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ABSTRACT 

The prediction of Mild Cognitive Impairment (MCI) patients who are at higher risk converting to 

Alzheimer's Disease (AD) is critical for effective intervention and patient selection in clinical trials. 

Different biomarkers including neuroimaging have been developed to serve the purpose. With extensive 

methodology development efforts on neuroimaging, an emerging field is deep learning research. One great 
challenge facing deep learning is the limited medical imaging data available. To address the issue, 

researchers explore the use of transfer learning to extend the applicability of deep models on neuroimaging 

research for AD diagnosis and prognosis. Existing transfer learning models mostly focus on transferring 
the features from the pre-training into the fine-tuning stage. Recognizing the advantages of the knowledge 

gained during the pre-training, we propose an AD-NET (Age-adjust neural network) with the pre-training 

model serving two purposes: extracting and transferring features; and obtaining and transferring knowledge. 
Specifically, the knowledge being transferred in this research is an age-related surrogate biomarker. To 

evaluate the effectiveness of the proposed approach, AD-NET is compared with 8 classification models 

from literature using the same public neuroimaging dataset. Experimental results show that the proposed 

AD-NET outperforms the competing models in predicting the MCI patients at risk for conversion to the 
AD stage.  

 

Keywords: deep learning, transfer learning, biomarker, AD, MCI 
  

1 INTRODUCTION 

Alzheimer’s disease (AD) is one of the most common progressive neurodegenerative diseases in elderly 

patients. Over 5.5 million Americans presently suffer from AD, and the number is expected to increase to 

16 million by 2050 with projected healthcare costs reaching $1.2 trillion (Alzheimer's Association 2016). 
AD is characterized by a long preclinical stage with the slow progression of AD related pathologies without 

clinical symptoms, while substantial neuronal loss has already happened when cognitive changes can be 

detected (Long, J. M., & Holtzman, D. M., 2019). Early detection is critical for AD because it is commonly 
believed that this is when the intervention can be more effective before irreversible brain damage occurs 

(Frost, S. et al., 2013). Thus, Mild Cognitive Impairment (MCI), a pre-dementia stage, has been of great 

interest in both AD research and clinical practices. MCI is the stage when the individual has greater 

cognitive decline than expected from normal aging but has not shown noticeable interruptions from the 
daily activities (Selkoe, D. J. (1997). Studies show that MCI patients with memory complaints and deficits 

(amnestic mild cognitive impairment) have a higher risk of progression to AD (Gauthier, S. et al., 2006). 

The ability to identify patients who will have faster cognitive decline and are at a higher risk of converting 
to clinical AD will facilitate the development of effective treatments by optimizing cohort selection, and 

allow better management of the disease (Aisen, P.S. et al., 2011). This is a non-trivial task. Fortunately, 

recent studies have demonstrated that neuroimages can more sensitively and consistently measure disease 
progression than cognitive assessment (F. Li et al., 2018). Imaging biomarkers as the objective and 

quantitative criteria have been intensively studied as potential means for AD early detection.  

Most research on AD imaging biomarkers focuses on discovering the features directly measured from 

the images such as structural Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), 
and resting-state functional MRI (fMRI) (Fox, N. C. et al., 2000; Chupin, M., et al. 2009; Eskildsen, S. F., 

2013; Filippi, M. et al., 2012; Pike, K. E. et al., 2007; Li, H. J. et al., 2015; Yamada, T. et al., 2017). 

Biomarker discovery requires joint efforts from predictive modeling and medicine domain knowledge. 
Earlier works on modeling have been mainly related to machine learning pipeline, where feature extraction 

and selection are usually the first steps (Hu et al., 2016; Hojjati, S. H. et al., 2017; Westman, E. et al., 2012; 

Young, J. et al., 2013; Ye, J. et al., 2012). Most recently, deep learning is introduced to AD research. Deep 
Neural Network (DNN) model has been successfully implemented in the broad computer vision domains 

for decades (LeCun, Y. et al., 1998; LeCun, Y. et al., 2015). Related to AD, most efforts are to take the 
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deep learning model as a feature extractor where generic (low-level) and/or problem-specific (high-level) 
features are extracted from layer to layer. The earlier layers of a deep model contain more generic features 

that could be used for many domains and the features from later layers are more domain-specific (Nogueira, 

K. et al., 2017). The features are used in different machine learning models for AD diagnosis (Suk, H. I. et 

al., 2013; Shi, J. et al., 2017; Suk, H. I. et al. 2014). Other than implementing different machine learning 
models, researchers further expanded the deep model with one last layer as a classifier for AD diagnosis. 

For example, Basaia, S. et al., (2019) built a simplified Convolutional Neural Network (CNN) without the 

need for an activation layer for AD diagnosis. Spasov, S. et al. (2019) designed a parameters-efficient multi-
task CNN model for increased generalizability to predict MCI-Converter. Lee, G. et al. (2019) applied a 

Recurrent Neural Network (RNN), to learn from multi-source data to identify the person with a higher risk 

of developing AD.   

While deep learning opens great opportunities in medical imaging research, its potential is 

compromised by the limited data available in medicine. Unlike natural images, medical images are rarely 

available in large quantities. As a result, overfitting is a major obstacle facing the deep learning research 

community (Srivastava, N. et al., 2014; Lever, J. et al., 2016). One solution to this challenge entails transfer 
learning (effectively extending knowledge previously learned in one situation to new situations) to 

implement in deep learning models. In general, deep learning uses transfer learning in the following way: 

the model is pre-trained on a large labeled dataset (e.g., natural images) to capture the features from images. 
Then, the model is fine-tuned on the targeted image dataset to extract specific features related to medical 

images. Therefore, the earliest attempts take a network model as two parts: (1) the first N layers are for 

high-level feature extraction, and (2) the last layer is a classifier. We categorize them as “N+1” models. The 
whole network (N+1) is pre-trained on the source domain. In the fine-tuning procedure, the last layer is 

replaced with the appropriate classification structure tied to the target problem (Hon, M. et al., 2017; 

Hosseini-Asl, E. et al., 2016). In case they differ greatly, researchers decide to further divide the first N 

layers into (1) first few layers for low-level feature exaction; (2) middle layers for high-level feature 
extraction. The pre-training is still conducted on the whole network model, fine-tuning on the target domain 

would involve the middle and last layer of the network (Cheng, D. et al., 2017; Lu, D. et al., 2018). The 

research reviewed above takes pre-training and fine-tuning as two independent procedures. Lately, 
researchers start to explore integrating not only the feature extracted from the pre-training but additional 

features from different sources, into the fine-tuning procedure for improved performance. Liu, T.  et al. 

(2017) fused the features extracted from a pre-trained VGG model with several texture features into a 

feature pool. Zhang, J. et al. (2017) combined the features extracted from the pre-trained CNN model with 
handcrafted visual features to classify the type of different medical images (e.g., MRI, CT). Song et al., 

(2017) generated the Fisher Vector (FV) descriptors integrating the features from the DBN model, the CNN 

model in an unsupervised manner.  

Please note that most existing efforts on transfer learning focus on extracting and transferring features 

from the pre-training procedure. The outcome (a.k.a. knowledge) from the pre-training process is thus 

ignored. Here we hypothesize that transferring knowledge from the pre-training to the fine-tuning may 
benefit the target problem-solving. The knowledge of particular interest in this research is related to a new 

AD surrogate biomarker (Cole, J. H. et al., 2017). In Cole, J. H. et al., (2017), the researchers trained a deep 

learning model on MRI neuroimages from cognitively normal subjects to predict each subject’s biological 

age (B-Age). The trained model was then used to predict the B-Ages for the subjects with brain disease. 
Under the assumption that B-Age shall align well with chronological age (C-Age) for healthy subjects and 

the B-Age and C-Age for individuals with brain diseases shall present notable differences, the difference 

(termed Δage) was used to detect group differences between diseased cohort vs. cognitively normal cohort 

(Cole, J. H. et al., 2017). Motivated by this initial success from  Δage, we are interested in exploring the 

predictive power of this surrogate marker in classifying MCI converter vs. non-converter on an individual 

base. Specifically, we propose a new deep learning model named Age-adjust neural network (AD-NET). 
In the AD-NET, we revisit the transfer learning and propose dual purposes from the pre-trained model: (1) 
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feature transferring: similar to existing research from literature, the pre-trained model without the last layer 
is used as feature extractor; (2) knowledge transferring: the whole pre-trained model is kept into the fine-

tuning stage to transfer the knowledge captured in the age prediction process. Instead of simply appending 

the Δage as an additional feature to the CNN model, we propose a composite parameter taking into account 

the effects from both the group and the individual level to adjust the prediction. Experiments are conducted 

using two public neuroimaging datasets (IXI (IXI Dataset) and ADNI (F. Li et al., 2018)). We compare our 
proposed AD-NET with eight existing methods, including Logistic Regression, Partial Least Square, 

Gaussian Process Regression, Support Vector Machine (SVM), and three deep learning models. Our AD-

NET achieved the best AUC of 0.81 and comparable accuracy, sensitivity, and specificity, which are 0.76, 
0.77, and 0.76, respectively. 

2 METHOD 

2.1 Architecture and pre-training strategy  

The schematic illustration of proposed AD-NET architecture is shown in Figure 1. It contains two 

separate parts: (1) a pre-trained network for feature extraction and age prediction; and (2) a fine-tuned 

network to transfer both features and knowledge from age prediction for MCI converter prediction.  
 

 
(a) Pre-trained Model 

 
(b) Fine-tuned Model 

Figure 1. The architecture of the proposed AD-Net. 3D boxes represent input and feature maps. The arrows represent 

network operations: the black arrow indicates 3D convolutional operation followed by a rectified linear unit (ReLU) 

activation function; orange arrow represents max-pooling operations; red arrow represents the flatten operation; dotted 

red arrow represents fully connected layers; purple square represents the regression outputs for predicted B-Age; blue 

square represents classification outputs for MCI-Converter probability; layers within dotted square form a building 

block, and there are 3 repeating blocks (block×3) for feature extraction before flatten layer. 
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Figure 1a is the pre-trained network. It takes 3D MR images from cognitively normal subjects as inputs 

and predicts age and extracts related features. The size of the input 3D MRI is 91×109×91. It contains 

repeated 3 blocks, within each block, there are two (3×3×3) convolutional layers and one max-pooling layer; 

each convolutional layer is followed by a rectified linear unit (ReLU) layer. The number of feature channels 

is set to be sixteen for the first block and is doubled for each subsequent block. The output of the last block 

is flattened into one dimension (layer L1 colored with blue in Figure 1). To clarify, within this context, the 

“flatten” means the vectorization of the multi-dimensional matrix in the last block. This layer is fully 

connected to one single output with a linear activation function. A dropout layer with a rate equals to 0.2 

(as in (He, K. et al., 2016; Gao, F. et al., 2019)) is added to avoid potential overfitting. 

The architecture of the fine-tuned model is shown in Figure 1b. Specifically, the L1 layer is fully 
connected (with dropout rate = 0.2) to the L2 layer, which is connected (with dropout rate = 0.2) to the final 

single output with a sigmoid activation function for MCI conversion prediction. L2 layer is added to make 

feature transformation from age prediction task to produce the initial output of MCI-Converter prediction 

task (𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣 )). To serve the knowledge transfer purpose, the whole pre-trained model is kept (including 

L1) to predict the B-Age, Δage  is then derived and used to adjust MCI prediction 𝑃′(𝑀𝐶𝐼𝑐𝑜𝑛𝑣 ). 

For the AD-Net, in the pre-training procedure, the parameters within 3D blocks, layer L1 and B-Age 

prediction are trained through the age prediction task. In this procedure, a dataset of 900 3D MRI images 

from cognitively normal subjects was used. In the fine-tuning procedure, the parameters within the pre-
trained network were kept fixed, 200 MRI 3D images from MCI patients were used to tune only parameters 

within the L2 layer to transfer features learned by age prediction task for the MCI-converter prediction task 

with.  

 

2.2 Aging adjustment in fine-tuning procedure 

For subject i, the chronological age (C-Age) 𝑦𝑎𝑔𝑒
𝑖  is known as a prior. Given one output from the AD-

NET pre-trained model being biological age (B-Age) prediction, that is,  𝑦̂𝑎𝑔𝑒
𝑖 , we define Δ𝑎𝑔𝑒

i  as: 

 

Δ𝑎𝑔𝑒
i =  𝑦̂𝑎𝑔𝑒

𝑖 − 𝑦𝑎𝑔𝑒
𝑖                (1)  

 

Next, with the 3D neuroimage, AD-NET outputs the risk of the patient i to be an MCI-converter 

(𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣
𝑖 )) or a non-converter (𝑃(𝑀𝐶𝐼𝑛𝑜𝑛−𝑐𝑜𝑛𝑣

𝑖 )), we have 𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣
𝑖 ) + 𝑃(𝑀𝐶𝐼𝑛𝑜𝑛−𝑐𝑜𝑛𝑣

𝑖 ) = 1.  

Under the hypothesis that Δ𝑎𝑔𝑒 is strongly correlated to the risk of developing brain disease (Cole, J. 

H. et al., 2017), most MCI subjects’ brain appears older than that of healthy subjects. Also, MCI Converters’ 

more likely have a larger Δ𝑎𝑔𝑒  than that of MCI non-converter subjects, so Δ𝑎𝑔𝑒  represents the risk of 

developing a brain disease. To utilize this idea, we propose to adjust the probability of an MCI subject i 

converting to AD (𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣
𝑖 )) with 𝛥𝑎𝑔𝑒

𝑖 . The basic idea is, for patient i, if the predicted B-Age is greater 

than its C-Age, that is, Δ𝑎𝑔𝑒
i > 0, this individual has an increased risk of converting to AD, and vice versa. 

To model this idea, let take 0.5 as the midpoint (e.g., 50% risk of conversion), the conversion risk with 

respect to the non-conversation risk, in the form of a ratio, is adjusted as:  

 

𝑃′(𝑀𝐶𝐼𝑐𝑜𝑛𝑣
𝑖 )

𝑃′(𝑀𝐶𝐼𝑛𝑜𝑛−𝑐𝑜𝑛𝑣
𝑖 )

=
(0.5+ε)

(0.5−ε)
∗

𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣
𝑖 )

𝑃(𝑀𝐶𝐼𝑛𝑜𝑛−𝑐𝑜𝑛𝑣
𝑖 )

   (2) 

 

where, 𝜀 = 𝑤𝑖 × 𝑟, 𝑤𝑖 =
1

2𝑚
𝑚𝑎𝑥 (−𝑚, 𝑚𝑖𝑛 (𝛥𝑎𝑔𝑒

𝑖 , 𝑚) ), m is pre-defined normalizer to remove outlier 

impact (e.g., extreme large Δ𝑎𝑔𝑒 ), r is the correlation between all Δ𝑎𝑔𝑒  and MCI-Converter labels, 
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and 𝑃′(𝑀𝐶𝐼𝑐𝑜𝑛𝑣
𝑖 ) + 𝑃′(𝑀𝐶𝐼𝑛𝑜𝑛−𝑐𝑜𝑛𝑣

𝑖 ) = 1. Here 𝜀 is a composite parameter of two scalars: a global scalar 

r and a subject-dependent scalar 𝑤𝑖 . Global scalar r (r ∈ [−1, 1]) is derived as the Pearson correlation 

between the Δ𝑎𝑔𝑒 with the patient's status. A total positive linear correlation exists for r being 1, and total 

negative linear correlations for r being -1, no correlation for r being 0. In this study, we would expect to 

have r being positive value to describe the general relationship between the Δ𝑎𝑔𝑒 and the patient status on 

the group bases. Scalar 𝑤𝑖  is to measure the normalized deviation level of 𝛥𝑎𝑔𝑒
𝑖  for subject i. 𝑤𝑖  is 

proportional to 𝛥𝑎𝑔𝑒
𝑖 , and it is normalized to the range of -0.5 to 0.5 by a pre-defined normalizer m.  

To better illustrate the effects of 𝑤𝑖  and r in adjusting 𝑃′(𝑀𝐶𝐼𝑎𝑔𝑒
𝑖 ) , we plot P (MCIconv)  vs. 

𝑃′(MCIconv) under different settings of 𝑤𝑖 with a given r (see Figure 2 with r=0.8). Here we only discuss 

the scenario where r is positive given the cohorts being interested are MCI subjects (same holds true when 

r is negative), and 𝑤𝑖 can be both negative and positive. From Figure 2, we observe two properties:  

(1) For a positive 𝑤𝑖  (an individual with increased risk of conversion), 𝑃′(MCIconv) increases as 𝑤𝑖 

increases. That is, the larger the 𝑤𝑖 is, the greater adjustment made from 𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣 ) to 𝑃′(MCIconv). 

For negative 𝑤𝑖 , 𝑃′(𝑀𝐶𝐼𝑐𝑜𝑛𝑣) decreases as 𝑤𝑖  decreases. That is, the smaller the 𝑤𝑖  is, the greater 

adjustment made from 𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣) to 𝑃′(MCIconv). This is consistent with our hypothesis, that is, 

given 𝑤𝑖 is proportional to 𝛥𝑎𝑔𝑒
𝑖 , 𝛥𝑎𝑔𝑒

𝑖  thus 𝑤𝑖  is positively correlated with the AD conversion risk. 

(2) The adjustment has more effects for subjects with 𝑃(MCIconv) falling in the middle of the distribution 

(e.g., 0.4 - 0.6) than that at the two sides (e.g., 0-0.1 and 0.9-1.0). We believe this is a desirable property 

indicating the adjustments can strengthen the differentiation power for the subjects who were not certain 

on determining the conversion risks.  

  

Figure 1. Curves for 𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣)′ vs. 𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣) under different settings of 𝑤𝑖 (r =0.8) 

In the fine-tuning model, the age-related information from the pre-training is transferred. Together 

with the features from the pre-training model, the risk of the subject converting to AD is predicted. A 

comprehensive comparison experiment is conducted and is discussed in the next sub-sections.  
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2.3 Data 

2.3.1 Dataset I for age prediction 

All neuroimaging data used in the study are T1-weighted MRI. The dataset used in the pre-training 

procedure for age prediction task included 847 cognitively normal subjects. The datasets were obtained 

from two sources, and we conducted the pre-processing procedure to ensure consistency among images 

from different cohorts. The first data source was Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

dataset (F. Li et al., 2018), the ages range from 56-89. The ADNI is launched aiming at finding the 

relationship between progression of mild cognitive impairment (MCI) to early Alzheimer's disease (AD) 

with biomarkers, from MRI, PET or clinical and neuropsychological assessments. ADNI enrolled a large 

cohort of participants (Weiner, M. W. et al., 2015) with the majority of participants having PET, MRI as 

well as clinical information (including age) available. Data were collected as a longitudinal multisite study 

by the National Institute of Biomedical Imaging and Bioengineering, the National Institute on Aging, the 

Food and Drug Administration, non-profit organizations, and private pharmaceutical companies.  Approved 

consent was obtained from all patients, and the ADNI has been approved by the institutional review board 

at all sites. We selected 256 subjects who were cognitively normal (CDR=0) and amyloid negative (based 

on florbetapir PET) at the time of MRI scan from ADNI for the pre-training. In order to increase the size 

of the training dataset and widen the age range for robust age prediction, we obtained 581 cognitively 

normal subjects from a second data source: Information eXtraction from Images (IXI) public dataset (IXI 

Dataset). The subjects from the IXI dataset were obtained from 3 different hospitals in London: 

Hammersmith Hospital, Guy’s Hospital and Institute of Psychiatry. Approved consent was obtained from 

all patients, and IXI was approved by an ethics committee at all sites. For each subject, personal information 

such as sex, height, weight, occupation and age were included. 

2.3.2 Dataset II for MCI-conversion prediction  

The dataset used in the fine-tuning procedure for the MCI conversion prediction task was obtained from 

ADNI. All subjects have the status as being either converter or non-converter. The dataset included a total 

of 297 subjects. These subjects were diagnosed as MCI during the baseline visit. Among the 297 subjects, 

168 were MCI-converters, and 129 subjects were MCI non-converter. The MCI-converter and MCI non-

converter subjects were labeled through the following logic: a subject was labeled as MCI-converter if the 

subject was diagnosed as MCI and converted to AD during a three-year follow-up, and a subject was labeled 

as MCI non-converter if the subject was diagnosed as MCI at both baseline and the three-year follow-up.  

Those subjects whose diagnosis was missing at the three-year follow-up were excluded.  

Table 1 Demographic information for subjects in Dataset I and Dataset II 

 Dataset I Dataset II 

Data Source ADNI and IXI ADNI 

Sample Size  847 292 

Sex (M/F) 395/452 185/107 

Age Mean ± std (years) 

(Range in years) 

56.86 ± 18.34 

(18 – 94) 

74.84 ± 7.24 

(55 – 89) 

Apolipoprotein e4 

(NC/HT/HM) 

N/A 129/128/35 

Education Mean ± std 

(Years) 
(Range) 

N/A 16 ± 3 

(7 – 20) 

MMSE Mean ± std 

(Range) 

N/A 27.04 ± 1.76 

(23 – 30) 

                  NC = Non-carrier; HT = Heterozygote; HM = Homozygote; N/A = Not available. 
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2.4 Pre-processing 

We used MRIcron (https://www.nitrc.org/projects/mricron) to convert DICOM files to NIfTI format 

and conducted rigid registration to MNI152 (Fonov, V. S. et al. 2009) space to ensure consistency of 

position and orientation. The images were resampled using cubic spline interpolation, to transfer data 

acquired from different studies into the same voxel sizes and dimensions (1mm3, 182×218×182). Examples 

of the different data used in the study are shown in Figure 2. 

 

Figure 2. Sample slices from input T1-weighted MRI imaging after the minimal pre-processing procedure. A) 

cognitively normal subject from the IXI dataset. B) cognitively normal subject from the ADNI dataset. C) MCI Non-

Converter subject from the ADNI dataset. D) MCI-Converter subject from the ADNI dataset. 

2.5 Design of Experiments 

2.5.1 Experiment I: Pre-training and Age Prediction Task 

The objective of this experiment I is to develop a pre-training model for age prediction. In this 

experiment, 84 (10%) subjects were randomly selected from Dataset I as a blind testing dataset, the 

remaining 763 subjects were used as the training dataset. The proposed AD-NET was trained using mean 

squared error (MSE) as loss function, Adam (Kingma, D. P. et al., 2014) was used as the optimizer to solve 

the problem. We set the hyper-parameter as: (1) learning rate was 0.01; (2) learning rate decay equaled to 

0.005; (3) training batch was 16; and (4) training iteration was 200. 

2.5.2 Experiment II 

We conduct the second experiment using the surrogate marker to predict MCI conversation risk. 5-fold 

cross-validation was conducted to evaluate AD-NET’s performance on the MCI-Converter prediction 

problem. The parameters of the deep network obtained from the pre-training procedure were kept the same 

for the age prediction. The parameters of L2 layer were fine-tuned to convert the age prediction features for 

the MCI converter prediction problem. The AD-NET was fine-tuned using cross-entropy as loss function 

and Adam optimizer (Kingma, D. P. et al., 2014). Other parameters are selected based on the best 

performance: (1) learning rate was 0.01; (2) learning rate decay equaled to 0.005; (3) training batch was 16; 

and (4) training iteration was 50. The area under a receiver operating characteristic curve (AUC), accuracy 

(ACC.), sensitivity (SEN.), and specificity (SPE.) were calculated to measure the prediction power of our 

model from different aspects.  

For comparison purpose, we implemented two competing methods, which were pre-trained through the 

same procedure as AD-NET: Transfer learning CNN model (TL-CNN) and Transfer learning CNN model 

with Δage  as additional features (TL-CNN-Δage). The architecture of TL-CNN is the same as our-proposed 

AD-NET, the major difference is that during the fine-tuning procedure, neither C-Age information nor 
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predicted B-Age from pre-training procedure was included. This deep learning architecture is well-studied 

in a number of medical image applications such as age prediction (Cole, J. H. et al., 2017), breast cancer 

classification (Gao, F., et al. 2018) and medical imaging synthesis (Li, R., et al., 2014). In TL-CNN-

Δage , the Δage  for each subject was calculated after the pre-training procedure. During the fine-tuning 

procedure, Δage  was simply added as an additional input into the last layer (layer L2 in Figure 1). In addition, 

six existing methods, which used the same ADNI dataset, from the literature were chosen for comparison. 

These included both traditional machine learning models (e.g., logistic regression and SVM) and deep 

learning models. Also, we further explore the role of Δage  in the MCI-conversion prediction problem 

among different age groups. 

3 RESULTS 

3.1 Experiment I: Pre-training and Age Prediction Task 

In experiment I, the proposed model achieved MSE of 187.16 and Mean Absolute Error (MAE) of 

11.17 on the training dataset. The Pearson Correlation (PC) between C-Age (𝑦𝑎𝑔𝑒) and predicted B-Age 

(𝑦̂𝑎𝑔𝑒) was 0.75. On the testing dataset, we had MSE=196.42, MAE=12.28, PC=0.67. For illustration 

purposes, we include the plot of C-Age vs. predicted B-Age for both training dataset (Figure 3A) and testing 

dataset (Figure 3B). We conclude that after pre-training, the AD-NET for age prediction can successfully 

capture the correlation between raw MRI image and C-Age among the healthy subjects as demonstrated by 

the Pearson correlation and the following figure.  

We do recognize our model on aging prediction may not be as optimum as that from (Cole, J. H. et al., 

2017). We also observe the predicted B-Age tends to be younger than the C-Age. There is certainly room 

for model improvement. With the consistent performance of the model on the training vs. blind testing 

dataset, one conclusion we can draw is the model is robust. Given the focus of this study is to demonstrate 
the advantages of surrogate biomarkers from age for MCI converter prediction, we decide to leave the age 
prediction model improvement as a future research effort.  

 

Figure 3. Plot of chronological age (C-Age) vs. predicted biological age (B-Age): A) training dataset (MSE=187.16, 
MAE=11.17, PC=0.75),  B) testing dataset (MSE=196.62, MAE=12.28, PC-0.67). Red lines are the fitted linear 

regression, respectively. 

Now we fed all subjects in Dataset II into the pre-trained model and obtained predicted age for each 

MCI subject. The 𝛥𝑎𝑔𝑒 for each subject was derived using equation (2). We conducted a t-test between the 

MCI-converters and MCI non-converters at different age groups (Table 2). From this group-based study, it 
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is interesting to observe that there is statistical significance between the MCI converters vs. MCI non-
converters under the age group ranges from 55-90, 60-90, 65-90 and even from 70-90. For the cohorts aging 

75+, the statistical difference diminishes. We contend the power of this age surrogate biomarker may be 

weakened in the older senior population. To get the composite parameter 𝜀 for equation (2), we need to 

derive the Pearson Correlation r. As discussed above, our model tends to predict younger B-Age comparing 

to C-Age, the mean 𝛥𝑎𝑔𝑒 for all subjects in Dataset II is -16.64. Ideally, we would like the mean 𝛥𝑎𝑔𝑒 close 

to zero, to utilize positive or negative 𝛥𝑎𝑔𝑒 (thus the wi) to adjust 𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣 ). Therefore, we shifted the 

𝛥𝑎𝑔𝑒  with -16.64.  Figure 5 shows the distribution of 𝛥𝑎𝑔𝑒 after this adjustment. In order to avoid impacts 

from the extreme values of adjusted 𝛥𝑎𝑔𝑒, z-score method is used to identify potential outliers (Ben-Gal, I. 

2005). Any samples outside the ±2 standard deviation of 𝛥𝑎𝑔𝑒 range were adjusted to these threshold values 

to keep model training less sensitive to those extreme values (i.e., m=17, that is, adjusted 𝛥𝑎𝑔𝑒will be within 

±17 in our setting).  Given the Pearson correlation (PC) between  𝛥𝑎𝑔𝑒 and MCI-Converter labels is 0.15, 

we set r = 0.15. 

Table 2. P-values of t-test on age-gap between MCI-converter vs. non-converter group at the different age range 

Age Range 
MCI-converter MCI non-converter 

p-value 
# subjects Mean Δage # subjects Mean Δage 

55-90 168 -15.77 129 -17.78 0.021 

60-90 162 -16.5 126 -18.1 0.017 

65-90 154 -17.03 111 -19.36 0.043 

70-90 128 -18.29 101 -19.81 0.049 

75-90 88 -20.16 66 -22.49 0.124 

80-90 42 -22.39 40 -24.51 0.47 

85-90 10 -23.36 14 -25.25 0.331 

 

 

Figure 5. Distribution normalized 𝛥𝑎𝑔𝑒 values for MCI-Converter and MCI Non-Converter groups 

In this first experiment, the accuracy of AD-NET in age prediction task and the potential of biomarker 

Δage  in differentiating MCI-converter vs. MCI non-converter on the group bases are validated.  
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3.2 Experiment II: MCI-Converter Prediction Task 

In this experiment, we incorporated 𝛥𝑎𝑔𝑒 as a surrogate biomarker to predict MCI conversion risk of 

each subject. Table 3 summarizes the performance comparison among the models from the literature and 

our proposed model. Four measures, AUC, Accuracy, Sensitivity, and Specificity are used.  

Table 3. Comparison Results on AUC, Accuracy, Sensitivity, and Specificity 

METHODS MODEL DATA AUC ACC. SEN. SPE. 

Logistic/Cox 
regression (Ewers, 

M. et al. 2012) 
ML 

Structural MRI+CSF+ 

Neuropsychological testing 
NA 0.77 0.82 0.73 

Orthogonal partial 
least squares 

(Westman, E. et al., 
2012) 

ML 
Structural MRI 

+ CSF 
0.76 0.69 0.74 0.63 

Gaussian Process 
(Young, J. et al., 

2013) 
ML 

Structural MRI 

+ CSF + PET + APOE 
0.80 0.74 0.79 0.66 

SVM ( Liu, F., et 
al., 2014) 

 

ML 
Structural MRI 

+ PET 
0.70 0.68 0.65 0.70 

SAE + Logistic 
regression (Liu, S. 

et al., 2014) 
DL/ML 

Structural MRI 
+ PET 

NA* 0.54 0.52 0.87 

Deep polynomial 
network +SVM 

(Shi, J. et al., 2017) 

DL/ML 
Structural MRI  

+ PET 
0.80 0.79 0.68 0.87 

TL-CNN (Cole, J. 
H. et al., 2017) 

DL Structural MRI 0.76 0.73 0.68 0.77 

TL-CNN-Δage DL 
Structural MRI 

+ Age 
0.77 0.77 0.80 0.73 

 
AD-NET 

DL 
Structural MRI 

+ Age 
0.81 0.76 0.77 0.76 

*NA: not reported in the literature 

We have four observations from Table 3. First, traditional machine learning models (e.g., Westman, E. 

et al., 2012; Young, J. et al., 2013; Ewers, M. et al. 2012; Liu, F., et al., 2014) require additional information 

(e.g., clinical testing scores, APOE) to achieve comparable performance as deep learning models on 

imaging data only. We thus conclude this demonstrates the advantage of deep learning models, which may 

better explore the power of neuroimaging for disease diagnosis. Second, in handling neuroimaging data 

alone, (Liu, S. et al., 2014; Shi, J. et al., 2017) are the combination of a deep model with a machine learning 

model where deep learning models are feature extractors. While both have good specificity (SPE.), the 

performance on sensitivity (SEN.) is less than desirable. Here we want to emphasize that sensitivity is of 

more clinical importance in this study as the goal is to identify the MCI converters early for effective 

interventions. In addition, (Liu, S. et al., 2014; Shi, J. et al., 2017) would require both MRI and PET for 

such performance. In using MRI imaging alone, we compare TL-CNN (Cole, J. H. et al., 2017), TL-CNN-

Δage  with our proposed AD-NET. Our third observation is with  Δage  added, TL-CNN-Δage and AD-NET 

outperforms TL-CNN in terms of overall performance metrics (ACC. and AUC). This demonstrates the 

potential of Δage as a surrogate marker for the MCI conversion prediction problem. In comparing AD-NET 

vs. TL-CNN-Δage , we have 0.76 (ACC.), 0.77 (SEN.), 0.76 (SPE.) for AD-NET and 0.77 (ACC.), 0.80 

(SEN.), 0.73 (SPE.) for TL-CNN- Δage . Though it seems TL-CNN- Δage  outperforms AD-NET on 

sensitivity (0.80 vs. 0.77), t-test shows there exists no statistically significant difference (p = 0.24). For 
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AUC, t-test indicates AD-NET significantly outperforms TL-CNN-Δage(p = 0.02). We conclude AD-NET 

achieves comparable performances in terms of accuracy (ACC.), sensitivity (SEN.) and specificity (SPE.) 

as that from TL-CNN-Δage  and outperformance TL-CNN-Δage in AUC indicating the robustness of AD-

NET.  

We want to emphasize that in medical research, AUC is considered as a more consistent metric with 

better discriminatory power comparing to accuracy (Lu, D. et al., 2018). As seen in Table 3, AD-NET has 

the highest AUC among all the models.  

Table 4 depicts the performance of MCI-conversion prediction among different age groups and how 

Δage  play a role. As observed, for the younger group (55-75), the AUC values are 0.74, 0.75 and 0.79 for 

TL-CNN, TL-CNN-Δage and AD-NET, respectively. For the older senior group (75-90), group-based study 

(Table 2) indicates the diminished power of 𝛥𝑎𝑔𝑒 as a surrogate age marker to distinguish MCI converter vs. 

non-converter. All three deep learning models show the promises in predicting the conversion risk of each 

individual subject. In addition, AD-NET consistently outperforms TL-CNN, TL-CNN-Δage  for all subjects 

(see Table 3) and the separated age group (see Table 4). We conclude AD-NET, a deep learning model 

enabled by knowledge transfer has the potential for AD early detection.  

Table 4.  AUC performance for TL-CNN, TL-CNN-𝛥𝑎𝑔𝑒, AD-NET under for different age group 

AGE RANGE # OF SUBJECT METHODS AUC 

 

55-75 
 

80 MCI converters  

vs. 
63 MCI non-converters 

TL-CNN (Cole, J. H. et al., 2017) 0.74 

TL-CNN-Δage 0.75 

AD-NET 0.79 

75-90 

 

88 MCI converters  

vs.  

66 MCI non-converters 

TL-CNN (Cole, J. H. et al., 2017) 0.80 

TL-CNN-Δage 0.80 

AD-NET 0.83 

4 DISCUSSION  

While AD-NET shows the potentials in MCI conversion risk assessment via the surrogate age 

biomarker, it has limitations. First, as discussed in the first experiment, we do recognize our deep learning 

model on aging prediction may underperform the model from Cole, J. H. et al., 2017. We contend this is 

because the focus of this study is to demonstrate the power of the surrogate age biomarker. This leads to 

our imminent future work on improving the performance of the age prediction. One solution is to gather 

more neuroimages and dedicate efforts to model tuning. We believe with improved performance on age 

prediction, MCI-conversion risk assessments will potentially be improved. The second limitation is that the 

AD-NET in this research focuses on neuroimaging data only. We plan to incorporate information such as 

sex, gene, clinical test scores, etc. from each subject as the competing methods did, into the model to further 

improve the performance. The third limitation is related to global scalar r, which is pre-defined based on 

prior knowledge. We plan to identify the optimal r during the model training process to explore the impact 

of the global scalar on the model performance.” 

In this research, we propose a new deep learning model: AD-NET (Age-adjust neural network). One 

contribution of AD-NET is to transfer the knowledge captured in the pre-training, specifically, a surrogate 

biomarker Δage  (the difference between chronological age and predicted biological age). The knowledge-

based transfer learning not only saves training resources but also improves prediction accuracy. Our second 

contribution lies in a novel age adjust procedure. Instead of simply adding Δage  as an additional feature to 

the deep model, we introduce a composite parameter, 𝜀 = 𝑤𝑖 × 𝑟, considering the effects of both the group 
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(r) and the individual subject (𝑤𝑖) to adjust the prediction (see equation (2)). Subject-dependent scalar, 𝑤𝑖, 

is smoothed Δ𝑎𝑔𝑒
i  by removing outlier impact. It is straightforward to have 𝑤𝑖 included in the prediction 

model. Here we provide more discussions on our investigation on the r.  

 

Figure 6. Sensitivity Experiments on global scalar r on AUC values for MCI converter vs. non-converter prediction 

Global scalar r is the Pearson correlation between the Δ𝑎𝑔𝑒 with the patient status (MCI converter vs. 

MCI non-converter) for the cohort, r ∈ [−1, 1], r = 1 for a total positive linear correlation, r = -1 for a total 

negative linear correlation, r = 0 for no correlation. We conducted experiments for sensitivity analysis of r 

for the prediction (see Figure 6). When r = 0, we have 𝜀 = 0, AD-NET essentially is the same as TL-CNN, 

we have AUC=0.76. When r = 1, we have 𝜀 = 𝑤𝑖, AUC has the lowest value as 0.69. Note AD-NET under 

𝜀  = 𝑤𝑖  differs from TL-CNN-Δage  due to the use of equation (2) in the prediction adjustment. It is 

interesting to observe the best AUC is obtained when r ranges [0.1, 0.3]. The Pearson correlation r, in this 

study, 0.15 is one of the best scenarios. We contend this may be because the prediction deep learning model 

is cross-trained on the subject group. The model parameters are set capturing the underlying correlations to 

the subject group. The empirical experiment demonstrates that incorporating a Pearson correlation to the 

composite parameter helps improve the prediction performance. It is our intention to conduct theoretical 

research as immediate next step to understand the interrelationship among Pearson correlation r, subject-

dependent scalar, 𝑤𝑖, composite parameter 𝜀 and prediction performance.  

5 CONCLUSIONS 

Our proposed AD-NET extends traditional feature-based transfer learning with knowledge transfer 

capability. Surrogate biomarker Δage , captured through pre-training, is adjusted by global and individual 

factors for the fine-tuning stage. We compare AD-NET with 8 classification models from literature using 

the same public neuroimaging dataset. Experimental results show that the proposed AD-NET outperforms 

all the competing models on AUC in predicting the MCI converter vs. non-converter.  While promising, 

there is room for improvement. Other than conducting theoretical analysis on the Pearson correlation as 

discussed above, we plan to improve the pre-training network for age prediction. We expect the improved 

age prediction will help improve the MCI conversion predictions further which may facilitate future clinical 
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trial design and improved management of the disease. Another direction for future work is to explore the 

model performance on multiple neuroimaging modalities, e.g., both MRI and PET.  
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