Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Countries are Clustered but Number of Tests is not Vital to Predict Global COVID-19 Confirmed Cases: A Machine Learning Approach

View ORCID ProfileMd Hasinur Rahaman Khan, View ORCID ProfileAhmed Hossain
doi: https://doi.org/10.1101/2020.04.24.20078238
Md Hasinur Rahaman Khan
*Institute of Statistical Research and Training, University of Dhaka, Dhaka 1000, Bangladesh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Md Hasinur Rahaman Khan
  • For correspondence: hasinur@isrt.ac.bd
Ahmed Hossain
†Department of Public Heallth, North South University, Dhaka, Bangladesh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ahmed Hossain
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

COVID-19 disease is a global pandemic and it appears as pandemic for each and every nation and territory in the earth.This paper focusses on analysing the global COVID-19 data by popular machine learning techniques to know which covariates are importantly associated with the cumulative number of confirmed cases, whether the countries are clustered with respect to the covariates considered, whether the variation in the covariates are explained by any latent factor. Regression tree, cluster analysis and principal component analysis are implemented to global COVID-19 data of 133 countries obtained from the worldometer website as reported as on April 17, 2020. Our results suggest that there are four major clusters among the countries. First cluster consists of 8 countries where cumulative infected cases and deaths are highest. It is also revealed that there are two principal components. The countries which play vital role to explain the 60% variation of the total variations by the first component characterized by all variables except the rate variables include USA, Spain, Italy, France, Germany, UK, and Iran. Remaining countries contribute to explaining 20% variation of the total variations by the second component characterized by only three rate variables. We also found that the number of tests by the country variable among other variables country, number of active cases, number of deaths, number of recovered patients, number of serious cases, and number of new cases is an unimportant variable to predict cumulative number of confirmed cases. Hence, the number of tests might play vital role to individual country level who are in the primary level of virus spread but not to the global level.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

There is no funding for this study.

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The working data set used for this study has been submitted to the journal as additional supporting file.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted April 29, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Countries are Clustered but Number of Tests is not Vital to Predict Global COVID-19 Confirmed Cases: A Machine Learning Approach
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Countries are Clustered but Number of Tests is not Vital to Predict Global COVID-19 Confirmed Cases: A Machine Learning Approach
Md Hasinur Rahaman Khan, Ahmed Hossain
medRxiv 2020.04.24.20078238; doi: https://doi.org/10.1101/2020.04.24.20078238
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Countries are Clustered but Number of Tests is not Vital to Predict Global COVID-19 Confirmed Cases: A Machine Learning Approach
Md Hasinur Rahaman Khan, Ahmed Hossain
medRxiv 2020.04.24.20078238; doi: https://doi.org/10.1101/2020.04.24.20078238

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (62)
  • Allergy and Immunology (142)
  • Anesthesia (46)
  • Cardiovascular Medicine (415)
  • Dentistry and Oral Medicine (70)
  • Dermatology (48)
  • Emergency Medicine (144)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (171)
  • Epidemiology (4861)
  • Forensic Medicine (3)
  • Gastroenterology (183)
  • Genetic and Genomic Medicine (676)
  • Geriatric Medicine (70)
  • Health Economics (192)
  • Health Informatics (630)
  • Health Policy (321)
  • Health Systems and Quality Improvement (206)
  • Hematology (85)
  • HIV/AIDS (156)
  • Infectious Diseases (except HIV/AIDS) (5343)
  • Intensive Care and Critical Care Medicine (331)
  • Medical Education (93)
  • Medical Ethics (24)
  • Nephrology (75)
  • Neurology (686)
  • Nursing (42)
  • Nutrition (115)
  • Obstetrics and Gynecology (126)
  • Occupational and Environmental Health (208)
  • Oncology (440)
  • Ophthalmology (140)
  • Orthopedics (36)
  • Otolaryngology (90)
  • Pain Medicine (35)
  • Palliative Medicine (16)
  • Pathology (129)
  • Pediatrics (194)
  • Pharmacology and Therapeutics (131)
  • Primary Care Research (84)
  • Psychiatry and Clinical Psychology (781)
  • Public and Global Health (1817)
  • Radiology and Imaging (325)
  • Rehabilitation Medicine and Physical Therapy (138)
  • Respiratory Medicine (255)
  • Rheumatology (86)
  • Sexual and Reproductive Health (69)
  • Sports Medicine (62)
  • Surgery (100)
  • Toxicology (23)
  • Transplantation (29)
  • Urology (37)