pre-pandemic contact levels for “other contacts for
all other groups. We assume that all children return to school and daycare on September 1,2020.

Testing. We consider how complementing relaxation of social distancing with serological testing could be
used to both release test-positive individuals from social distancing to act as shields, reducing population
risk. We assume that testing begins on May 1, 2020, and that test results begin to affect contact patterns one
week later on May 9, 2020.

Individuals that test positive can return to work (if they are not already working) and can increase their
non-home and non-school contacts to normal levels. To represent the deployment of immune persons in
customer-facing and other high-contact occupations, we assume that contacts at work and other (non-home,
non-school) locations are preferentially with immune persons by specifying that the probability of interacting
with a test positive person is 5 times what would be expected given the frequency of test-positives in the
population («=4), modeled using ‘fixed shielding’ as described previously in [9]]. We consider alternative
values in a sensitivity analysis.

For our primary models, we assume a serological test with a sensitivity of 94% and a specificity of 96%,
consistent with the reported accuracy of FDA-approved tests currently in use [10] (alternative assumptions
are explored in sensitivity analysis). We consider how relaxing social distancing recommendations combined
with different levels of serological testing (daily tests performed ranging from O to 10 million) impacts the
proportion of the population released from social distancing, total deaths, and peak health system burden.
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3 Results

3.1 No testing

In the absence of any intervention, our model predicts that 85% of the US population would be infected with
SARS-CoV-2, resulting in a total of 1.1 million deaths. Social distancing has the potential to greatly reduce
this burden, with indefinite social distancing reducing cumulative deaths by 83% and leading to a flattened
epidemic curve. However, if social distancing measures are relaxed prematurely, incidence rebounds quickly
and the benefit of early distancing is lost by the end of the epidemic (see SI).

3.2 Testing-informed social distancing

While relaxing social distancing leads to increases in deaths, reductions in social distancing may be imple-
mented simultaneously with serological testing to reduce deaths and strain on the healthcare system (Figure
2, Figure 3). We estimate that current social distancing policies have reduced total contacts for adults by
65%, which is supported by recent estimates [[19]. If social distancing measures are relaxed such that adults
only reduce their contacts by 41% compared with pre-pandemic levels (¢c=0.5) and schools are reopened
in the fall, 688,000 deaths would be expected by January 15, 2021 (Figure 2). However, if yearly sero-
logical testing of the US population (1 million tests/day) is also implemented in tandem with nationwide
relaxation of social distancing, expected deaths fall to 561,000, saving 127,000 lives. If monthly testing is
achievable (10 million test/day), expected deaths fall to 514,000, saving an additional 47,000 lives. In the
same scenario with monthly testing, 67% of the US population would test positive by the end of one year
and be able to both return to work and increase other social contacts to pre-pandemic levels (Figure 3| 24%
if yearly testing is used). The magnitude of this benefit depends on the degree of immunological shielding—if
a = 0 (no shielding), 726,000 deaths would be expected, more than if testing were not implemented at all.
In other words, testing can adversely affect population risk if not accompanied by changes in interactions.
Higher levels of shielding did not appreciably impact population risk (see SI).

While the fraction of the test positive population who is truly immune depends on both social distancing
levels and testing rate, roughly 30% of the test positive population would remain susceptible at the end
of the epidemic if monthly testing of the US population were implemented (e.g., 30% of the test positive
population would be false positives, see SI). Testing 200,000 people per day is roughly equivalent to a 10%
increase in social distancing intensity (Figure[4)). At higher levels of testing, these effects are more complex:
one million tests per day reduces mortality equivalent to 50% increase in social distancing intensity for
scenarios with weak social distancing, but can have perverse effects with very strong social distancing, if
infection prevalence remains low and thus the rate of false positives is higher (Figure [3). While a test with
100% specificity would eliminate the potential for false positives, the impact of this change on cumulative
deaths would be minimal.

For all scenarios, sustaining moderate levels of social distancing for test-negative and untested individuals
is important to help reduce peak epidemic burden (Figure [3). Removing all restrictions on non-home and
non-school interactions would result in a peak burden of 200,000 to 400,000 critical care patients in late
June. In contrast, if social distancing measures remain relatively strong (c=0.75, equivalent to total contacts
reduced by 53% for adults), peak burden would be 64,000-80,000 critical care patients, which is less than
the current critical care capacity in the United States (estimated at 97,776 beds [20]).
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Figure 2: The left column shows cumulative deaths by January 15, 2021 by social distancing relaxing strategy
assuming schools reopen on September 1, 2020 for No Shielding (o = 0) (top) and 5:1 Shielding (bottom).
Colored lines show levels of relaxing social distancing measures based on the value of ¢. Solid lines are for
96% specificity and dashed lines show results for a test with 100% specificity. The right column shows the
fraction of the US population released from social distancing after 1 year for No Shielding (top) and 5:1
Shielding (bottom). Line colors correspond to testing levels, with blue being 10 million tests/day (monthly
testing of the US population). All panels show a 50% relaxation of current social distancing levels for work
and other contacts for those untested or testing negative and assume a test specificity of 96%.
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Figure 3: Critical care cases over time by testing level (colors) and relaxation of social distancing levels for

other contacts and workplace restrictions (panels). c is the factor by which non-home, non-school contacts

are reduced from their initial values. All panels assume schools reopen on September 1, 2020. The ‘No

testing’ scenario is shown in yellow and is nearly identical to the 100,000 tests per day scenarios. The US
critical capacity is shown by the solid black line (97,776 beds)


https://doi.org/10.1101/2020.04.24.20078576
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.04.24.20078576; this version posted May 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

A B
10M -
Cumulative Number
deaths released
8 200M
% 750k %
500k 100M
E 6M E
b 250k L
Q Q
= =
2M
0 | I il
0 0.5 1
Relaxation of social distancing Relaxation of social distancing
(1-c) (1-c)

Figure 4: Contour plot of A) cumulative deaths and B) number of people released from social distancing as
a function of the degree of relaxation of social distancing (1 — ¢) and number of tests per day. Both panels
assume a test specificity of 0.96 and a shielding factor of 5:1 (o = 4).

School reopening in early fall is unlikely to trigger a second wave of infections unless the US remains under
nationwide lockdown until the start of the academic year (¢ = 1). A secondary peak is more likely to occur
during the summer, after social distancing measures are initially relaxed. If the US elects to maintain social
distancing at its current level until early fall, small increases in transmission may occur after schools reopen.
Note that our model does not account for any seasonal variation in transmissibility, which may or may not
be an important factor for SARS-CoV-2 transmission [21]].

4 Discussion

There is an urgent need to identify strategies that will permit safely easing lockdown measures and returning
to productive levels of economic and social activity. Our models suggest that serological testing can make
an important contribution to these efforts. Maintaining a moderate level of social distancing (i.e., at half
the current level) together with an aggressive serological testing program (at least yearly testing) could re-
lease 24 to 67% of the population from social distancing within the first year of the COVID-19 pandemic.
Individuals who test positive could act as ‘shields’ to reduce transmission, leading to greater reductions in
overall deaths [[9]. Although our model with moderate relaxation of social distancing plus monthly serolog-
ical testing still results in 514,000 deaths, it also results in a flattened curve that provides time to improve
treatment and expand healthcare capacity, which could ultimately reduce mortality rates [22]. Moreover,
our models suggest that an approach with serological testing results in up to 174,000 fewer deaths than a
strategy without testing, with promise of greater benefit if testing is targeted towards higher-risk groups [9].
In addition to fewer deaths, serological testing would also allow a substantial fraction of the population to
return to work and other activities with relative safety, compared to a universal rollback of social distancing
policies that would erase hard-earned gains we have made to date in controlling the spread of SARS-CoV-2
(see SI). Of course, a serological testing strategy is only one component of the response, alongside rigorous
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contact tracing efforts as incidence declines and sufficient capacity for diagnostic testing.

Although we do not consider the logistical challenges of mass serological testing initiative, we posit that
this approach is feasible. Germany has already implemented serological testing on a large scale, including
repeat testing of the same individuals on a regular (i.e. monthly) basis [23]. Although this would require a
significant and rapid scale-up in testing capacity, significant scale-up has already been achieved for diagnostic
PCR testing: from fewer than 1,000 tests per day in early March to nearly 150,000 tests per day in early April.
Drawing whole blood samples requires trained healthcare personnel, which would likely be prohibitive in
terms of cost and time on a mass scale. However, self-administered dried blood spot tests, which require only
a finger prick, may address some of the logistical challenges of a mass serological testing program if assays
can be optimized and validated for use on dried blood spots. Even if testing can be scaled up, requiring
evidence of a positive test to return to work creates strong incentives for people to either misrepresent
their immune status or intentionally get infected. A successful mass testing program must consider how a
program would enforce existing social disparities and guard against potential inequities in the availability
of testing. Moreover, a history of a positive antibody test should not change the clinical care of individuals
with respiratory symptoms suggestive of SARS-CoV-2 infection if a PCR diagnostic test would otherwise be
indicated.

Our models assumed random allocation of serological testing. In practice, testing targeted to specific groups,
such as healthcare workers, food service employees, or people who suspect themselves to have been infected
would increase efficiency by improving the positive predictive value of the test. Healthcare workers are
likely to be first to be offered antibody testing. [11]] This approach would likely increase the test positive
rate, increasing cost-effectiveness [24]. In addition, the model of shield immunity that forms the basis for
this analysis also showed how targeted use of shields to protect at-risk individuals can lead to substantive

decreases in total hospitalizations and deaths [9]].

While others have raised concerns that using an imperfect test to release social distancing pressures could
increase population risk, we show here that even an imperfect diagnostic has utility because the prevalence
of immune individuals is always greater in the test positive population than in the general population. Thus,
deploying immune individuals so they are responsible for more interactions than susceptible individuals
will always tend to decrease risk. If shielding is not used, this benefit disappears and testing can become
a liability, which may explain why our findings differ from others [25]. In our model, cumulative deaths
are not substantially impacted by the false positive rate given that deaths are similar when specificity is
100%. Although false positives are more important than false negatives for disease transmission risk, sub-
optimal sensitivity also has implications for a mass testing strategy. The first FDA-authorized serological
test has 94% sensitivity, which may reduce cost-effectiveness of testing by missing truly immune individuals.
Complementing serology with PCR-based viral diagnostic testing could substantially increase the pool of
immune people able to return to work and other activities. Strategies that use both tests should be the
subject of future modeling studies.

Compared to maintaining current levels of lockdown, reducing social distancing always results in higher
COVID-19 incidence. However, policymakers and society-at-large may consider these trade-offs acceptable,
given the high social and economic costs of sustained social distancing. We show that complementing reduc-
tions in social distancing with the use of an imperfect diagnostic can offset this increased incidence, such that
fewer deaths are expected if testing is used than if social distancing were implemented without testing. This
benefit depends on deploying test positive individuals as shields. We have assumed a moderate degree of

10
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shielding [9]], whereby people preferentially interact with presumed immune individuals (i.e. test positives).
While this seems reasonable, the degree of preferential mixing assumed in our models is not informed by
empirical data and the extent to which it is possible to implement this in different settings will vary. Crit-
ically, our model also incorporates realistic social contact patterns that account for contact differences and
assortativity by age, occupation, and test status. The effect of relaxing social distancing measured, and the
benefit of shielding, are likely sensitive to the nuanced changes in contact patterns by age, type, and location

which are captured in model.

There remains much to learn about immunity to SARS-CoV-2 and we have made three critical simplifying
assumptions in our model. First, we assume that antibodies are immediately detectable after resolution of
infection. In reality, this likely occurs between 11 to 14 days post infection [26], similar to SARS-CoV-1 [27]].
In practice, a small fraction of recent infections would be missed by serology, which would have a minor
effect on our results. Second, we assume that immunity lasts for at least a year. Given that the virus has only
been circulating for a matter of months in the human population, both the duration of antibody protection
and the extent to which those antibodies protect against future infections is unknowable. Antibody kinetics
of SARS-CoV-1 and MERS suggest that protection will last for at least months and as long as several years
[27]. Ongoing studies of SARS-CoV-2 show that antibodies persist for at least 7 weeks, with more data
to become available over the coming months [26]]. Third, we assume that antibodies detected by serology
are a correlate of protection. However, for some coronaviruses, antibodies do not appear to protect against
subsequent infections[27]. To explore how this might impact our results, we conducted a sensitivity analysis
where specificity was set to 50%, which assumes no discrimination between true and false positives. In
this scenario, higher testing rates led to increased deaths due to increasing interactions with seropositive
individuals with low levels of immunity (see SI). This increase in deaths was not apparent until testing rates
reached 100,000/day, the same level at which a more specific test would be expected to begin to provide
population level benefits.

In conclusion, our results suggest a role for a serological testing program in the public health response to
COVID-19, given that the antibodies detected by such tests are established as a correlate of protection against
infection. While maintaining a degree of social distancing, serology can be used to allow people with positive
test results to return to work and other activities. Under most of our modeled scenarios, this approach served
to release a sizable fraction of the population from social distancing, and, if those people serve as shields, to
also reduce incidence of COVID-19.
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Supplementary Material

S1. Social distancing interventions

If social distancing were completely relaxed prior to the end of the epidemic, our model predicts that trans-
mission would quickly rebound. Predicted critical care epidemic curves are shown in Figure|S1|and cumula-
tive infections and deaths are shown in Table [S1l

6e+05
» Intervention
o)
,:qé‘ 4e+051 Do nothing
% Indefinite social distancing
% — Stop distancing 5/01/2020
£ — Stop distancing 7/01/2020
O 2¢+05 Stop distancing 9/01/2020

0e+00 1

0 100 200 300
time

Figure S1: Critical care beds needed per day for different intervention scenarios assuming a 75% reduction
in other contacts, school closures, nonessential workplace closures, and 90% reduction in workplace contacts
for reduced contact employees for the duration of distancing
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Intervention Cumulative infections (% US Population) Deaths
Baseline
Do nothing 272 mill (84.2%) 1,075,000
Indefinite social distancing (SD) 42 mill (13.0%) 147,000
Relaxing social distancing
SD relaxed May 1, 2020 269 mill (83.2%) 1,059,000
SD relaxed July 1, 2020 265 mill (82.0%) 1,039,000
SD relaxed September 1, 2020 263 mill (81.3%) 1,010,000

Table S1: Cumulative infections and deaths after 1 year for social distancing scenarios without testing.

S$2. Model Equations

The ordinary differential equations describing the model are shown below for group i. The positive test

group is denoted with the ‘+’ sign.

dsS;
dt = _)\i (t)Sl — (1 — sp) X test; (t)Sl
dE;
o = /\i (t)Sl — 'YeEi — (1 — Sp) X tBSti (t)Ei
dIsi
dt7 = ’yeEip - ,YSIS,i
dl,
d—t’ =7E;i(1—p) —vala; — (1 — sp) x test;(t)1,;
st,i . + .
= vVsls,i(Hosp; — Crit;) + 'ySIS’i(Hospi — Crit;) — v Hs;
dH,.; . .
dt7 =515 Crit; + ’ySI::Z-Cmti — Yl
dD; .
7 YnHc i Die;
dR; .
dt - (1 - HOSpi)’YsIs,i + ’Yala,i + (1 - Se) X mQ(t)'YhHs,i + (1 - 86) X mQ(t)’Yth,i(l - Dlei)
— se x testi(t)R; + m1(t)ynHs,; + mi(t)ynHe (1 — Die;)
ds+
jtl = (1 — sp)test;(t)S; — A\f (t)S;"
dE; + + +
dtl = (1 — sp)test;(t)E; + A (t)S;” — e E;
dIr.
o =B =L
a,
d—t’ = (1—sp) x test;(t)Ia; +7.E; (1 —p)— fyaI;r’i
dR; " :
dtl = se x test;(t)R; + seypma(t)H. (1 — Die;)+

se x mo(t)ynHs i + (1 — Hospi)'ysfs":i + ’yaI;:i
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m1(t) and mo(t) are defined as follows (¢t = 107 is when testing starts, on May 1, 2020):

1 t<107
m® =1 50

0 t<107
ma) =1 0

The force of infection A(¢) for the ith group is a function of the number of social contacts for age group ¢ with
each subgroup j at time ¢ (x; ;(¢)), the probability of infection given contact (¢), the number of infections
in each group at time t (infec;(t)), and the population size of each group at time ¢ (n;(¢)). The overall
equation for \;(¢) is shown below:

Ticn(t)infecten(t)  @iep+ (t)infectop+(t) x4 qa(t)infectqa(t) T qat (t)infectgr (t)  x;pc(t)infect,.(t)

Ai(t) = )+

nen (1) Nent (1) Nad(t) Nag+ (t) Nre(t)
T et (t)infect, .+ (t) N zi re(t)infects.(t) )+ @i e+ (t)infectper (1) @y c(t)infecte(t) )+ T e+ (t)infecte+ (t)
Nyt (t) nfc(t) nfc+ (t) Nel (t) Nel+ (t)

i and j take values of ch (children age 0-19 years), ad (adults age 20-65 years who are not working or
working from home), el (older adults 65+ years of age), rc (adults at work in ’reduced-contact’ occupations,
where they have fewer contacts than pre-pandemic), fc (adults as work in full contact occupations, where
they have the same number of contacts as pre-pandemic).

The number of infectious individuals by age group and test status is equal to the sum of documented (symp-
tomatic) cases and a fraction of the undocumented (asymptomatic) cases, where this fraction asy corre-
sponds to the relative infectiousness of undocumented cases. This is shown below for children:

infecten(t) = asyly,c + Is .
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$3. Model parameters

Parameters used in the model simulations are shown in Table We assume that the size of the working
population is stable over the duration of the simulation. Although this may not be the case as unemployment
increases throughout the pandemic, the rate at which unemployment has increased so far has been time-
varying and its future trajectory is unknown.

Where possible, parameters were taken from prior literature. However, data from the initial stages of the
outbreak were lacking for the probability of death among ICU patients (Die,q and Die,;) and the probability
of transmission per contact (q). Several estimates of case fatality have been reported (including [28]]), but
these numbers have varied significantly by setting. As case fatality is often uncertain in the early stages of
an epidemic, the value of Ry is better estimated using generation time data. Using this method, estimates
of R have ranged between 2 and 3 [29]. We derived the expression for Ry based on our model and varied
Ro within the credible range defined by previous studies. While we did not formally fit to incidence data,
we tuned Dieyq, Dieo, and R to be consistent, within an order of magnitude, with reported death rates in
early March 2020, before national social distancing began. We then calculated the resulting ¢ value (see S4
for derivations of the basic reproduction number).

Based on this calibration, our model predicts 1.08 million deaths after one year, an infection fatality rate
(IFR), of 0.4% and a case fatality rate (CFR) of 2.8% if no interventions were implemented (see Table .
While our IFR estimates are lower than some other studies [28]], we also assume a higher level of undocu-
mented infections, which recent data suggest may considerably outnumber documented infections [6]. Our
CFR estimates are similar to other studies.

It is important to note that the fraction of cases who are undocumented is presently uncertain, and overall
results are highly sensitive to this quantity. For example, if we allow the fraction of cases that are documented
to be 0.3, twice that reported by Li et al [6]], our model predicts 2.4 million deaths, an IFR of 0.9%, and a
CFR of 2.9%. This difference underscores the importance of collecting high quality serological data going
forward.

Baseline social distancing parameters sd.other and p.reduced (when ¢ = 1) were estimated by matching the
observed peak time (at the beginning of April, around 100 days after the epidemic began) and incidence in
early to mid-April, under national social distancing.
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Parameter Code Value Units Source(s)
Natural history
Latent period Ye 1/3 1/days [30]
Recovery rate, undocumented infections Ya 1/7 1/days [22]
Recovery rate, documented infections Vs 1/7 1/days [22]
Recovery rate, hospitalized cases Yh 1/15 1/days (28]
Fraction undocumented P 0.86 - 16l
Relative infectiousness of undocumented infections asy 0.55 - (61
Basic reproduction number Ro 2.9 - estimated
Probability of infection per contact q 0.0451 1/contact estimated
Hospitalization
Probability of hospitalization
Children Hospep 0.061 - [31]]
Adults Hospaq 0.182 - 1311
Elderly Hospe; 0.417 - [31]
Probability of requiring critical care
Children Critey, 0 - [31]]
Adults Critcaeq 0.063 - [31]
Elderly Critg 0.173 - [31]]
Probability of death among critical care patients
Children Diegy, 0 - (28]
Adults Diegq 0.5 - estimated
Elderly Die, 0.5 - estimated
Test features
Sensitivity se 0.94 - [10]
Specificity sp 0.96 (0.5, 1.0) - [10]
Population features
Baseline contact rates by age Tij see matrices [15]
US population age groups, size [132]
Children 8.18e7 people
Adults 18.7e7 people
Elderly 5.8%9e7 people
Adult working population segments, size 1331
Exclusive work from home occupations TNhome 5.60e7 people
Reduced contact occupations Nreduced 1.20e8 people
Full contact occupations N full 1.00e7 people
Fraction of adult population (20-65 years) 1.0 assumption

in workforce

Social distancing parameters

Strength of social distancing c (0,1) - varied

Fraction of work contacts maintained for rc occupations p.reduced 1—¢0.90 - estimated

Fraction of ‘other’ contacts maintained for all groups sd.other 1—¢0.75 - estimated

Shielding « 0,9 per contact varied

Testing rate (0, 10 million) per day varied
16

Table S2: Parameters used in model simulations. Values shown in parentheses represent a range, used to

perform sensitivity analysis.
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S$4. Estimating transmission probability ¢ using R, Estimation

To estimate the transmission probability per infectious contact, ¢, we calculated the basic reproduction num-
ber for our model using the next generation method, substituted for other known model parameters, and
solved for the value of q that satisfied a given value of Ry. The dynamics of the system and R, are deter-
mined by how the outbreak would proceed at time zero in the absence of any interventions. Therefore, we
assume no testing at time 0, no social distancing, and no differences in worker contact levels (i.e., all groups
mix at the population-average level prior to the outbreak). In this situation, there are only 3 population
subgroups at time zero:

dgtch’ = AenSeh — YeEen

dl;;h = YeEenp — sls.cn

Mot o B (1)~ vl
di?Ch = Ysls,cn(Hospen — CritDiecy) — ynHosps ch
dlz;ach = Ysls,cnCritDiecy, — ypnHospe cn

dggd = AaaSad — Ve Faa

dl;’t“d = YeEaap — Vsls,aa

Hod o B~ p) ~ Yl
d%zad = Ysls.ad(Hospaa — CritDieaa) — YnHosps.ad
dlf;“d = Y515 .adCritDieqq — Yh Hospe ad

diel = Ae1Set — Ve el

dl;;tvel = YeBep — vsls,el

dj;(lléel =YeEu(1=p) = alael

dfj;el = v, i CritDieq — Y Hospe ol

The )\; for each group is defined as follows.

qxch,ch(asyIa,ch + Is,ch) + qxch,ad<a5y-[a,ad + Is,ad)
Nch Nad

ql‘ch,el(asyla,el + Is,el)

Tel

)\ch = +
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qxad,ch(afsyla,ch + Is,ch) + qxad,ad(asyla,ad + Is,ad)

)\ad = +
Nech Nad
qxad,el(asyja,el + Is,el)
Nel
_ qxel,ch(asyla,ch + Is,ch) qxel,ad(asyla,ad + Is,ad)
Ael - + +
Nch Nad
qTel el (asy-[a,el + Is,el)

Nel

The matrices F and V corresponding to these equations are:
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To derive an expression for Ry we inverted the V matrix and multiplied by 7. The dominant eigenvalues
of this matrix can be computed, but are very complex and are therefore not shown here. It is notable that
because hospitalized cases do not contribute to the force of infection, the value of Ry does not depend on

Yh-

To estimate q, we fixed all other parameters to their initial values in the model. Then, R is given by 63.28¢.
If Rg is 2.9 (the final value assumed in the model based on calibration with incidence data), that gives
q = 0.0451.

S5. Contact matrices

Baseline contacts

Baseline contact matrices for ‘work’ contacts, ‘school’ contacts, ‘home’ contacts, and ‘other’ contacts were
taken from [[15]. To expand these baseline matrices to the 5 population groups in our model (separating the
adult population into fe, rc, and h classes), we multiplied all contacts with adults z; ,4 by the proportion of
the adult population falling into each class. We define the fraction of the population falling in each working
group as follows:

Nhome
f.home =
Nhome + Nreduced + N full
Nred d

f.reduced = Tetnes
Nhome + Nreduced + N full

N full

fofull = Ju

Nhome + Nreduced + T full

For baseline contact matrix values based on [15]], we have:

Zch,ch  Lch,ad Tch,el
Tij = [Zad,ch ZLad,ad Lad,el

Tel,ch  Lel,ad Lel,el

For simplicity, we assume that baseline interactions between worker subgroups are only assortative with
respect to age (and not with respect to occupation type). To expand this matrix to a 5x5 matrix we use the
following notation, where rows 2, 3, and 4 correspond to the work from home, reduced contact, and full
contact occupation groups, respectively:

Teheh  Tehadf-home  Tepaaf.reduced  Tepaaf .full Tepel
Tad,ch  Tad,adf-home Teqeaf.reduced Toqeaf.full Tenel
ZTij = |Zad,ch Tad,adf-home xgqqeaf.reduced xoqaaf . full Tepel
Zad,ch Jjad,adf-home xad,adf-reduced xad,adﬁf“” Lch,el
Tel,ch  Tel,adf-home  Tepqaf.reduced Tepaaf.full  Teper
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Based on these proportions, we define x; 5, x; ., and z; ¢. as follows:

Tih = T4 qqf -home
Tire = Tjqdf-reduced

Ti,fc = zi,ad.f'fu”

Contacts under social distancing
After social distancing has begun, we assume that:

e Home contacts remain the same.

Schools and daycares close.

Only working age adults continue to work. Baseline workplace contacts for children and young adults
under 20 years of age are nearly zero (average 0.84 contacts/day) and the average workplace contacts
for the elderly is O, so this does not appreciably impact our results.

All workers who are able work from home.

Adults continuing to work reduce their workplace contacts by constant preduced.
e Other contacts are reduced by scalar constant sd.other.

The values of p.reduced and sd.other were estimated by comparing projected incidence from our model with
that observed in the U.S. under social distancing measures.

The revised contact matrix for work contacts then becomes:

0 0 0 0 0
0 0 0 0 0
CMyork = |Tqq,chpreduced xp pp.reduced xp ,cp.reduced xp, pep.reduced xcp epreduced
T fe,ch Tfeh Tfere Tfe,fe Tch,el
0 0 0 0 0

The revised contact matrix for other contacts becomes:

Lch,ch  Lch,h Lch,re Lch,fc Lch,el
Th,ch Th,h Th,re Th,fe Lch,el
CMother =sd.other x Tre,ch Lre,h LTreyre Lrc, f Lch,el
Tfe,ech  Tfeh Lfere Lfe,fe  Tcehel

Zel,ch  Tel,h  Telyre Lel,fc Lch,el
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Contacts during initial relaxing of social distancing
When phase 1 begins on May 1, 2020, we assume that:
e Testing begins, moving test-positive individuals to the test positive group

e Home contacts remain the same, but their distribution is driven by the proportion of test-positives in
the general population.

e Adults who were working from home may return to work if they test positive. Upon returning to work,
their workplace contacts are assortative with respect to test status (but not with respect to occupation

type).
e Workers in reduced contact occupations increase their workplace contacts based on the intensity of

social distancing maintained. Work contacts are preferentially with test-positive individuals, as deter-
mined by a.

e Schools remain closed.

e Other contacts are increased for test positive individuals to their pre-pandemic levels. Other contacts
continue to be reduced for test negative/untested individuals based on the intensity of social distancing
maintained. Other contacts are preferentially with test-positive individuals, as determined by a.

Because testing has begun, all contact matrices are dependent on the proportion of the population that has
tested positive and been released from social distancing at time t. We define this proportion as r;(t), where
(1 —r;(¢)) is the fraction of the population who has not yet tested positive.

We assume that social distancing parameters are relaxed from their initial values as follows:

sd.other2 =1 — (0.75¢)
preduced =1 — (0.90¢)

For contact matrices of work and ’other’ contacts, we implement shielding factor «, which increases the
probability of contacting a test-positive individual according to their prevalence in the population (achieved
by multiplying expected contact rates due to prevalence by scaling factor «+ 1). To account for the fact that,
when prevalence is high, (a + 1)r;(t) may exceed 1, we introduce a variable s;(¢):

(AVARVAN

This shielding structure is similar to ‘fixed shielding’, previously described by Weitz et al [9] in that it pre-
serves the baseline number of contacts and increases contacts for test positive individuals by 1 + «, as shown
below:
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o — .Io’l“i(t) + xo(l — Ti(t))
zo = 1i(t)(a + 1)z + (20 — (a0 + )i (t)70)

The structure of all three matrices (home, work, and other) is given by CM:
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Contacts after schools reopen on September 1, 2020

When phase 2 begins, schools re-open and children return to school, setting the school contact matrix to its
baseline values. Because some children will have tested positive, contact probabilities are proportional to
the fraction of the population who has tested positive at each time point (same structure as the home matrix
from phase 1). All other matrices remain the same.

$6. Contact reductions by levels of ¢

c Reduction in work Reduction in other Reduction in total contacts

contacts for adults | contacts for all groups | Children Adults Elderly
0 0% 0% 389% 17.9% 33.7%
0.25 45.7% 18.8% 449%  29.5% 44.2%
0.50 59.8% 37.5% 51.0% 41.2% 54.6%
0.75 73.9% 56.3% 57.1% 53.0% 65.1%
1.00 88.1% 75.0% 63.1% 64.7% 75.5%

Table S3: Reduction in contacts corresponding to different values of ¢

S7. Test performance over time

While not all test positive individuals are truly immune, the proportion of immune persons is always far
greater in the test-positive population than the test-negative/untested population. Thus, even though the
positive predictive value for a test does not approach 100% as the epidemic proceeds and a substantial
number of truly susceptible individuals are identified as positive, preferential interaction with test-positive
individuals tends to decrease risk. Higher testing rates tend to lead to lower immunity in the test posi-
tive population because a greater number of false positives are released from social distancing, and when
shielding is strong these test positives mix to a greater extent with the test-negative/untested population,
contributing to ongoing transmission. The level of immunity in the test positive population is shown in Fig-
urdS2| below for 5:1 shielding. Overall immunity is higher in the test-positive population (e.g., fewer false
positives) when alpha is smaller (not shown).
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Figure S2: Fraction of test positives who are still susceptible to COVID-19 over time based on the testing rate
(panels) and the intensity of social distancing (line colors) for 5:1 shielding (o« = 4).

S$8. Sensitivity analysis for higher levels of shielding (¢« = 9, 10:1
shielding)

We also considered higher levels of shielding to see how this change would impact cumulative deaths and
the fraction of the population released from social distancing. While 10:1 shielding did result in fewer deaths
at high testing levels, the total impact was minimal (Figure [S3).
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Figure S3: The left panel shows cumulative deaths by January 15, 2021 by social distancing relaxing strategy
assuming schools reopen on September 1, 2020. Colored lines show levels of relaxing social distancing
measures based on the value of ¢. Solid lines are for 96% specificity and dashed lines show results for a
test with 100% specificity. The right panel shows the fraction of the US population released from social
distancing after 1 year assuming a 50% relaxation of current social distancing levels or work and other
contacts for those untested or testing negative and a 96% test specificity. Line colors correspond to testing
levels, with blue being 10 million tests/day (monthly testing of the US population). Both panels are for 10:1
Shielding (o = 9).
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S9. Sensitivity analysis for varying specificity

If antibodies do not confer immunity against subsequent infection (approximated by setting sp = 0.5),
increased testing leads to higher rates of death (Figure [S4).
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Figure S4: Deaths after 1 year assuming o« = 4 (5:1 shielding) and sp = 0.50 (solid line) or sp = 0.96 (dotted
line), or sp = 1.00 (dashed line)
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