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Background: The total number of COVID-19 infections is critical information for decision 
makers when assessing the progress of the pandemic, its implications, and policy options. 
Despite efforts to carefully monitor the COVID-19 pandemic, the reported number of confirmed 
cases is likely to underestimate the actual number of infections. We aim to estimate the total 
number of COVID-19 infections in a straightforward manner using a demographic scaling 
approach based on life tables.   

Methods: We use data on total number of COVID-19 attributable deaths, population counts, 
and life tables as well as information on infection fatality rates as reported in Verity et al. 
(2020) for Hubei, China. We develop a scaling approach based on life tables and remaining life 
expectancy to map infection fatality rates between two countries to account for differences in 
their age structure, health status, and the health care system. The scaled infection fatality rates 
can be used in combination with COVID-19 attributable deaths to calculate estimates of the 
total number of infected. We also introduce easy to apply formulas to quantify the bias that 
would be required in death counts and infection fatality rates in order to reproduce a certain 
estimate of infections.  

Findings: Across the 10 countries with most COVID-19 deaths as of April 17, 2020, our 
estimates suggest that the total number of infected is approximately 4 times the number of 
confirmed cases. The uncertainty, however, is high, as the lower bound of the 95% prediction 
interval suggests on average twice as many infections than confirmed cases, and the upper 
bound 10 times as many. Country-specific variation is high. For Italy, our estimates suggest 
that the total number of infected is approximately 1 million, or almost 6 times the number of 
confirmed cases. For the U.S., our estimate of 1.4 million is close to being twice as large as the 
number of confirmed cases, and the upper bound of 3 million is more than 4 times the number 
of confirmed cases. For Germany, where testing has been comparatively extensive, we estimate 
that the total number of infected is only 1.2 times (upper bound: 3 times) than the number of 
confirmed cases. Comparing our results with findings from local seroprevalence studies and 
applying our bias formulas shows that some of their infection estimates would only be possible 
if just a small fraction of COVID-19 related deaths were recorded, indicating that these 
seroprevalence estimates might not be representative for the total population.  

Interpretation: As many countries lack population based seroprevalence studies, 
straightforward demographic adjustment can be used to deliver useful estimates of the total 
number of infected cases. Our results imply that the total number COVID-19 cases may be 
approximately 4 times (95%: 2 to 10 times) that of the confirmed cases. Although these 
estimates are uncertain and vary across countries, they indicate that the COVID-19 pandemic is 
much more broadly spread than what confirmed cases would suggest, and the number of 
asymptomatic cases or cases with mild symptoms may be high. In cases in which estimates 
from local seroprevalence studies or from simulation models exist, our approach can provide a 
simple benchmark to assess the quality of those estimates.     
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1. Introduction 

The explosive nature of the COVID-19 pandemic, caused by the new SARS-CoV-2 virus, lies in 
its exponential growth paired with the lack of immunity in human populations worldwide. The 
total number of COVID-19 infections is an important indicator for understanding the COVID-19 
pandemic and the very different courses it takes in countries worldwide. Decision makers 
urgently need to know how many people are infected with COVID-19 in order to make well-
grounded decisions on implementing suitable control measures, which are intended to prevent 
avoidable deaths from this new human transmissible acute respiratory tract infection (Wölfel 
et al. 2020).  

Despite the central importance of the actual number of COVID-19 infections in policy decisions, 
this indicator is largely unknown. Population-representative seroprevalence studies would 
provide important information about the total number of infected, but are rarely available yet 

(e.g. Lourenco et al. 2020, Lipsitch et al. 2020, Bendavit et al. 2020, Lavezzo et al. 2020). The 
few published seroprevalence studies are restricted to specific locations and often rely on non-
representative samples. The actual number of infections has also been estimated with complex 
statistical methods and simulation approaches (e.g. Li et al. 2020, Flaxman et al. 2020). While 
they provide important information they have high data demands, and their implementation is 
not straightforward.  

We introduce a demographic scaling approach to estimate the number of COVID-19 infections. 
This indirect estimation approach can be applied in many contexts as it requires only little 
input data: the number of COVID-19 related deaths for a population of interest; and scaled age-
specific infection fatality rates (IFR; deaths over infections) from a reference population. The 
IFRs are scaled based on life tables. Although the proposed method can also be applied without 
scaling IFRs, it should be pointed out that life tables are available for most countries of the 
world, so that this data requirement does not limit the method’s application. Indirect 
estimation procedures have been used earlier to derive the number of infections, although they 
often do not account for age structure (Vollmer and Bommer 2020) and do not rescale IFRs 
(Manski and Molinari 2020). 

Scaling IFRs is not only novel and a key feature of the introduced approach, but also necessary 
as age-specific IFRs are not available for many countries. The scaling step allows to transfer the 
best IFR estimates available globally from a reference population to a target population. The 
age-specific IFRs are scaled to match total mortality differentials between a reference and a 
target country; this indirectly adjusts for underlying differences in age structure, health status, 
and the health care service. The scaling makes use of the demographic concept of remaining 
life expectancy, sometimes called thanatological age. It maps IFRs between a reference and a 
target country so that people of an age group in the target population get the same IFR as 
people of another age group in the reference population if they do have the very same number 
of remaining life years. For example, assume that 60-year-olds in a reference population have 
the very same 20 years of life left as 63-year-olds in a population of interest. We then map the 
IFR of the 60-year-olds in the reference population onto the 63-year-olds in the target 
population, accounting for lower mortality in the reference country.      

We estimate that the total number of COVID-19 infections greatly exceeds the number of 
confirmed cases, but the magnitude of this difference varies strongly across countries. For the 
U.S. we estimate that the total number of confirmed cases is close to being twice as large as the 
number of confirmed cases. In Italy, in contrast, the corresponding number is close to 6, and in 
Germany, where testing has been extensive, only 1.2. On average across the 10 countries with 
most COVD-19 deaths as of April 17, 2020, our estimates suggest that the total number of 
infections is close to 4 times that of confirmed cases, but the variation in point estimates 
around this average, as well as the uncertainty regarding these point estimates, are both large.  
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The remainder of this paper is organized as follows. In section 2 we analyze the relationship 
between confirmed cases and deaths from COVID-19 and discuss the quality of these data. We 
introduce our demographic scaling model in section 3 and apply it to estimate COVID-19 
infections in the ten countries that have the highest number of COVID-19 deaths as of April 17, 
2020 in section 4. Section 5 concludes. 

This research is reproducible. The R source code and information on the data is available at  

https://github.com/christina-bohk-ewald/demographic-scaling-model. 

 

2. The empirical relationship between confirmed cases and deaths from COVID-19 

The Johns Hopkins University CSSE (2020) collects and publishes confirmed cases and deaths 
attributable to COVID-19 for countries worldwide on a daily basis since January 22, 2020. 
Although the basic relationship between confirmed cases and deaths from COVID-19 appears 
to be very clear—the more confirmed cases, the more deaths from COVID-19—, this 
relationship is stronger in some countries than in others. 

Figure 1 shows this relationship for the 10 countries that have reported most COVID-19 deaths 
as of April 17, 2020. The U.S. has the largest number of reported deaths from COVID-19, close 
to 37k, and the largest number of confirmed cases, close to 700k. We use Hubei instead of 
China in our analysis, as more than 96% of COVID-19 deaths reported in China have occurred 
in this province, which has approximately 60 million residents and a comparable age structure 
to China (National Bureau of Statistics China 2018). 

 

 Figure 1 here 

 

The countries fan out between Belgium and Germany, and their crude case fatality rates (CFR; 
deaths over confirmed cases) range immensely between 3.1% and 14.3%. Italy, Belgium, the 
Netherlands, the U.K., Spain, France, and Iran have experienced more COVID-19 deaths per 
confirmed cases than Hubei, the U.S., and Germany so far. The variation in CFRs can be driven 
by several factors, among them “real” differences arising from different age-specific mortality 
risks among the infected (Dowd et al. 2020; Dudel et al. 2020). However, the variation in CFRs 
may also reflect other factors such as differences in testing intensity (Ward 2020; Hasell et al. 
2020) and test specificity (Wölfel et al. 2020; Hasell et al. 2020); variation in the age structure 
of the confirmed cases (Dudel et al. 2020); and the stage of progress of the COVID-19 outbreak 
(Lourenco et al. 2020). In addition, variation in the way deaths are classified to COVID-19 
versus non-COVID-19 deaths may also explain some of the cross-country differences in CFR. 
Roser et al. (2020) provides a comprehensive overview of most of these issues.  

For our purposes, a key question is whether the numerator of CFR, the number of deaths, is 
more or less accurate than the denominator, the number of confirmed cases. It seems likely 
that confirmed cases of COVID-19 strongly underestimate the total number of COVID-19 cases 
(e.g. Rajgor et al. 2020; Hasell et al. 2020). For example, cases with mild symptoms or 
asymptomatic cases may go undetected; test coverage may be poor and may focus only on 
specific sub-populations, or on tracing back only people with proven contact to confirmed 
COVID-19 cases; and the amount of false negatives may outnumber false positives (e.g. Wölfel 
et al. 2020; Hasell et al. 2020). 
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The number of COVID-19 deaths, on the other hand, may be under- or overestimated, as this 
has been shown already for some regions that are heavily affected by COVID-19 epidemic. For 
example, people dying in senior residences or alone at home could be missing in official 
statistics (The Economist April 4, 2020). Another source of error are inconsistent practices for 
defining COVID-19 deaths: for example, counting all cases that have had COVID-19, or counting 
only cases for whom COVID-19 has been the primary cause of death (and later also secondary 
cause of death), or counting only persons who have been hospitalized for treatment of COVID-
19. In addition, the testing practices and testing coverage may also be insufficient to detect all 
people that have died from COVID-19 (Roser et al. 2020). This could especially lead to fewer 
death counts than there actually are, and studies analyzing excess mortality would be helpful 
to quantify this bias (Leon et al. 2020). We argue, however, that the number of reported deaths 
are more reliable than confirmed cases from COVID-19. That is why we select COVID-19 death 
as core empirical input in our estimation approach. Moreover, we also discuss a simple way to 
assess the potential effect of over- and underreporting of COVID-19 deaths on our results.    

 

3. Demographic scaling approach to estimate COVID-19 infections 

We introduce a demographic scaling approach to create first estimates of total number of 
COVID-19 infections. This approach is built on the assumption that COVID-19 deaths are fairly 
accurately recorded, and that IFR borrowed from a reference country reflects the true IFR of 
the target country after appropriate scaling. Each of the assumptions can be criticized and we 
do so below in section 5. Our approach is designed to be able to deliver useful estimates of the 
total number of infected in a situation when much of the data needed for precise estimation is 
not available. Setting requirements to a minimum with respect to input data, methodological 
finesse, and computing facilities makes this approach straightforward and broadly applicable.  

We start with the basic identity that represents the age-specific number of infected:  

(1) 𝐼𝑥 = 𝑃𝑥  ⋅  𝜆𝑥   

In Eq. (1), 𝐼𝑥 is the number of infected in age group x. This quantity is unknown. Px is 
population in age group x and known, and 𝜆𝑥 represents the fraction of population with the 
infection in age group x, and this is unknown. We estimate 𝜆𝑥 by using the equation 𝐷𝑥 =
 𝐼𝐹𝑅𝑥 ⋅  𝑃𝑥  ⋅  𝜆𝑥, where 𝐷𝑥 is the number of deaths by age x and 𝐼𝐹𝑅𝑥 is an estimated infection 
fatality rate by age x. We rearrange the equation to get 𝜆𝑥 = 𝐷𝑥/[𝐼𝐹𝑅𝑥 ⋅  𝑃𝑥], and estimate the 
total number of infected by   

(2)  I = ∑ 𝑃𝑥𝑥 ⋅ 𝜆𝑥      

Replacing 𝜆𝑥 with its definition yields    

(3)  𝐼 = ∑ 𝐷𝑥𝑥 /𝐼𝐹𝑅𝑥    

The key challenge is to arrive at credible estimates of 𝐼𝐹𝑅𝑥 and 𝐷𝑥.  

The simplest way to get estimates of 𝐼𝐹𝑅𝑥 is to take them from some source that hopefully is 
valid for the country of interest. This may be risky as IFRs that are valid in one context may not 
carry over to another context, even if they were age-specific. For example, people with 
underlying health conditions, such as cardiovascular diseases, diabetes, chronic respiratory 
diseases, hypertension, and cancer (e.g. Novel Coronavirus Pneumonia Emergency Response 
Epidemiology Team 2020) have a higher risk of death given COVID-19 infection, and the 
distribution of these health conditions is not equal across countries. In addition, health care 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 2, 2020. ; https://doi.org/10.1101/2020.04.23.20077719doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.23.20077719
http://creativecommons.org/licenses/by-nd/4.0/


5 
 

systems may also differ among countries with respect to their capability of effectively treating 
illnesses. However, in principle it is easily doable to take IFRs from one source for a country of 
interest. We call this approach the unadjusted approach, and consider it a potentially viable 
option only if the life table data needed for the scaling approach are not available.  

A superior approach is to adjust the IFRs taken from one country or context to reflect the 
specific age structure, health status, and health care system of the target country. To control for 
such cross-country differences in age, underlying health, and medical service we map IFRs 
between two countries based on their remaining lifetime (sometimes called thanatological 
age), denoted by 𝑒𝑥. More specifically, we assign the same infection fatality rate (IFR) to people 
of two countries who have, on average, the same number of life years left (𝑒𝑥): 

𝐼𝐹𝑅𝑒𝑥
𝐶𝑂𝐼 = 𝐼𝐹𝑅𝑒𝑥

𝑅𝐶 

where superscript COI denotes the country of interest and RC the reference country. For 
example, if 70-year-olds in a reference country have, on average, the same number of life years 
left as 75-year-olds in a country of interest, the infection fatality rate of the 70-year-olds in the 
reference country is mapped onto the 75-year-olds in the country of interest. 

Mapping infection fatality rates based on remaining lifetime allows to adjust for cross-country 
differences in age and health structure as well as medical care. That is because remaining life 
time can be regarded as a function of underlying health conditions and a health care system’s 
effectiveness to cure them (e.g. Riffe et al. 2016). The less underlying health conditions people 
have and the more effective medical care is to treat them, the more healthy people are and the 
more life years they have left. This preferred approach thus accounts for potential differences 
in peoples’ age and health as well as medical service available. 

Regarding death counts, 𝐷𝑥, we find that COVID-19 deaths are available in total numbers for 
many countries worldwide from the Johns Hopkins University CSSE (2020), but that they are 
much less available by age group. To deal with this, we disaggregate total death counts into age 
groups using a global average pattern over age that we determined from analyzing all data on 
COVID-19 deaths by age provided by Dudel et al. (2020) (see appendix C for details).  

A simple way to assess the impact of under- or overreporting of deaths is to introduce the 
relative amount of under- or overreporting directly into formula (3), 

(4)  𝐼𝑅 = 𝑅 ∑ 𝐷𝑥𝑥 /𝐼𝐹𝑅𝑥 = 𝑅 ∙ 𝐼, 

where 𝑅 captures under- and overreporting, assuming that misreporting affects all ages to the 
same extent; 𝐼 is the true number of infections; and  𝐼𝑅 is the number of infections observed 
with reporting bias. If 𝑅 is below 1 then there is underreporting, and if 𝑅 is above 1 then there 
is overreporting. Equation (4) shows that if there is an estimate of 𝑅, a biased estimate of 
infections can easily be adjusted to derive the true number, 𝐼 = 𝐼𝑅/𝑅. Equation (4) also allows 
to calculate the misreporting of deaths that is required to “explain” an estimate of 𝐼 taken from 
another reference. For example, if our method provides an estimate 𝐼𝑠 and another method, 
say a seroprevalence study, yields another estimate 𝐼𝑝, then the amount of misreporting 𝑅 has 
to equal 𝐼𝑃/𝐼𝑆. Depending on the resulting value of 𝑅 the values of 𝐼𝑠 and 𝐼𝑝 might be 
considered not to be consistent if 𝑅 is very high or very low. In such a case one might conclude 
that the results of the seroprevalence study do not carry over to the total population.   
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4. Results 

We use the scaling approach to estimate COVID-19 infections for the ten countries that have 
reported most deaths caused by COVID-19 as of April 17, 2020. As input data, we take (1) 2019 
population counts of the UN World Population Prospects (2019), (2) accumulated total COVID-
19 deaths of Johns Hopkins University CSSE (JHU CSSE), and (3) IFRs reported in Verity et al. 
2020 for Hubei, China. Verity et al. (2020) conduct a Bayesian analysis and provide credible 
intervals for their point estimates. We use these credible intervals to generate estimates of the 
uncertainty (prediction intervals) of the number of infected individuals. Both the population 
counts and the IFRs are by 10-year age groups, 0 − 9, 10 − 19, …, 80 +. We disaggregate 
COVID-19 total deaths into the same 10-year age groups using the global average pattern over 
age that we determined based on the data provided by Dudel et al. (2020). We report our 
findings in relative terms, population share of COVID-19 infections (𝜆), and in absolute terms, 
COVID-19 infections (𝐼). Details about the model setup and additional findings based on 
unadjusted age-specific infection fatality are given in the appendices A through E.  

Figure 2 shows the total number of confirmed COVID-19 infections as of April 17, 2020, as well 
as the estimated total number of confirmed cases based on our approach of scaling infection 
fatality rates to match remaining lifetime. Our estimates suggest that across the countries, the 
total number of infections is approximately 4 times that of confirmed cases. For example, for 
the U.S. with 700k confirmed cases we estimate that the total number of infections might range 
between approximately 630k and 3 million, with a point estimate of 1.4 million infected cases. 
For a large number of countries, the point estimate for the number of infections is, however, 
more than 5 times the number of confirmed cases. For example, for Italy we estimate 
approximately 1 million infections, whereas the total number of confirmed cases amounts to 
170k. Germany, where testing has been comparatively extensive, stands out as our results 
suggests that the number of infections is only 1.2 times that of confirmed  cases (170k versus 
140k). Note that confirmed cases within 95% prediction intervals do not indicate model error, 
but rather effective testing in a country as many people being and having been infected with 
COVID-19 get detected. 

 Figure 2 here 

According to our lower bound estimate for the total number of infections, we still estimate that 
across the countries the unknown total number of infections is approximately twice as large as 
the number of confirmed cases. For example for Italy, our lower bound suggests that the true 
number of infected is approximately 430k, or 2.5 times the number of confirmed cases (170k). 
Also for France, our lower bound estimates suggest approximately 370k infections, which is 
also 2.5 times the number of confirmed cases (148k). In Germany, our lower bound estimates 
suggest that the total number of infected might be lower, 76k, than the number of confirmed 
cases (141k).  

The upper bound estimates for the total number of confirmed cases suggest that the total 
number of infections may be more than 10 times the number of confirmed cases in some 
countries. For the U.S. our results suggest an upper bound for the total number of infections of 
3 million, which is more than 4 times the number of confirmed cases. In Italy and France our 
upper bound estimates are close to 2.7 and 2.3 million, respectively, or more than 15 times the 
number of confirmed cases. Also for Belgium, Spain, the U.K., and the Netherlands our upper 
bound estimates are more than 11 to 14 times the number of confirmed cases. Only for 
Germany the upper bound is less than 3 times the number of confirmed cases.  

Figure 3 shows the estimated total number of infected as a fraction of the population over 
times. For each shown date the numbers are likely to somewhat underestimate the fraction of 
infected since we do not account for the time lag between infection and death. However 
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accounting for the time lag is not expected to strongly change the shape of the curves. Based on 
these estimates, as of April 17, 2020, we find the shares of people infected with COVID-19 to be 
largest at 2% in Spain, somewhat smaller, between 1.3% and 1.8% in Belgium, Italy, and 
France, approximately at 0.8% in the U.K. and the Netherlands, and at 0.4% or less in the U.S., 
Hubei, Germany, and Iran. The uncertainty bounds discussed above for the total number of 
infected cases map linearly to the fraction of individuals infected. For example, our upper 
estimates for the fraction of infected are as high as 5.8%, 4.5%, and 4.4% for Spain, Belgium, 
and Italy. 

 Figure 3 here 

Although there are many patterns over time to detect, we highlight here three of them. First, 
the growth of population shares of COVID-19 infections was strong in Italy for a long time in 
March 2020 but has started to slowly flatten in early April 2020. Second, since April 2020, we 
estimate that increasingly more Belgian people got infected with COVID-19, so that Belgium is 
estimated to be almost on a par with Spain as both countries’ population shares of COVID-19 
infections amount to more than 1.8% as of April 17, 2020. Third, Hubei province is an 
exception to this pattern, as its estimated population share of COVID-19 infections follows a 
logistic curve that flattens before reaching 0.2%. This may indicate that the COVID-19 epidemic 
has been successfully contained. Alternatively, as deaths have been corrected upwards to April 
17, 2020, +1290 counts or +39% (WHO 2020), it is possible that our estimate of the flattening 
curve only partially reflects reality. 

Compared to recent seroprevalence studies, our estimates are generally much lower. For 
example, Bendavid et al. (2020) report for Santa Clara County in the U.S. a seroprevalence 
between 1.1% and 5.7%, compared to our point estimate of 0.4% for the U.S. as a whole. For 
our estimated infection rate to be explained by underreporting and assuming the 
seroprevalence estimate was true would require that only one in three COVID-19 related 
deaths is registered as such, or even less. For the city of Robbio in Italy, Bendavid et al. (2020) 
cite a seroprevalence of 10%, and for the German municipality of Gangelt a seroprevalence of 
14%. To be compatible with our point estimates of 1.7% (Italy) and 0.2% (Germany) would 
require massive underreporting – in case of Italy less than one in five COVID-19 related deaths 
would be recorded, in Germany less than two in 100 deaths. However, working with the upper 
bound of our estimates instead requires only one in two COVID-19 related deaths to be missed 
for the U.S. and Italy, which might potentially be possible, while for Germany the number is still 
unrealistically high. Either way, the estimates based on local, non-representative 
seroprevalence studies are rather high, and the comparison with our findings indicates that 
they might not be representative of the total population.  
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5. Conclusions 

Knowing about the scale of COVID-19 infections is critically important for decision makers to 
properly assess the progress of the COVID-19 pandemic, to anticipate the number of severe 
COVID-19 patients, and to identify suitable time points when it will be safe to gradually lift 
implemented control measures. Despite efforts to carefully monitor the COVID-19 pandemic, 
the number of confirmed cases is likely to severely underestimate the total number of 
infections. To arrive at useful first estimates of the total number of infections, we develop a 
demographic scaling model that is broadly applicable as it is based on little input data: deaths 
attributable to COVID-19, COVID-19 infection fatality rates, and life tables. As many countries 
lack reliable age-specific IFR estimates, we map them from a reference country onto countries 
of interest based on remaining life expectancy. This scaling reflects the age structure, the 
health status, and the health care system of the target country. The scaled infection fatality 
rates can be used in combination with COVID-19 attributable deaths to calculate first estimates 
of the total number of infected.   

Across the 10 countries with most COVID-19 deaths as of April 17, 2020, our estimates suggest 
that the total number of infected is approximately 4 times the number of confirmed cases. The 
uncertainty, however, is high, as the lower bound of the 95% credible interval suggests, on 
average, twice as many infections than confirmed cases, and the upper bound even 10 times as 
many. Country-specific variation is high. For Italy, our estimates suggest that the total number 
of infected is approximately 1 million, or almost 6 times the country-specific confirmed cases. 
For the U.S., our estimate of 1.4 million is close to being twice as large as the number of 
confirmed cases, and the upper bound of 3 million is more than 4 times the number of 
confirmed cases. For Germany, where testing has been comparatively extensive, we estimate 
that the total number of infected is only 1.2 times (upper bound: close to 3 times) the number 
of confirmed cases.     

Considering the incomplete knowledge regarding data quality and uncertainty during the 
ongoing COVID-19 crisis, our approach can also be valuable to validate infection rates that have 
been published as a result of serological studies. More specifically, the proposed approach can 
be used to analyze (1) how many more or less deaths or (2) how much lower infection fatality 
rates would have needed to be observed in order to match seroprevalence. Serological studies 
may be incorrect as they have not been scaled up to national levels yet and may produce false 
negatives and false positives (e.g. Petherick 2020). Comparing our estimates for the U.S., Italy, 
and Germany with results from non-representative seroprevalence studies shows that the 
latter usually provide rather high estimates, which in case of Germany are unlikely to apply to 
the total population. 

Our model estimates of COVID-19 infections build on two key assumptions: (1) total deaths 
from COVID-19 are fairly accurately recorded and (2) the scaled infection fatality rates from 
China reported by Verity et al. (2020) can be applied to other countries. In practice, both of 
these assumptions will only hold approximately, and they are likely violated to some extent.  

First, we consider assumption (1), total deaths are fairly accurately recorded. This assumption 
does not hold for all countries as reported deaths from COVID-19 have been shown to be 
underestimated in some regions that are heavily affected by COVID-19 epidemic. For example, 
people dying in senior residences or alone at home could be missing in official statistics (The 
Economist April 4, 2020), and there could also be a delay of several days between the date of 
deaths and the date of reporting deaths. Another source of error are changing practices for 
defining COVID-19 deaths and poor test coverage: for example, counting only cases for whom 
COVID-19 has been the primary cause of death (and later also secondary cause of death) or 
counting only persons who have been hospitalized for treatment of COVID-19 (Roser et al. 
2020). This could especially lead to fewer death counts than there actually are. However, we 
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argue that the number of reported deaths are more reliable than confirmed cases from COVID-
19, which is also the reason why we select them as core empirical input in our estimation 
approach. If numbers of total deaths were too small, the estimated number of infections would 
be biased downwards and vice versa. However, if deaths were underreported (or 
overreported) and the amount of bias caused by this was known, our approach could easily 
incorporate this information. Studies that analyze excess mortality are urgently needed (Leon 
et al. 2020); and they perhaps soon provide a solid basis for estimating the amount of bias for 
deaths from COVID-19.   

Second, we assume that the borrowed and scaled infection fatality rates are valid for the 
country of interest. This assumptions implies that the implemented control measures for 
monitoring, treating, postponing, and preventing severe COVID-19 patients are similarly 
effective for a reference country and a target country, after we have controlled for their 
differences in age structure, health conditions, and medical service. Although scaling infection 
fatality rates between a reference and a target country increases the applicability of this 
estimation approach, such borrowing strategies do not fully reflect country-specific trends. It is 
also important to note that using infection fatality rates of epidemiological studies (based on 
nasopharyngeal swabs or, even better, population-representative serological studies) would be 
preferable over estimates of other models in order to avoid circling effects between different 
modeling approaches. 

Estimating COVID-19 infections can be regarded as a nowcasting problem that is inherently 
uncertain and that heavily depends on the quality of the input data. The less the underlying 
model assumptions hold in a country of interest, the more speculative the estimation of COVID-
19 infections becomes. The quality of required input data differs strongly among countries; and 
if the numbers of reported deaths and infection fatality rates attributable to COVID-19 are 
incorrect, the model estimates of COVID-19 infections are also likely to be wrong (or to miss 
the mark). Another point of criticism could be the time lag between infection with and eventual 
death from COVID-19, as the course of this new respiratory disease could take several weeks 
(Baud et al. 2020, Zhou et al. 2020, ICNARC 2020)—a characteristic of COVID-19 that is not 
accounted for in this straightforward approach. One option to adjust for the time lag between 
onset of infection and death could be to compare estimated infections with confirmed cases 18 
days ago, as, for example, Zhou et al. (2020) find 18 days to be the average duration until death 
from COVID-19. Accounting for this time lag would lead to higher estimates of infections as 
shown in appendix E. However, finding the correct counterpart of confirmed cases is not 
straightforward. For example, data about time to death vary (e.g. Baud et al. 2020, Zhou et al. 
2020) and the number of infections is rising exponentially at an early stage of the pandemic, so 
that shifting only a few days back and forth could largely impact the estimated number of 
unknown infections with COVID-19. 

Interaction effects between falsely reported deaths and infection fatality rates could be 
possible and it is unclear how they would eventually impact infection estimates, given the 
current data situation. It is, however, informative to compare the results to those of other 
studies. Crude infection fatality rates are estimated, for example, by Ward (2020), 0.25%-0.5%, 
and Russell et al. (2020), 0.2%-1.3%. The estimate based on the upper bound of the 95% 
credible interval appears to be closest to these low crude infection fatality rates, as they range 
between 0.7% for Spain, between 0.8% and 1% for France, Italy, the Netherlands, and Belgium, 
and between 1.1% and 1.7% for the U.K., Germany, the U.S., Hubei, and Iran.  

Although not shown here, our demographic scaling model is also applicable to estimate COVID-
19 infections in countries of less developed regions, but only if reliable input data are available. 
The biggest data issue as of today are infection fatality rates by age that are representative for 
those countries. We suspect that they are likely to be higher for less developed regions because 
of lower capacities for intensive care of patients with severe symptoms and higher prevalence 
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of underlying health conditions at younger ages. Mortality from COVID-19 may also be higher 
in less developed regions as the lower-standard infrastructure could limit the effectiveness of 
control measures. The scaling approach can, however, capture these differences indirectly.  

Estimating the total number of infections in a straightforward manner is highly beneficiary 
during a crisis like the COVID-19 pandemic, particularly because not everyone has access to 
massive input data, sophisticated methodological know-how, and high-performance computing 
facilities in order to run complex epidemiological models (e.g. Flaxman et al. 2020; Lourenco et 
al. 2020; Institute for Health Metrics and Evaluation (IHME) 2020, Kissler et al. 2020, McGough 
et al. 2020, Li et al. 2020). From this perspective, we offer a simple but broadly applicable 
alternative for estimating the number of people infected with COVID-19. This information 
could, in turn, be used as input for more advanced models. In order to support this broad 
applicability in practice, we publish an R implementation of the introduced demographic 

scaling model on https://github.com/christina-bohk-ewald/demographic-scaling-model. 
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TABLES AND FIGURES 

 

 

 

Figure 1. Confirmed cases on the horizontal axis versus deaths attributable to COVID-19 on the 

vertical axis, from January 22 to April 17, 2020. Different levels of case fatality rate, in %, are 

highlighted with grey lines and text. Illustrated are the top 10 countries that have the largest 

number of reported deaths from COVID-19 as of April 17, 2020. Data: JHU CSSE (2020). Own 

calculations. 
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Figure 2. Confirmed cases and estimated total number of COVID-19 infections, from January 22 to April 17, 2020, for the 10 countries that have the 

largest number of reported deaths from COVID-19 as of April 17, 2020. Own calculations using data from Verity et al. (2020, p. 5), UNWPP (2019), and 

JHU CSSE (2020). 
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Figure 3. Estimated population share of COVID-19 infections, from January 22 to April 17, 2020, for the 10 countries that have the largest number of 

reported deaths from COVID-19 as of April 17, 2020. Own calculations using estimates of Verity et al. (2020, p. 5), UN World Population Prospects 

(2019), and JHU CSSE (2020). 
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APPENDIX 

A COVID-19 infection fatality rates 

To estimate COVID-19 infections with the introduced demographic scaling model for the ten 
countries with most COVID-19 deaths as of April 17, 2020, we map infection fatality rates of 
Hubei, China, as published in Verity et al. (2020, p. 5). For the sake of convenience and 
transparency, we list these infection fatality rates (the mode as well as the lower and upper 
bound of the 95% credible interval) in Table 1. 

 

Age 
group 

Mode Lower 
95% 

Upper 
95% 

0-9 0.000016 0.00000185 0.000249 

10-19 0.00007 0.000015 0.0005 

20-29 0.00031 0.00014 0.00092 

30-39 0.00084 0.00041 0.00185 

40-49 0.0016 0.00076 0.0032 

50-59 0.006 0.0034 0.013 

60-69 0.019 0.011 0.039 

70-79 0.043 0.025 0.084 

80+ 0.078 0.038 0.133 

 

Table 1. Infection fatality rates by 10-year age groups observed in Hubei, China. Data source: 

Verity et al. (2020, p. 5). 
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B Estimate COVID-19 infections based on mapping infection fatality rates between two 

countries via thanatological age  

It takes four steps to estimate COVID-19 infections for a country of interest with the introduced 
demographic scaling model, mapping infection fatality rates of Hubei, China, onto a country of 
interest via the thanatological age. 

1. Ungroup reference country’s infection fatality rates 𝐼𝐹𝑅𝑥 from 10-year age groups into 
single years of age using a cubic smoothing spline via the R-function smooth.spline. 

2. Ungroup remaining life years (𝑒𝑥), taken from abridged life tables of the UN World 
Population Prospects (2019), for both reference country and country of interest. 

3. Map ungrouped infection fatality rates of reference country onto country of interest via 
thanatological age. The mapped infection fatality rates for the ten countries with most COVID-
19 deaths as of April 17, 2020 are shown in Figure 4. 

4. Calculate number of COVID-19 infections (𝐼) based on equation 𝐼 = ∑ 𝐷𝑥𝑥 /𝐼𝐹𝑅𝑥. 

Figure 4 displays mapped IFRx for the top 10 countries with most deaths attributable to COVID-

19 as of April 17, 2020. Tables 2 and 3 list the corresponding IFRx by 10-year age groups as 

well as the crude IFRx for each of those countries, based on modal estimate and upper bound of 

95% prediction interval.  
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Figure 4. Mapped modal infection fatality rates between countries of interest and reference 

country Hubei, China, based on thanatological age. Illustrated are the top 10 countries that have 

the largest number of reported deaths from COVID-19 as of April 10, 2020. Own calculations using 

data from Verity et al. (2020, p. 5) and abridged life tables of UN World Population Prospects 

(2019). 
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Table 2. Age-specific and crude IFR mapped via thanatological age for the ten countries with most COVID-19 deaths as of April 17, 2020. Own 

calculations based on age-specific modal IFR of Verity et al. (2020, p. 5) and abridged life tables of the UN World Population Prospects (2019). 

 

 

 

 

 

 

 Age-specific Infection Fatality Rates Crude IFR 

 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+ All ages 

US 0.000016 0.00007 0.00028 0.00079 0.00138 0.00442 0.01420 0.03389 0.071095 0.027208 

Italy 0.000010 0.000037 0.00017 0.00063 0.00113 0.00341 0.01238 0.03232 0.073279 0.022662 

Spain 0.000010 0.000033 0.00017 0.00063 0.00113 0.00301 0.01140 0.03090 0.071946 0.021577 

France 0.000010 0.000038 0.00017 0.00063 0.00113 0.00310 0.01140 0.02983 0.070512 0.021782 

UK 0.000011 0.000051 0.00023 0.00074 0.00123 0.00393 0.01420 0.03531 0.075259 0.025927 

Belgium 0.000011 0.000044 0.0002 0.00069 0.00122 0.00393 0.01386 0.03465 0.075353 0.024944 

Iran 0.000021 0.000092 0.00036 0.00091 0.00201 0.00787 0.02370 0.05792 0.084891 0.03859 

Hubei 0.000018 0.000081 0.00036 0.00088 0.00178 0.00689 0.02076 0.04653 0.080126 0.034729 

Germany 0.000012 0.000052 0.00023 0.00074 0.00132 0.00395 0.01420 0.03389 0.072849 0.025759 

NL 0.000011 0.000044 0.0002 0.00069 0.00122 0.00393 0.01420 0.0350 0.075814 0.025072 
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Table 3. Age-specific and crude IFR mapped via thanatological age for the ten countries with most COVID-19 deaths as of April 17, 2020. Own 

calculations based on age-specific lower 95% IFR of Verity et al. (2020, p. 5) and abridged life tables of the UN World Population Prospects (2019). 

 

 

 

 

 Age-specific Infection Fatality Rates Crude IFR 

 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+ All ages 

US 0.000002 0.000015 0.00012 0.00039 0.0006 0.0025 0.0080 0.0204 0.0357 0.0125 

Italy 0.000002 0.000004 0.00006 0.00032 0.0005 0.0019 0.0070 0.0194 0.0364 0.0085 

Spain 0.000002 0.000003 0.00006 0.00032 0.0005 0.0017 0.0064 0.0185 0.0360 0.0074 

France 0.000002 0.000004 0.00006 0.00032 0.0005 0.0017 0.0064 0.0179 0.0355 0.0082 

UK 0.000002 0.000008 0.00010 0.00037 0.0005 0.0022 0.0080 0.0210 0.0371 0.0110 

Belgium 0.000002 0.000006 0.00008 0.00035 0.0005 0.0022 0.0078 0.0207 0.0371 0.0099 

Iran 0.000002 0.000024 0.00017 0.00043 0.0010 0.0044 0.0141 0.0310 0.0403 0.0173 

Hubei 0.000002 0.00002 0.00017 0.00042 0.0009 0.0039 0.0122 0.0265 0.0387 0.0157 

Germany 0.000002 0.000008 0.00010 0.00037 0.0006 0.0022 0.0080 0.0204 0.0363 0.0110 

NL 0.000002 0.000006 0.00008 0.00035 0.0005 0.0022 0.0080 0.0209 0.0373 0.0099 
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C Age pattern of COVID-19 deaths 

Figure 5 shows the pattern over age of COVID-19 deaths using data provided in Dudel et al. 

(2020). Based on all available death age profiles, age standardized and normalized to sum to 

one, we calculate the average pattern over age that we use to split total deaths. 

 

Figure 5. Estimated global pattern over age of deaths attributable to COVID-19. Own 

calculations using data provided in Dudel et al. (2020). 
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D Estimated COVID-19 infections using Chinese infection fatality rates in unadjusted 

model 

Figures 6 and 7 illustrate the estimated number and population share of COVID-19 infections 
based on mapping Chinese mode infection fatality rates via chronological age in the basic 
model, from January 22 to April 17, 2020. 

 

 

Figure 6. Estimated number of COVID-19 infections based on Chinese modal, lower and upper 

95% infection fatality rates, from January 22 to April 17, 2020. Illustrated are the top 10 

countries that have the largest number of reported deaths from COVID-19 as of April 10, 2020. 

Own calculations using data from Verity et al. (2020, p. 5), UN World Population Prospects 

(2019), and JHU CSSE (2020). 
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Figure 7. Estimated population share of COVID-19 infections based on Chinese modal infection 

fatality rates, from January 22 to April 17, 2020. Illustrated are the top 10 countries that have the 

largest number of reported deaths from COVID-19 as of April 10, 2020. Own calculations using 

data from Verity et al. (2020, p. 5), UN World Population Prospects (2019), and JHU CSSE (2020). 

 

 

 

 

 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 2, 2020. ; https://doi.org/10.1101/2020.04.23.20077719doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.23.20077719
http://creativecommons.org/licenses/by-nd/4.0/


25 
 

E Account for time to death when estimating COVID-19 infections 

Figure 8 compares the estimated number of COVID-19 infections with confirmed cases as of 

March 30, 2019 in order to account for the average time to death of 18.5 days as reported in 

Zhou et al. (2020). We map Chinese IFR via thanatological age and take latest death of April 17, 

2020.   

 

Figure 10. Confirmed cases and estimated total number of COVID-19 infections, as of March 30, 

2020, for the 10 countries that have the largest number of reported deaths from COVID-19 as of 

April 17, 2020. Own calculations using data from  Verity et al. (2020, p. 5), UNWPP (2019), and 

JHU CSSE (2020). 

Across the 10 countries with most COVID-19 deaths as of April 17, 2020, our modal estimates 

suggest that the total number of infected is approximately 11 times higher than the number of 

confirmed cases. The uncertainty, however, is high, as the lower bound of the 95% credible 

interval suggests on average five times as many infections than confirmed cases, and the upper 

bound even 28 times as many. Country-specific variation is high. For Italy, our modal estimates 

suggest that the total number of infected is approximately 1 million, or almost 10 times higher 

than the country-specific confirmed cases. For the U.S., our modal estimate of 1.4 million is 

more than eight times as large as the number of confirmed cases, and the upper bound of 3 

million is more than 18 times higher than the number of confirmed cases. For Germany, where 

testing has been comparatively extensive, we estimate that the total number of infected is only 

2.5 times higher (upper bound: close to six times higher) than the number of confirmed cases.     
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