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Abstract

Diastolic dysfunction is a common pathology occurring in about one third of patients affected by heart
failure. This condition is not associated with a marked decrease in cardiac output or systemic pres-
sure and therefore is more difficult to diagnose than its systolic counterpart. Compromised relaxation
or increased stiffness of the left ventricle with or without mitral valve stenosis induces an increase in
the upstream pulmonary pressures, and is classified as secondary or group II (2018 Nice classification)
pulmonary hypertension. This may result in an increase in the right ventricular afterload leading to
right ventricular failure. Elevated pulmonary pressures are therefore an important clinical indicator of
diastolic heart failure (sometimes referred to as heart failure with preserved ejection fraction, HFpEF),
showing significant correlation with associated mortality. Accurate measurements of this quantity, how-
ever, are typically obtained through invasive catheterization, and after the onset of symptoms. In this
study, we use the hemodynamic consistency of a differential-algebraic circulation model to predict pul-
monary pressures in adult patients from other, possibly non-invasive, clinical data. We investigate several
aspects of the problem, including the ability of model outputs to represent a sufficiently wide pathologic
spectrum, identifiability of its parameters, to the accuracy of the predicted pulmonary pressures. We
also find that a classifier using the assimilated model parameters as features is free from the problem of
missing data and is able to detect pulmonary hypertension with sufficiently high accuracy. For a cohort
of 82 patients suffering from various degrees of heart failure severity we show that systolic, diastolic and
wedge pulmonary pressures can be estimated on average within 8, 6 and 6 mmHg, respectively. We also
show that, in general, increased data availability leads to improved predictions.

1 Introduction

Diastolic heart failure (sometimes referred to as heart failure with preserved ejection fraction or HFpEF,
see Table 1) is a serious, often fatal, cardiovascular pathology. Even though recent reviews [1] report how
this pathology is often associated with a number of co-morbidities, making the selection of homogeneous
treatment groups difficult, it is commonly characterized by elevated left ventricle filling pressures, but
normal systemic circulatory indicators, such as left ventricular ejection fraction, cardiac output and mean
arterial pressure [2]. In 2013, heart failure was mentioned in 1 of every 9 death certificates in the United
States, and was the underlying condition in roughly 20% of these cases. The number of deaths attributable
to heart failure was approximately as high in 1995 as it was in 2013, with hospital discharges remaining
stable from 2000 to 2010 [3]. It is also estimated that about one-third of the patients with congestive heart
failure (CHF) have a normal left ventricular ejection fraction (LVEF) [4].
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Table 1: List of acronyms.

Acronym Description Acronym Description

CHF Congestive heart failure PH Pulmonary hypertension
CVP Central venous pressure PVR Pumonary vascular resistence
CO Cardiac output NM Nelder-Mead

DBP Diastolic blood pressure MAP Maximum a posteriori
dPAP Diastolic pulmonary arterial pressure MCMC Markov chain Monte Carlo
EHR Electronic health record MPAP Mean pulmonary arterial pressure
FIM Fisher information matrix RAP Mean right atrial pressure

HFpEF Heart failure with preserved ejection fraction REDCap Research electronic data capture
HR Heart rate RC Resistance-capacitance
KL Kullback-Leibler RCR Resistance-capacitance-resistance

LPN Lumper parameter network RLC Resistance-inductance-capacitance
LVEDV Left ventricular end diastolic volume RVEDP Right ventricular end diastolic pressure
LVEF Left ventricular ejection fraction RVEF Right ventricular ejection fraction
OOP Object oriented programming SBP Systolic blood pressure
PAP Pulmonary artery pressure sPAP Systolic pulmonary arterial pressure
PCW Pulmonary capillary wedge pressure SVR Systemic vascular resistance

It has been observed how pulmonary hypertension (PH) is highly prevalent and often severe in HF-
pEF and that both pulmonary venous and arterial hypertension contribute to the severity of HFpEF
with a marked correlation between systolic pulmonary arterial pressure (sPAP) and mortality [5, 1]. A
recent paper reviewing the current understanding of etiology and treatment of HFpEF, reports how mul-
tiple nondiastolic abnormalities contribute to the syndrome of HFpEF, including LV systolic dysfunction,
pulmonary hypertension, RV and LA dysfunction, vascular stiffening, ventricular interdependence and
coronary microcirculation dysfunction [1]. Additionally, homogeous treatment HFpEF is made difficult by
multiple phenotypes induced by obesity, ischemia and cardiometabolic abnormalities. This is consistent
with the findings in [6] where a machine learning-based approach is used to cluster patients with HFpEF
in three phenogroups with common characteristics, providing a way to go beyond a homogeneous treat-
ment of HFpEF that has so far produced unsatisfactory results. Even though these studies highlight the
current challenges in the treatment of HFpEF, they both seem to agree on the strong association of PH
and HFpEF. In this regard [1] mentions how ”PH is extremely common in HFpEF, seen in roughly 80%
of patients, and mortality is increased in this cohort”, whereas in [6], elevated PH was one of the main
criteria for patient recruitment.

While non invasive echocardiography and machine learning may be useful for phenotyping classification
and treatment selection [1], early diagnosis of HFpEF relies on invasive pressure acquisition through right
heart catheterization, often performed following the manifestation of symptoms [7, 8]. It is therefore
evident how methods enabling an accurate indirect estimation of pulmonary pressures using minimally
invasive clinical data would be extremely beneficial for early diagnosis of HFpEF, in a way that could
trigger lifestyle changes that will, in turn, prevent other co-morbidities to develop.

In this study, we investigate how the physics-based consistency of a lumped parameter hemodynamic
model containing three compartments, i.e., a four-chamber heart, systemic and pulmonary circulation
compartments, may be used to monitor PH in patients from non-invasive and uncertain clinical measure-
ments. The development of computer models to study hemodynamics in humans started in the 1960s and
1980s [9, 10, 11, 12], with application in pediatrics developed in the 2000s for single-ventricle congenital
heart disease [13], Norwood physiology [14], and systemic-to-pulmonary artery shunts [15].

Approaches for automatic parameter estimation date back to the late 1970s [16, 17], ranging from
two-stage Prony-Marquardt optimization [18], to adaptive control systems for left ventricular bypass assist
devices [19, 20], to Kalman filters [21, 22] and to recursive least squares [23]. An iterative, proportional
gain-based identification method is presented in [24], with application to coronary artery disease in [25].
Other studies include estimation of three-element Windkessel boundary conditions [26] and left ventricular
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viscoelasticity [27, 28]. More recently, examples of automatic parameter tuning in lumped circulatory
models have included the physiology of children with congenital heart disease undergoing the first stage (i.e.,
Norwood) of single ventricle palliation surgery [29], construction of optimally trained patient-specific models
for coronary artery disease [30] and predicting time evolution of ventricular dilation and thickening [31]. A
study using lumped parameter models in diastolic heart failure is finally discussed in [32], while parameter
identification for a mice model with chronic hypoxia and drug-induced pulmonary hypertension is proposed
in [33].

Circuit models in hemodynamics typically contain tens of parameters which need to be trained from
clinical records collected at multiple visits, which include a variable but typically sparse number of clinical
measurements. This aggravates the ill-conditioning of the inverse problem, where model outputs do not
change in response to perturbations along a number of unidentifiable linear combinations of parameters. In
these circumstances, optimization may not be successful in identifying global optima and sequential Monte
Carlo techniques [34] may underperform in practice, as data typically represent extremes (maxima/minima)
or mean values of clinical indicators over one heart cycle.

Two technological trends make the present contribution particularly timely. On one hand, there is
increasing importance attributed to the availability of large training datasets which is at the base of the
current revolution in AI and deep learning [35]. This includes anonymous electronic health records (EHRs)
for specific sub-populations affected by a common clinical condition. On the other hand, there is increasing
availability of computational resources on the cloud which create a perfect infrastructure for distributed
computing with lightweight models. For these reasons, we envision an increased adoption of numerical
models as regularizers to determine physics-informed predictive distributions for missing data in EHRs,
going beyond currently adopted, physics-agnostic multiple imputation methods [36]. This study aims to
be a first step in this direction, and provides the following new contributions:

• We propose a systematic approach to train patient-specific circulatory models with clinical data
uncertainty, and demonstrate the results obtainable on a modest cohort of 82 patients.

• Explore optimal parameter training as a possible approach to increase the feature space in order to
facilitate classification of cardiovascular anomalies.

In Section 2.1, we discuss the differential formulations of a compartmental circulation model for human
adults, including circuit elements, a generic heart model, systemic and pulmonary compartments. This
is followed by an analysis of two datasets in Section 2.2, the first used for validation, while the second
containing EHRs for 82 patients. Our numerical investigation is articulated through answers to the ques-
tions formulated in Section 2.3, using the numerical algorithms and tools briefly introduced in Section 2.4
and 2.5. Results are highlighted in Section 3 and related to physiological admissibility of the selected model,
ability to capture dysfunction mechanisms, sensitivity and identifiability of input parameters, predictive
performance for pulmonary pressures, non-pulmonary target ranking and viability of model-based PH clas-
sifiers. Conclusions are discussed in Section 4. Finally, for convenience, a list of acronyms is provided in
Table 1.

2 Materials and Methods

Compliance with Ethical Standards - The study was classified as research not involving human subjects
and approved on June 13th, 2019 by the Office of Research Compliance and Institutional Review Board
at the University of Notre Dame under IRB#19-05-5371. All procedures performed in studies involving
human participants were in accordance with the ethical standards of the institutional and/or national
research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical
standards. For this retrospective study formal consent is not required.

Supplementary Material - Supplementary material for this paper is available at https://github.com/
desResLab/supplMatHarrod20
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2.1 Modeling Approach

Blood circulation in adults can be simulated through a lumped parameter model (sometimes also referred to
as zero-dimensional or 0D model). The foundation beneath a lumped parameter model lies in the equations
that govern the voltage and current in an electrical circuit. Utilizing the hydrodynamic analogy [37],
these equations stem from conservation principles where the voltage is corresponded by the pressure and
the current by the flow. In this study, we consider patient-specific 0D representations containing seven
compartments: the four chambers in a bi-ventricular heart, a compliant aortic arch, and the pulmonary
and systemic circulations. The pulmonary compartment is represented through an RC circuit as shown in
Figure 1.

Figure 1: Lumped parameter hemodynamic model with RC pulmonary circuit.

2.1.1 Generic Heart Model Compartment

The four heart chambers are represented by a series arrangement of a pressure-volume generator, an induc-
tor, an ideal unidirectional valve and a resistor, following prior work. The atrial and ventricular pressure-
volume generators are formulated through a combination of an activation function and active/passive
pressure curves [10, 14]

Pi,act = Ei,act(Vi − Vi,0), Pi,pas = Ki,pas,1

[
eKi,pas,2 (Vi−Vi,0) − 1

]
, Pi = Pi,pas +Ai Pi,act, (1)

where the index i refers to either the right-left or atrial-ventricular chamber, i ∈ {ra, rv, la, lv}. The active
pressure curve is assumed linear and characterized by an active elastance Ei,act and unstressed chamber
volume Vi,0. Additionally, passive volumes and pressures are related through an exponential relation,
characterized by two elastance coefficients Ki,pas,1 and Ki,pas,2, respectively [10, 14]. The pressure-volume
generator is completed by an activation function Ai of the form

Ai =

[1− cos (2πtc,r)] /2, if tc,r < 1

0, otherwise,
(2)
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where tc,r is the relative chamber activation time, ranging from 0 (beginning of systole) to 1 (end of systole).
The chamber volume is also determined through the equations

dVra
dt

= Qsys,v −Qra,rv · φT ,
dVrv
dt

= Qra,rv · φT −Qrv,pa · φP ,
dVla
dt

= Qpul −Qla,lv · φM ,
dVlv
dt

= Qla,lv · φM −Qlv,ao · φA,
(3)

where φi, i ∈ {T, P,M,A} are valve activation functions for the tricuspid (T), pulmonary (P), mitral (M)
and aortic (A) valve respectively. These are equal to one for a negative pressure gradient through the
valve and zero otherwise. Moreover, valves are modeled as perfect, without accounting for possible leakage
or regurgitation. For models including valve prolapse and consequent regurgitation the reader is referred
to, e.g., [38]. An inductance element located downstream with respect to the pressure-volume generator
simulates the inertia of the blood in the chamber, according to the differential equation{

dQi/dt = (Pi − Pdn −RiQi)/Li, if Pi ≥ Pdn

0, otherwise,
(4)

where Qi is the volumetric blood flow going through the i-th chamber, Pi and Pdn the pressure in the i-th
and downstream chamber, respectively, Ri the viscous resistance located between chamber i and chamber
dn, and Li an inductance parameter.

Additionally, the selected model is fully capable of representing the physiologic consequences of a
stenotic valve, as an increase in the resistance of the associated compartment would accentuate the pressure
drop across the valve and lead to an increase of the upstream pressure. Finally, we remark that systolic and
diastolic functions are separately represented in this model, using three parameters for each chamber, i.e.,
Ei,act, Ki,pas,1 and Ki,pas,2. Identification of these parameters from clinical health records would therefore
be informative of systolic and diastolic chamber function.

Note how the RL parameters of each cardiac chamber are kept fixed in this study (see Table A1)
or, in other words, we assume that valve stenosis has been excluded as a possible cause of pulmonary
hypertension, for example through a non-invasive echocardiographic assessment.

2.1.2 Aortic and Systemic Compartment

An aortic compartment consisting of an isolated capacitor is positioned downstream of the left ventricular
outflow, modeled through an equation of the form

dPao

d t
=
Qup −Qdn

Cao
, (5)

where Qup and Qdn are the volumetric flow rate from the left ventricle and abdominal aorta, respectively,
Pao is the aortic pressure and Cao the aortic compliance. We compare the value of Pao computed by this
model with the clinically acquired brachial pressure.

An RCR circuit simulates the systemic circulation, with Csys used to represent the overall systemic
compliance, while two resistors simulate the viscous resistance in arteries and veins Rsys,a and Rsys,v,
respectively. The algebraic-differential equations for the systemic compartments are therefore:

Qsys,a =
Pao − Psys

Rsys,a
, Qsys,v =

Psys − Pra

Rsys,v
,

d Psys

d t
=
Qsys,a −Qsys,v

Csys
. (6)

2.1.3 Pulmonary Compartment

The pulmonary circulation is represented through a RC circuit with equations

Qpa =
Ppa − Pla

Rpa
,

d Ppa

d t
=
Qrv,pa · φP −Qpa

Cpa
, (7)
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where the pulmonary, left atrial and right ventricular pressures are denoted by Ppa, Pla and Prv, and
pulmonary capacitance and resistance are Cpa and Rpa, respectively. The pulmonary flow rate is denoted
as Qpa, while Qrv,pa denotes the flow across the pulmonary valve, having activation equal to

φP =

{
0 if Ppa ≥ Prv

1 otherwise
(8)

2.2 Available Data Sets

Two data sets are used throughout this study. Synthetic patient-agnostic clinical measurements repre-
senting increasing severity of diastolic left ventricular dysfunction are used initially, while anonymized
patient-specific electronic health records (EHR) for a cohort of 82 patients are utilized in the second part
of the study.

2.2.1 Validation Data Set

The validation data set (Table 2) contains the mean and standard deviation of thirteen different clinical
targets for three different heart failure groups: healthy patients, mild heart failure patients, and patients
with severe heart failure. Normal physiologic clinical targets were determined from the literature [39], while
targets associated with severe left ventricular diastolic dysfunction were assigned with the supervision of a
clinician. The values for mild heart failure patients were obtained through a linear interpolation between
severe dysfunction and healthy conditions. The selected targets for severe HF conditions are characterized
by a normal SBP and DBP accompanied by a slight reduction in CO. These are designed to represent
conditions where the patient is asyntomatic, consistent with the aim of the proposed approach, related to
early disease detection. Situations characterized by decompensated heart failure are therefore excluded on
purpose by the dataset in Table 2.

Table 2: Validation data set containing the mean and standard deviation of clinical targets for three levels of
increasing diastolic heart failure severity.

Qty Description Units Severe HF Moderate HF Healthy σ

HR Heart Rate bpm 80 80 80 3
RAP Right Atrial Pressure mmHg 15 9 4 0.5
sPAP Systolic Pulmonary Artery Pressure mmHg 50 35 20 1
dPAP Diastolic Pulmonary Artery Pressure mmHg 25 19 12 1
PCW Pulmonary Capillary Wedge Pressure mmHg 25 17 9 1
SBP Systolic Blood Pressure mmHg 120 120 120 1.5
DBP Diastolic Blood Pressure mmHg 80 80 80 1.5
SVR Systemic Vascular Resistance dynes·s·cm−5 1800 1575 1350 50
CO Cardiac Output L/min 3.5 4.375 5.25 0.2
sRV Systolic Right Ventricular Pressure mmHg 50 35 20 1
RVEDP Right Ventricular End Diastolic Pressure mmHg 15 9 4 1
sLV Systolic Left Ventricular pressure mmHg 120 120 120 1.5
LVEDP Left Ventricular End Diastolic Pressure mmHg 25 16 6 2

2.2.2 EHR Data Set

Completely anonymized patient-specific clinical measurements for 82 adult patients were provided in the
context of a research project funded by Google through its ATAP initiative, focusing on Modeling Noninva-
sive Measurements of Cardiovascular Dynamics. There are 26 clinical data targets, which are listed below
in Table 3. Missing data were present with the pattern highlighted in Figure 2, with patients having zero
to nineteen of the clinical targets. Two of the 84 patients in the dataset did not have any of the relevant

6

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2021. ; https://doi.org/10.1101/2020.04.23.20073601doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.23.20073601
http://creativecommons.org/licenses/by/4.0/


clinical targets and were therefore excluded from the study (see the two patients with zero available targets
in Figure 2a). The remaining 82 patients had between one and nineteen clinical targets. While there is
not a single patient that has all 26 measurements, at least three clinical targets (heart rate, diastolic blood
pressure, and systolic blood pressure) are available for all but one patient. Finally, the standard deviations
for each clinical target are also shown in Table 3, which were determined through a preliminary literature
review [40, 41, 42].

Table 3: Patient-specific EHR data set containing 26 clinical measurements and associated units.

n. REDCap Token Description Units Measurement type σ n.

1 heart rate2 Heart rate bpm NI 3.0 81
2 systolic bp 2 Systolic blood pressure mmHg NI 1.5 81
3 diastolic bp 2 Diastolic blood pressure mmHg NI 1.5 81
4 cardiac output Cardiac output L/min Invasive TD or NI echo 0.2 65
5 systemic vascular resistan Systemic vascular resistance dynes·s·cm−5 from RAP, SBP and CO 50.0 64
6 pulmonary vascular resista Pulmonary vascular resistance dynes·s·cm−5 from PAP, PCW and CO 5.0 50
7 cvp Central venous pressure mmHg NI (CVP≈RAP) or JVP/IVC CI 0.5 30
8 right ventricle diastole Right ventricle diastolic pressure mmHg Invasive catheter 1.0 11
9 right ventricle systole Right ventricle systolic pressure mmHg NI echo and invasive catheter 1.0 46
10 rvedp Right ventricle EDP mmHg NI same as RAP with no TS 1.0 46
11 aov mean pg Average PG across aortic valve mmHg NI echo 0.5 2
12 aov peak pg Peak PG across aortic valve mmHg NI echo 0.5 37
13 mv decel time Mitral valve deceleration time ms NI echo 6.0 41
14 mv e a ratio Mitral valve E/A ratio - NI echo 0.2 39
15 pv at Pulmonary valve acceleration time ms NI echo 6.0 18
16 pv max pg Peak PG across pulmonary valve mmHg NI echo 0.5 31
17 ra pressure Mean right atrial pressure mmHg NI (CVP≈RAP) or JVP/IVC CI 0.5 50
18 ra vol a4c Right atrial volume mL NI echo 3.0 4
19 la vol a4c Left atrial volume mL NI echo 3.0 7
20 lv esv Left ventricular end systolic volume mL NI echo 10.0 1
21 lv vol a4c Left ventricular volume mL NI echo 20.0 5
22 lvef Left ventricular ejection fraction - NI echo 2.0 53
23 lvot max flow Peak flow velocity across LVOT cm/s NI echo - 0
24 pap diastolic Diastolic PAP mmHg Invasive catheter 1.0 65
25 pap systolic Systolic PAP mmHg Invasive catheter 1.0 65
26 wedge pressure Pulmonary wedge pressure mmHg Invasive catheter 1.0 50

NI: Non-invasive. echo: Doppler echocardiography. PAP: Pulmonary arterial pressure. JVP: jugular vein pressure. IVC CI: Inferior vena
cava collapsibility index. RAP: Right atrial pressure. TD: thermo diluition. PG: pressure gradient. EDP: end diastolic pressure. LVOT
left ventricular out flow tract. TS: tricuspid stenosis.

A histogram of clinical data occurrences is illustrated in Figure 2a, and displays three main modes:
the majority of patients have either four, eight, or seventeen available clinical measurements, likely due to
the data aggregation produced by certain screening procedures. Additionally, a heat map of the EHRs is
illustrated in Figure 2b, where each row of the heat map was normalized to a zero to one range, to highlight
the relative magnitude of the clinical target.

Note how the size of the selected cohort (84 patients) is modest, but sufficient to investigate the
effectiveness of Bayesian inference in the context of a simple physiologic model. Acquisition of larger data
sets is possible but made non trivial by the need to automatically extract large volumes of clinical targets
from text reports written following echocardiographic and catether lab examinations. In such cases, use of
natural language processing tools is key to make larger EHR data sets available for research.

Finally, this data set focuses on cases of secondary PH, where a reversible increase of PVR follows an
increase in left ventricular filling pressures. Therefore, this study does not consider primary PH and does
not make any claim of differentiating primary from secondary PH.

2.3 Methodological Approach

This study is articulated through a number of logically consequential questions driving our numerical
experiments. These questions are:
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Figure 2: Histogram of data availability among the 82 patients (left) and missing data pattern (right). Note how
each row of the heat map is normalized to a zero to one range, to highlight the relative magnitude of the clinical
target.

1. Physiological admissibility of 0D representations under normal and heart failure condi-
tions - Are model outputs able to reproduce sets of clinical targets ranging from healthy to pathological
conditions? In other words, is the identification problem well-posed, in the sense that model outputs
are able to represent a wide spectrum of conditions from health to disease? We answer this question
in Section 3.1.

2. Ability to model distinct diastolic/systolic dysfunction mechanisms - Is the selected model
formulation able to separately represent the systolic and diastolic functions of the heart muscle? And
does the alteration of these properties produce expected modifications in the physiology represented
through model outputs? We answer this question in Section 3.2.

3. Parameter sensitivity and identifiability - Once a set of quantities whose prediction is of interest
(e.g., pulmonary arterial pressure) has been identified, do they show non-negligible sensitivity with
respect to changes in the parameters associated with physiologic relevant mechanisms affecting these
quantities? Moreover, are these parameters identifiable so that it is possible to uniquely estimate
their distribution from the available clinical data? Is this estimate robust (i.e., characterized by a
limited uncertainty)? We answer this question in Section 3.3.

4. Predictive ability of optimally trained models - Are models trained from clinical data other
than the pulmonary pressures able to predict such pressures, and what is their accuracy? We answer
this question in Section 3.4.

5. Relative importance of non-pulmonary clinical targets - Which minimal set of clinical targets
should be collected to guarantee accurate model predictions for systolic, diastolic pulmonary pressure
and pulmonary venous wedge pressure? In other words, we would like to rank the non-pulmonary
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targets, starting with those producing maximally accurate predictions on the pulmonary arterial
pressure. This allows for identification of a minimal set of maximally informative clinical quantities
for predicting specific model outputs. We answer this question in Section 3.5.

6. Detecting pulmonary arterial hypertension from assimilated circulation models - Group
II pulmonary arterial hypertension is typically detected by a mean pulmonary pressure higher than 25
mmHg or a systolic pulmonary pressure higher than 35 mmHg [43]. Instead of direct characterization
based on clinical data, would it be possible to detect pulmonary arterial hypertension by classification
from the parameters of a model trained with non-invasive measurements? Once assimilated, a model
can be used to generate a large number of features, leading to a higher dimensional space with
possibly improved separability [44]. We answer this question in Section 3.6.

2.4 Inference

Consider a set of m measured clinical targets represented through the random vector d ∈ Rm with each
component di ∼ ρi(di), i = 1, . . . ,m and joint density d ∼ ρ(d) = ρ1(d1) ρ2(d2) · · · ρm(dm). In other
words, each quantity di, i = 1, . . . ,m measured in the clinic has marginal density ρi(di), i = 1, . . . ,m, and
we assume all these measurements to be independent, i.e., their joint probability factors. We design a
physiologic 0D circuit model with n parameters y ∈ Rn, so its outputs match the observed targets or, in
other words, we introduce a statistical model of the form

di = Gi(y) + εi = oi + εi, i = 1, . . . ,m, (9)

and assume each noise component εi ∼ N (0, σ2
i ) to follow a zero-mean Gaussian distribution. Note that

the i-th realization from the parameter vector y is denoted by y(i) and that the i-th model output is
denoted by oi = Gi(y), while the vector o ∈ Rm contains the complete set of model outputs.

Each model is trained using two different approaches, i.e., by determining a maximum a posteriori esti-
mate of the parameters y using repeated Nelder-Mead optimization [45], and by solving an inverse problem
through adaptive Markov chain Monte Carlo sampling, specifically, through the differential evolution adap-
tive Metropolis algorithm [46, 47] and assessing convergence through the Gelman-Rubin diagnostic [48].
In both cases, the posterior distribution P (y|d) is obtained by combining a uniform prior P (y) (see the
admissible parameter ranges in Table A1) with a Gaussian likelihood

P (y|d) ∝ P (d|y) · P (y), P (d|y) =
1√

(2π)m
∏m

i=1 σ
2
i

exp

(
−1

2

m∑
i=1

[di −Gi(y)]2

σ2
i

)
. (10)

2.5 Computational tools

The tulip (Tools for Uncertainty quantification, Lumped modeling and Identification of Parameters) soft-
ware framework was developed to answer the above research questions. Tulip is a OOP C++ code designed
to simplify the task of estimating parameters of lumped models for human circulation and contains ab-
stractions for computational models, operations performed on these models (e.g., optimization, Bayesian
estimation, local and global sensitivity analysis, etc.) and data sources used to store the available clinical
targets. For an overview of the procedures for statistical data assimilation used in this study, the interested
reader is referred to [49, 50].

3 Results

3.1 Physiological admissibility

The circulation model discussed in Section 2.1 was first trained on the validation dataset in Section 2.2.1.
We then generated a collection of model outputs using a subset y(i), i = 1, . . . , 5000 parameter realizations

9
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from the converged MCMC samples, and compared the resulting distributions (after post-processing with
Gaussian kernel density estimation) with the distributions assumed for the targets d. Specifically, we
assumed that each clinical target follows a normal distribution with the mean and standard deviations
listed in Table 2. The Kullback-Leibler (KL) divergence [51] was used to determine the agreement between
the model-based predictions and measurements. The KL divergence measures how much information is
lost when one uses the predicted, instead of the assumed, target distribution and a small KL divergence
suggests physiological admissibility. As shown in Figure 3, the KL divergence is negligible for all targets,
and the relative percent difference between mean target value and MAP model outputs is also generally
small (see Table 4).
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Figure 3: KL divergence between predicted and assumed clinical targets for varying heart failure severity.

Table 4: Validation data set. Percent differences between model outputs for MAP parameter estimates and clinical
targets for various degrees of heart failure severity.

Healthy Mild Severe
Target Computed Error [%] Target Computed Error [%] Target Computed Error [%]

HR 80 80.8 0.94 80 80.6 0.81 80 81.3 1.63
RAP 4 4.1 1.70 9 9.0 0.21 15 15.0 0.19
sPAP 20 18.7 6.59 35 33.0 5.70 50 49.3 1.49
dPAP 12 11.9 0.84 19 18.6 2.34 25 24.4 2.22
PWP 9 9.1 1.65 17 16.4 3.80 25 25.1 0.34
SBP 120 118.3 1.43 120 116.6 2.84 120 117.4 2.15
DBP 80 79.5 0.61 80 78.4 1.96 80 78.9 1.37
SVR 1350 1397.4 3.51 1575 1594.8 1.26 1800 1819.7 1.09
CO 5.25 5.4 2.62 4.375 4.4 0.28 3.5 3.6 2.51
sRV 20 21.4 6.79 35 35.4 1.15 50 50.0 0.02
dRV 4 4.2 4.96 9 8.5 5.46 15 15.2 1.27
sLV 120 121.4 1.18 120 118.9 0.94 120 119.9 0.07
dLV 6 4.9 19.04 16 15.1 5.38 25 23.1 7.50

3.2 Inverse assessment of dysfunction mechanisms

We now focus on the ability of our model to distinguish between diastolic and systolic dysfunction mecha-
nisms when trained based on conditions reported in Table 2. Specifically, we aim to determine whether the
selected model parameterization is able to separately represent the relaxation or contraction (i.e. diastolic
or systolic) function of the heart muscle. Recall that diastolic function, and therefore left ventricular stiff-
ness, during relaxation relate to the linear and exponential passive curve parameters Ki,pas,1 and Ki,pas,2

in equation (1). These two parameters directly relate to the condition that we aim to assess.

10
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Figure 4 shows the mean diastolic and systolic chamber function parameters and associated 10%-90%
confidence intervals, grouped by anatomical relevance (i.e., left ventricle, right ventricle) and plotted for
healthy patients and patients with mild and severe heart failure, respectively. Comparison between heart
failure conditions allows one to assess how model parameters change as a result of disease progression. This
change is shown in Figure 4, where many of the parameters that relate to pulmonary hypertension do in
fact change as patients progress from healthy to mild, and mild to severe diastolic dysfunction. The results
show how the passive left ventricular curve slope Klv,pas,1 increases when going from healthy to mild and
mild to severe, while the pulmonary resistance increases, as expected. Additionally, the left ventricular
active elastance parameter Emax,lv remains nearly constant; the model correctly predicts no reduction in
systolic function. This confirms that the physiological model used for this study can in fact distinguish
between systolic/diastolic dysfunction mechanisms. Finally, the significant variability in the unstressed
ventricular volumes is explained by the presence of multiple local peaks in the posterior distribution, i.e.,
reasonable PV loops compatible with the clinical targets produced by wildly different unstressed volumes.
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Figure 4: Variation of mean parameter values and associated confidence intervals under increasing heart failure
severity. Right and left ventricular model parameters shown in the Figure are the ventricular passive curve slope
Kpas,i,1, exponent factor Kpas,i,2, active curve slope Emax,i and unstressed ventricular volume V i, 0 (where i ∈
{rv, lv}). It also shows the following resistance parameters: Rpa (pulmonary resistance), Rsys,a (arterial systemic
resistance), Rsys,v (venous systemic resistance).

3.3 Sensitivity and identifiability of circulation model parameters

Results from the above sections confirm the well-posedness of the selected model formulation for the full
spectrum of diastolic dysfunction, from mild to severe. We now focus on determining the most relevant
model parameters that significantly alters the main quantities of interest, particularly the systolic, diastolic
and pulmonary wedge pressures. In addition, we study both the structural and practical identifiability in
an effort to determine unimportant parameters and their non-identifiable combinations.

3.3.1 Average local sensitivities

Nondimensional local sentitivities are computed for all outputs as

∆ oi
∆yi

· yi,map

oi,map
, where

∆yi
yi,map

= 0.01, (11)
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so that we consider the relative change in model outputs that correspond to a 1% variation in each
parameter. The maximum a posteriori parameter vector ymap and the corresponding model outputs omap =
G(ymap) are computed from MCMC for each of the 82 patients in the cohort, and used to compute the
sensitivities in equation (11). The resulting sensitivities are then averaged across all patients.

Figure 5a illustrates the average sensitivities obtained by training our model with the complete list
of clinical targets, including systolic, diastolic and venous wedge pulmonary pressures and pulmonary
vascular resistance. We note that large sensitivities are apparent for the heart rate across all outputs while
at the same time, accurate measurements of heart rate are easy to obtain non-invasively. Additionally, to
check how the sensitivities were affected by the availability of pulmonary pressure targets (i.e., the very
same quantities we would like to predict), we re-computed sensitivities using parameter estimates ymap

obtained by excluding the pulmonary pressure targets during training. The average sensitivities appear to
be minimally affected by the selective inclusion of pulmonary pressure targets.

Figure 5b suggests the following important parameters. Changes in the heart rate or tsvs directly
affect the amount of blood flow ejected by the ventricles, altering the mean pulmonary pressures under a
constant PVR and initial value (i.e., Ppa,ini). As already discussed in the above sections, the left ventricular
diastolic pressure/volume ratio Klv,pas,1 and the associated exponential factor Klv,pas,2 govern the diastolic
properties of the left ventricle, while the Emax,lv is instead responsible for the systolic function. The left
atrioventricular and aortic valve resistance Rla,lv and Rlv,ao, respectively, govern the pressure drop from
the left atrium to the left ventricle and from the left ventricle to the aorta. These two parameters therefore
affect the left atrial and ventricular pressures and, in turn, the upstream pulmonary pressures. Mitral or
aortic valve stenosis are typical examples of this mechanism (see, e.g., [52]). The pulmonary resistance and
capacitance parameters Rpa and Cpa clearly affect the mean pulmonary pressures and their range, while
changes in systemic vascular resistance Rsys,a or Rsys,v affect the left ventricular afterload and, in turn the
pulmonary pressures.

3.3.2 Structural identifiability

Structural identifiability analysis is performed to gain understanding of our ability to recover a given set
of model parameters, through the solution of an inverse problem from idealized noiseless clinical targets
that belong to the model range. This is in contrast with the analysis in the next section of the practical
identifiability where real clinical data are used instead. We solve the model for the default parameter
combination in Table A1 and regard the outputs as data, from which a MAP estimate of the default
parameter values is re-computed by MCMC followed by NM optimization. We would like to point out
how the parameters in Table A1 correspond to a healthy patient and therefore no attempt is made in this
section to represent hypertensive physiological conditions. Additionally, histograms are generated using
5000 samples from the MCMC parameter traces and compared to the default (true) parameter set. The
results for right, left ventricular and resistor parameters can be seen in Figures 7, 8, and 9, respectively. The
true parameters are always found within the parameter distributions from MCMC and often correspond
to the mode of the histogram. Some deviations may be observed in Figure 9, with reference to the arterial
and venous systemic resistance, respectively. In such a case, since SVR is the sum of such resistances, the
increase in the first is compensated by a reduction in the second.

The coefficients of variation for the model parameters marginal posteriors and associated learning fac-
tors are shown in Figure 6. While parameters with higher coefficient of variation have a greater spread
relative to their mean, the learning factor quantifies how much the marginal variance is reduced by condi-
tioning the model output to the available observations or in other words how much the marginal variance
is reduced from the prior to the posterior [49]. Figure 6 shows that the parameters with the largest co-
efficient of variation are also the parameters with the smallest learning factor, as expected. Heart timing
parameters, systemic and pulmonary resistance and compliance, aortic compliance and active ventricular
parameters are generally well learned.

The analysis is completed by a comparison between the true and optimal physiology, calculated using
5000 parameter combinations from the MCMC traces, and analyzed over a single heart cycle. The results
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Figure 5: Average local sensitivities using a perturbation factor of 1%. (a) Average local sensitivity table for all
parameters and model outputs. (b) Average local sensitivities table for all parameters and pulmonary outputs only.
The values in each row are scaled to make their sum equal to 100.0 and a two cutoffs are used equal to 25 and 12.5
for (a) and (b), respectively.

for the aortic, pulmonary, and left ventricular pressures and flows, as well as the left and right ventric-
ular pressure-volume loop are reported in Figure 10. Pressures, flows and volumes agree well with those
generated from the default parameter set.
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Figure 6: Bar plot of the coefficient of variation (CV ) alongside the learning factor, (θ) for each parameter. a and
b represent the minimum and maximum bound of each parameter uniform marginal prior.
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Figure 7: Histograms of right ventricular model parameters from MCMC and default parameter values used for
assessing structural identifiability.

3.3.3 Practical identifiability

We also perform local identifiability analysis through the Fisher information matrix rank [53] to determine
the presence of non-identifiable parameter combinations and unimportant parameters. To do so, we com-
pute the matrix ∂G(ymap)/∂ y of local derivatives for our output quantities omap = G(ymap) with respect
to the parameters y. The Fisher Information matrix I(ymap) can be computed as

I(ymap) =

[
∂G(ymap)

∂ y

]
B

[
∂G(ymap)

∂ y

]T
, (12)

where the precision matrix B contains the inverse target variances, i.e., Bi,i = 1/σ2
i and Bi,j = 0 for

i 6= j. Rank deficiency in I(ymap) reveals the presence of non identifiable parameter combinations as
illustrated in Figure 11a by plotting the Fisher information matrix (FIM) eigenvalues ordered by magnitude
for all patients. Small eigenvalues are observed across all analyzed patients, confirming a lack of local
identifiability.
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Figure 8: Histograms of left ventricular model parameters from MCMC and default parameter values used for
assessing structural identifiability.
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Figure 9: Histograms of pulmonary and systemic resistances from MCMC and default parameter values used for
assessing structural identifiability.

Eigenvectors for all patients whose corresponding eigenvalues were less than a selected cut-off were
superimposed on the same radar plot, to search for situations characterized by dominant components,
representative of unimportant parameters. This process is visualized in Figure 11a, illustrating that all
eigenvalues colored by patient and Figure 11b, showing the effect of changing the cut off value on the
number of selected patients. Specifically, it shows that no significant changes result by adopting cut-offs
in the range [1× 10−12, 1× 10−16].

Figure 12 shows an example of two of the 17 radar plots generated for this study. The plot on the
left shows an example of unimportant parameter with dominant eigenvalue associated with the parameter
Vla,ini, i.e., the initial left atrial volume. Instead, the radar plot on the right does not show any clear pat-
tern involving parameter combinations that significantly change across patients. This local identifiability
analysis confirms how initial conditions for pressures, flows and volumes (except Ppa,ini, Pao,ini and Psys,ini

as per the results of the previous sensitivity analysis) are generally unimportant.

3.4 Prediction of pulmonary pressures

We now focus on the problem of using the physiological consistency of our compartmental model to predict
pulmonary pressures from other possibly non-invasive clinical targets. To do so, we have trained our
models without including the pulmonary pressures (i.e., systolic, diastolic, wedge pressures and pulmonary
vascular resistance) as targets, and propagated forward the estimated parameters to quantify the marginal
distributions for the predicted pulmonary pressures. We then evaluated the error between predicted and
true pulmonary pressures together with their variability. To do so, we first show four Blant-Altman plots
for sPAP, dPAP, mPAP and PVR, respectively. Model training including the pulmonary pressures and
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Figure 10: Pressure time histories over one heart cycle for aortic, pulmonary and left ventricular pressure (row 1).
Flow time histories over one heart cycle for left ventricular outflow and pulmonary flow as well as left ventricular
pressure-volume loop. (row 2).

PVR generates very limited bias. Predictions generated by pulmonary pressure-blind training does not
seem to generate proportional bias except for the predicted PVR.

In Figure 13c we also plot the average absolute pressure error across 31 patients (those for which the
pulmonary pressure were available and characterized by having more than 6 REDCap entries) versus the
minimum number of prescribed clinical targets, with the associated uncertainty. Finally, as illustrated in
the closeup shown in Figure 13d which focuses on patients with at least 15 REDCap entries, the average
errors on the predicted pressures is around 8 mmHg for systolic PAP, and 6 mmHg for Diastolic PAP and
PCW.

3.5 Relative importance of non-pulmonary targets

In this section, we investigate which clinical targets are the most important to include during training,
in order to minimize errors in pulmonary pressure predictions. In other words, we rank clinical targets
starting from those having a more beneficial impact on the accuracy in predicting pulmonary hypertension.
We achieve this goal through a sequence of optimization steps. We start by performing training using
optimization with a single target at a time. The target found to minimize the average combined prediction
error for pulmonary pressures is ranked first and permanently added to the list of targets to be included in
all successive optimization steps. The percent error was computed for each clinical pulmonary target that
was available for each patient. Percentage error expresses the percentage difference between the model
output and the clinical target, while a cumulative percentage error was calculated by taking the sum of the
percentage errors for each pulmonary target that was clinically available for each patient. To avoid bias
towards patients with fewer available pulmonary targets, the cumulative percentage error is transformed to

16

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2021. ; https://doi.org/10.1101/2020.04.23.20073601doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.23.20073601
http://creativecommons.org/licenses/by/4.0/


0 10 20 30 40

ith Eigenvector

E
ig

en
va

lu
e

fo
r
it
h

E
ig

en
ve

ct
or

1e-15

(a)

0 10 20 30 40

Eigenvector ID

0

10

20

30

40

50

60

70

80

#
P

at
ie

n
ts

w
it

h
E

ig
en

va
lu

e
<

C
u

to
ff

Cutoff Value

0.1

1e-05

1e-10

1e-15

1e-20

(b)

Figure 11: (a) Scatter plot of eigenvalues vs. eigenvectors for all patients. Red horizontal line represents selected
cut-off value. FIM eigenvalues at identified parameters plotted in increasing order. (b) Plot of number of patients
selected (eigenvalues less than cut-off) for each eigenvector.
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Figure 12: Selection of two of the 17 total radar plots of all parameters whose eigenvalues are less than the selected
cut-off. (a) Example of unimportant initial condition, i.e. whose perturbation has no effect on the model results. (b)
Example of non-identifiable parameter combinations where no dominant parameter can be identified and where the
combination significantly changes across patients.

an average combined prediction error through division by the number of available pulmonary targets. Let
p ∈ {1, 2, 3, 4} be the number of pulmonary targets that is available in the data of a certain patient. The
percent error of clinical target si,target, i = 1, . . . , p is computed as ei = 100 · |si,target−si,output|/si,target, i =
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Figure 13: (a,b) Bland-Altman plots of sPAP, dPAP, mPAP and PVR for clinical targets, and as predicted from
models trained with and without pulmonary targets, respectively. Solid horizontal lines represent the mean of
all differences, while dashed lines are drawn at 1.96 times the standard deviation. (c) Predictive performance for
pulmonary pressure. Absence of PAP targets in average prediction errors is represented using dashed lines. The
shaded region represents the area bounded by the 5th and 95th percentile from 5000 random subsamples from
MCMC. (d) Zoom on average errors which correspond to patients with more than 15 available clinical targets.
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1, . . . , p, while the average combined prediction error is
∑p

i=1 ei/p.
All remaining targets are iteratively tested and those producing the minimum average combined PAP

errors are progressively ranked, until all targets have been considered. The process above is repeated for
each patient. Figures 14 and 15 show the resulting average ranking and associated occurrences, the number
of patients where a specific target was collected.

The list of targets ordered by average rank and filtered by occurrence is also shown in Table 5. Most
of the quantities (except MPAP, PCW, PVR and SVR) can be estimated non-invasively. From RAP (or
CVP, RVEDP), SBP-DBP, HR and SVR it is possible to estimate the cardiac output. From CO, HR and
LVEF it is possible to estimate LVEDV which is correlated with PCW. This might explain why PCW
is always estimated better than sPAP and dPAP. The mitral valve deceleration time and velocity E/A
ratio are indicators of diastolic LV function and therefore correlated with PAP. If PVR, CO and PCW are
known, then it is possible to estimate MPAP which is correlated to sPAP and dPAP. Finally the parameter
ranking is summarized for all patients in Figure 16.
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Figure 14: Target ranking and minimum error.

3.6 PH classifiers from assimilated circulation models

In this section, we explore the use of trained lumped parameter models for automatic detection of ab-
normal pulmonary pressures from minimally invasive clinical measurements. We employ a näıve Bayes
classifiers [54] to detect pulmonary hypertension from our dataset. The first step of this classification pro-
cess was to generate a ground truth variable for hypertension that could be used to analyze the accuracy of
our hypertensive classification. Using the patients clinical data, a binary hypertensive variable was defined
using the criteria from [43]: if a patient has mPAP>25 mmHG or sPAP>35 mmHG, then the patient is
classified as hypertensive. Of the 82 patients, 65 of the patients contained sufficient clinical data to allow
for the creation of a ground truth binary hypertensive variable. The remaining 17 patients did not contain
enough clinical data to determine a ground truth value for hypertension, so these patients were excluded
from the testing and training datasets.

Before a näıve Bayes classification can be performed, the problem of missing data must first be ad-
dressed. Our dataset representing the cohort of 82 patients contains a non-negligible ratio of missing data,
with patients missing between 1 to 19 of the 24 total clinical targets. To overcome this issue and to verify
how classification results depend on the strategy selected for missing data imputation, five different missing
data imputation approaches were tested. The first method tested was complete-case analysis, considering
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Figure 15: Target ranking and occurrence.

Table 5: Target list in order of average rank, filtered by occurrence. Targets with less than 5 occurrences were
excluded from the ranking order.

Ranks Clinical target Description

1 cvp Central venous pressure
2 right ventricle systole Right ventricle systolic pressure
3 rvedp Right ventricle end diastolic pressure
4 heart rate2 Heart rate
5 systemic vascular resistan Systemic vascular resistance
6 systolic bp 2 Systolic brachial pressure
7 cardiac output Cardiac output
8 lvef Left ventricular ejection fraction
9 diastolic bp 2 Diastolic brachial pressure
10 aov peak pg Peak pressure gradient across aortic valve
11 pv max pg Peak pressure gradient across pulmonary valve
12 ra pressure Mean right atrial pressure
13 pv at Pulmonary valve acceleration time
14 mv e a ratio Mitral valve E/A ratio
15 mv decel time Mitral valve deceleration time

only the 4 variables that were available for all patients, i.e., heart rate, systolic blood pressure, diastolic
blood pressure, and cardiac output. The remaining four missing data methods consisted of replacing the
missing values with (1) zeros, (2) the max value of the data set, (3) a value far outside the range of the data
set (10 times the max), or (4) the median. In addition to the training of five separate classifiers using five
different missing data methods, a sixth näıve Bayes classifier was trained on the MAP parameters of the
model. The data for the MAP parameters from the model is a complete set, so no missing data method
was required. Figure 17 shows how the above imputation approaches affect classification accuracy. At
first sight, the high accuracy produced by a multiple imputation strategy using the maximum inter-patient
clinical value (or 10 times its value) may seem surprising. This can be explained by observing how, in such
a case, the probability of the feature associated with the missing data is essentially zero, thus essentially
reducing the number of features and increasing the resulting accuracy.

We then grouped patients according to a training and a testing set, consisting of 4/5 and 1/5 of the
available data, respectively. Training and testing is performed either using the raw clinical data or model
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Figure 16: (a) Ranks of clinical targets for each patient in order of importance (i.e., green more importance, red
less important). (b) Minimum combined prediction error associated with the introduction of each clinical target for
all the patients included in the study. Note how blank entries correspond to missing clinical targets.

parameters assimilated though optimization and MCMC, resulting in approximately 88% accuracy for the
classifier trained with the 24 raw clinical datapoints and about 76.4% accuracy for the classifier trained
with the 45 assimilated parameter values (see Table 6).

Of the 82 patients, 65 contained enough information for ground truth classification of whether or not
the patient should be identified as hypertensive. Based on these data we were able to classify 22 of the 65
patients, or about one third of the patients, as being affected by pulmonary hypertension and the remaining
two thirds with normal PAP pressures. This imbalance is known to introduce bias [55], with the classifier
more likely to label patients as non-hypertensive (as 2/3 of the training data are non-hypertensive). As a
remedy, six different approaches were applied to deal with this unbalance, which represents a mixture of
over-sampling methods, under-sampling methods, and a combination of both.

Figure 18 shows the principal component decomposition and contingency table for the unbalanced data
and the data balanced with centroid clustering. Note how the confusion matrices are evaluated based
on test data, hence 13 patients (1/5 of the 65 patients) for the unbalanced dataset. Undersampling in
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Table 6: Training accuracy improvements using the original dataset and following pre-processing to balance the
relatively small number of hypertensive positives.

Pre-processing Data for Classification
Complete Data Missing Data Imputed Balanced Data

Training data
type for classifier

Clinical Data 0.8082 0.8801 1.0
Parameters 0.7640 N.A. 1.0

centroid clustering reduces the training/testing data from 65 to 33, hence one-fifth of the 33 samples
becomes approximately 7, as shown in the confusion matrix for the centroid clustering under-sampling
method.

Figure 19 shows instead the resulting effect of each unbalanced data method on the overall area under
the receiver operating characteristic curve (ROC) for the classifier trained on the model parameters. For
such a classifier, centroid clustering [56] increases accuracy from 76.4% up to 100%. In addition, data
balance using Synthetic Minority Oversampling TEchnique (SMOTE) [57] increases the accuracy of the
model trained on the data from 88% to 100% as shown in Table 6. We again remark that the number of
patients in this study is small and future studies will investigate generalization of this approach to larger
datasets.
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Figure 17: Accuracy of a näıve Bayes classifiers for pulmonary hypertension using different approaches for multiple
imputation.

4 Conclusion

This study demonstrates that a relatively simple lumped parameter compartmental model can represent a
wide range of physiologies, spanning healthy patients to patients affected by severe diastolic left ventricular
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Figure 18: Principal component decomposition (left) along with the contingency table (right) for the unbalanced
data and balanced through centroid clustering.
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Figure 19: Accuracy of a Näıve Bayes classifiers for pulmonary hypertension, using identified lumped parameters
as features, and various methods to handle unbalanced data. The methods used were Random Over-sampling (ros),
Random Under-sampling (rus), an over-sampling method: SMOTE (Synthetic Minority Oversampling TEchnique)
(sm), two under-sampling methods: Tomek Links (tl) and Cluster Centroids (cc), and a combination method that
performs over-sampling followed by under-sampling through applying SMOTE followed by Tomek Links (smt).

dysfunction. In this context, an activation formulation for the heart chambers has proven important to
separately account for systolic and diastolic pressure-volume behavior. When trained using ideal clinical
data from subjects with diastolic left ventricular dysfunction, the parameters associated with the governing
physiological mechanisms (i.e., diastolic ventricle relaxation) change in a way that is consistent with the
underlying physiology of the dysfunction. The average parameter sensitivities are determined after training
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with real data from 82 patients, confirming intuition for the most important parameters. Pulmonary
pressures were found to be mostly sensitive to heart rate and contraction timing parameters, diastolic
and systolic pressure/volume ratio parameters (Kpas,1,lv, Kpas,2,lv and Emax,lv), left atrioventricular and
aortic valve resistance (Rla,lv, Rlv,ao), pulmonary resistance and capacitance (Rpa, Cpa) and systemic
resistance (Rsys). Additionally, the model was found to be locally unidentifiable, with initial conditions
generally unimportant. The structural identifiability analysis showed that inference of model parameters is
feasible under perfect, noiseless conditions and with a sufficiently large number of available clinical targets.
Target ranking based on sequential optimization reveals the most important non-invasively acquired clinical
targets to be the heart rate, systemic pressures, peak pressure gradient across aortic and pulmonary
valves, pulmonary valve acceleration time, mitral valve deceleration time and mitral valve E/A peak
ratio. Clinical targets requiring invasive measurement practices that positively affect the prediction of
pulmonary pressures are instead central venous pressure, right ventricular systolic and diastolic pressure,
systemic vascular resistance, cardiac output and mean right atrial pressure. After investigating parameter
identifiability/sensitivity, pulmonary pressures in 82 patients with various heart failure severities were
predicted from a lumped hemodynamic model, trained based on the remaining clinical targets. The average
absolute pressure error on the 11 patients characterized by at least 11 distinct clinical entries was found
approximately equal to 8 and 6 mmHg for systolic and diastolic/wedge pulmonary pressures, respectively.
While these errors may seem large to detect cases of mild hypertension, they may be more than reasonable
depending on how high are the PA pressures we are trying to predict/detect. In other words, while a
8 mmHg pressure error may seem relevant with an actual pulmonary pressure of 20 mmHg, for cases of
patients with real disease (i.e. PA pressures of 40s, 50s, 60s, etc.) then the difference between (say) 50
and 58 would not be nearly as large, but more importantly our approach would still identify those patients
requiring further evaluation.

Finally, we have shown that MAP estimates of circulation model parameters can be used to detect
elevated pulmonary pressures, and that a simple classifier provide high accuracy on balanced data, even
when these parameters are identified without measuring systolic, diastolic, wedge pulmonary pressures
and pulmonary vascular resistance. Future work will be devoted to the systematic demonstration of
the proposed approach on larger patient data sets, opening new avenues for translational applications of
model-based diagnostics, improving model formulations targeting specific diseases and for the development
of improved and more efficient estimation approaches.
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Appendices

Appendix A Uniform priors and default parameter set

Table A1 shows the maximum and minimum ranges for each lumped parameter. The default parameter
values used for the structural identifiability analysis in Section 3.3.2 are also reported.

Table A1: Maximum and minimum values defining the priors for the model parameters.

Parameter Symbol Default(∗) Min(∗) Max(∗)

Heart Rate HR 78.0 40.0 100.0

Atrial relative activation duration tsas 0.2 0.05 0.4
Atrial relative activation time shift tpws 9.5 5.0 10.0
Ventricular relative activation duration tsvs 0.4 0.1 0.5

Atrial passive curve slope, right atrium Kpas,ra,1 5.0 0.1 10.0
Atrial passive curve exponent factor, right atrium Kpas,ra,2 0.006 0.0001 0.06
Atrial active curve slope, right atrium Emax,ra 0.1 0.05 5.0
Unstressed right atrial volume Vra,0 0.0 0.0 50.0
Atrial passive curve slope, left atrium Kpas,la,1 5.0 0.1 10.0
Atrial passive curve exponent factor, left atrium Kpas,la,2 0.0065 0.0001 0.06
Atrial active curve slope, left atrium Emax,la 0.2 0.05 5.0
Unstressed left atrial volume Vla,0 0.0 0.0 50.0

Ventricular passive curve slope, right ventricle Kpas,rv,1 5.0 0.1 20.0
Ventricular passive curve exponent factor, right ventricle Kpas,rv,2 0.03 0.0001 0.01
Ventricular active curve slope, right ventricle Emax,rv 0.5 0.1 5.0
Unstressed right atrial volume Vrv,0 0.0 0.0 50.0
Ventricular passive curve slope, left ventricle Kpas,lv,1 2.0 0.1 20.0
Ventricular passive curve exponent factor, left ventricle Kpas,lv,2 0.003 0.0001 0.01
Ventricular active curve slope, left ventricle Emax,lv 4.0 1.0 5.0
Unstressed left atrial volume Vlv,0 20.0 0.0 50.0

Inductance of right atrium Lra,rv 0.1 0.1 0.1
Resistance of right atrium Rra,rv 10.0 10.0 10.0
Inductance of right ventricle Lrv,pa 0.1 0.1 0.1
Resistance of right ventricle Rrv,pa 15.0 15.0 15.0
Inductance of left atrium Lla,lv 0.1 0.1 0.1
Resistance of left atrium Rla,lv 8.0 8.0 8.0
Inductance of left ventricle Llv,ao 0.1 0.1 0.1
Resistance of left ventricle Rlv,ao 25.0 25.0 25.0

Aortic capacitance Cao 1.0e-3 1.0e-5 0.001

Pulmonary capacitance Cpa 4.0e-3 100.0e-6 0.01
Pulmonary resistance Rpa 130.0 1.0 500.0

Systemic capacitance Csys 400.0e-6 100.0e-6 0.05
Systemic Resistance - Arteries Rsys,a 400.0 100.0 800.0
Systemic Resistance - Veins Rsys,v 1200.0 500.0 2500.0

(*)All units are in the CGS system.
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