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Summary
Background

Most of epidemiological models applied for COVID-19 do not consider heterogeneity in infectiousness
and impact of superspreaders, despite the broad viral loading distributions amongst COVID-19 positive
people (1 – 106 per mL). Also, mass group testing is not used regardless to existing shortage of tests. I
propose new strategy for early detection of superspreaders with reasonable number of RT-PCR tests,
which can dramatically mitigate development COVID-19 pandemic and even turn it endemic.

Methods

I used stochastic social-epidemiological SEIAR model, where S-suspected, E-exposed, I-infectious, A-
admitted (confirmed COVID-19 positive,  who are admitted to  hospital  or completely isolated),  R-
recovered. The model was applied to real COVID-19 dynamics in London, Moscow and New York
City.

Findings

Viral loading data measured by RT-PCR were fitted by broad log-normal distribution, which governed
high importance of superspreaders. The proposed full scale model of a metropolis shows that top 10%
spreaders (100+ higher viral loading than median infector) transmit 45% of new cases. Rapid isolation
of superspreaders leads to 4-8 fold mitigation of pandemic depending on applied quarantine strength
and amount  of  currently  infected  people.  High viral  loading allows  efficient  group “matrix”  pool
testing of population focused on detection of the superspreaders requiring remarkably small amount of
tests. 

Interpretation

The model and new testing strategy may prevent thousand or millions COVID-19 deaths requiring just
about 5000 daily RT-PCR test for big 12 million city such as Moscow. Though applied to COVID-19
pandemic the results are universal and can be used for other infectious heterogenous epidemics.
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Introduction 

Coronavirus  disease  2019  (COVID-19)  caused  by  severe  acute  respiratory  syndrome
coronavirus  2  (SARS-CoV-2)  occurred  in  Wuhan,  China,  in  December  2019  and unprecedentedly
rapidly  spreaded worldwide including more than  2.5 million confirmed cases  and almost  170 000
deaths at 23th of April 2020 according to WHO reports. The pandemic has huge impact on quality of
life, economics, because of relatively high mortality and intensive spreading, which resulted in severe
lockdowns, quarantines, lack of intensive care units (ICU), overflows of national health care systems,
etc.  The  disease  is  characterized  by  high  case  fatality  rates  (CFR)  for  patient  over  70  years
(symptomatic CFR 4-6%), reproductive number, R0, in the range of 1.5-3 and prevailed transmission by
airborne respiratory droplets and fomites such as hands, surfaces, etc. 1 

The  spreading  of  COVID-19  can  be  mitigated  by  quarantine  applied  to  majority  of  the
population or to suspected people only. The latter one requires express and precise mass testing of the
suspected people, who are usually people with symptoms or ones contacted with them. There are some
diagnostic approaches for detection of viral infections including reverse transcription polymerase chain
reaction (RT-PCR), enzyme-linked immunosorbent assays (ELISA) and virus isolation (VI)  2.  New
impedance-based approach is under development 3. The most widely used diagnostics for COVID-19
detection is RT-PCR now, because VI is fairly time-consuming and unsafe, ELISA is hardly available
due  to  lack  of  targeting  antibodies  for  SARS-CoV-2.  RT-PCR  usually  demonstrates  the  highest
detection rate amongst all diagnostic methods, which exceeds 80%  2, but it can vary depending on
vendor. 

The amount of RT-PCR tests is always limited (highest in Italy: 1 per 1000 of population daily
4), therefore optimization of testing policy is helpful. One of the polices is group testing for population
with low prevalence of infection, when samples of from 2 to 64 people are mixed in a single “pool”.
This allows significant reduction of tests amount, but the drawback is a decrease of sensitivity and,
consequently, increase of false negative responses 5. More sophisticated 2D-matrix group testing was
proposed for detection of COVID-19 6. The testing scheme was optimized for different prevalence, but
trade in between sensitivity and quantity of tests was still present. 

Another important factor for spreading rate of epidemic is the heterogeneity of its infectors.
COVID-19 is likely to be highly heterogeneous, because it is similar to SARS epidemic, which was
also caused by coronavirus and showed 85% transmission produced by 20% of the most contagious
people, also called superspreaders 7. Although there is no confirmed COVID-19 superspreader cases in
peer-reviewed scientific literature, there are some evidences for existence of them in public media  8.
Superspreading is  present  for  most  epidemics  9 and  their  removal  from the  infected  population  is
promising. Moreover, therapeutical approaches specifically targeted on superspreaders were proposed
10. 

Another  evidence  for  abundance  of  superspreaders  of  COVID-19  is  viral  loading  statistics
obtained by real time RT-PCR 11–13, which covers 6 orders of magnitude for different COVID-positive
patients. Broad distributions of viral copies were observed for nasal and throat swabs and for sputum 11.
The latter  one is  the former substrate to exhaled airborne droplets.  Therefore broad distribution of
number of virions in airborne particles was also shown for different viruses including coronaviruses
and influenza 14.  Similar broad distributions of viral copies was found for SARS 15. The statistics of
viral loading is inherited not only for aerosol droplets, but also for fomites 16. Viral loading distributions
are similar for both mild and severe cases of COVID-19, however severe cases show higher average
loading value  12.  The  discussed  distributions  may follow log-normal  law,  which  was  observed for
various biological systems from fruit weight of pumpkins 17 to bacteria population on the leafs of crops
18. In brief, it can be explained as non-linear response of to a gaussian perturbation 17 or generation of
pink noise as a result of bifurcation of a living system 19.
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Computer simulations based on various mathematical models are widely used for prediction of
evolution of pandemics and help to make decisions and choose appropriate governmental interventions
20. The models can be stochastic or deterministic, and most of them are based on SEIR (S-suspected, E-
exposed, I-infectious, R-recovered) approach or its modifications. Simulations can give estimations for
R0 

21, predict probability of spreading of pandemic to new geographical areas 22, or calculate influence
of isolation delay of infectious people on the spreading rate 23. However, the majority of the proposed
models do not take into account heterogeneity of infectiousness and existence of superspreaders except
rare ones 24.

Thus, the aim of the present article is to describe possible group pool testing strategy, which can
detect superspreaders on early stages within reasonable amount of RT-PCR tests, and demonstrate the
efficiency of the strategy by means of SEIR derivative model Monte Carlo simulations applied for
London, Moscow and New York City as examples.

Results and discussion

1. Compartments of the model

I used stochastic SEIAR compartments model (A stands for admitted – see below) resolved by Monte-
Carlo simulations. The model emulates behavior of n people in a city. The structure of the model was
inspired by Moscow social life, however the results are also applicable for other cities, counties, other
societies, etc. The program code was written in python language and provided in Suppl. Info. SEIAR
model means that each citizen is presented in one of five groups (see Figure 1A):

• S – suspected. A healthy person.
• E – exposed. A person, who already infected, but does not have symptoms yet. He can transmit 

infection although with smaller probability than infected person with symptoms.
• I – infectious. A person with symptoms and full probability of infection transmission. 
• A – admitted. A person with symptoms, who sought medical help. The model suggests that the 

person got COVID-19 positive test was admitted to hospital or quarantined at home and stopped
transmission of the infection.

• R – recovered. Includes both recovered and deceased. Recovered people are suggested to be 
immune. All of them do not influence to other compartments of the model.
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Figure 1. A) Model compartments sequence. S – suspected (healthy), E – exposed (partially infectious, 
before onset of symptoms), I – infectious (fully infectious, after onset), A – Admitted (admission to 
hospital or complete isolation), R – Recovered (including deceased). Average periods are shown. B) 
Dependence of symptoms onset fraction on period after infection (duration of incubation period). Blue 
dots – data from Ref. 25 Red curve is best fit by gamma distribution cumulative function. C) 
Distribution for periods between onset and admission. Blue bars – data from Ref. 26 Red curve is best 
fit gaussian. D) Recovery time distribution. Blue bars – data from Ref. 27 Red curve is best fit gaussian.

Please note, that there are about 17% of asymptomatic patients according to investigation on
Diamond Princess liner 28. The model does not take them into account for simplicity and because the
infectiousness  of  asymptomatic  people  is  unknown  and  can  be  negligible.  However,  existence  of
asymptomatic infectors will even support main conclusions of the article.

Each citizen has his own values of incubation period (from infections to onset of symptoms),
period between onset and admission, and recovery period (see Figure 1, all curve fitting was done in
MagicPlot software).  All values follow standard distributions fitting respective experimental data:

• Incubation period. From exposure to onset of symptoms (E → I) – Figure 1B. Experimental 
data (blue circles) from Ref. 25 Red curve is best fit cumulative gamma distribution with shape 
parameter k = 4, scale parameter t = 1.3. Average incubation period is 5 days.

• Period from onset to admission (I → A) – Figure 1C. Experimental data (blue bars) from Ref. 26 
Red curve is best fit of gauss distribution with mean m = 2.12 and standard deviation s = 3.42.

• Recovery time (E → R) – Figure 1D. Experimental data (blue bars) from Ref. 27 Red curve is 
best fit of gauss distribution with m = 19 and standard deviation s = 9. Note, that recovery time 
was calculated from start of the infection not from start of the admission and the recovery may 
occur before the onset or admission. Average recovery time is 19 days, therefore average period 
between admission and recovery is 12 days as it shown in Figure 1A.

The model is stochastic, therefore it does not use the concept of serial interval  29, which was
used for many deterministic models. Serial interval is average period between infection of a person and
his first transmission. Serial interval is difficult to measure from common clinical data.
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All the SEIAR population discretely changes daily in accordance with sequence presented in
Figure 1A until amount of infected population (IP) (exposed+infectious+admitted) becomes 0. Initially
infected people in population is chosen randomly in order to have 10-50 infected in a city.

2. Pattern of daily contacts

Figure 2. Pattern of daily contacts. Social groups: retired – men with a cane; able-bodied – featureless
men, children and students – girls with pigtails. Locations: house (red), trains (2 each way - yellow),
office (yellow), grocery (dark red), school (green). Pics under each location show possible attendants,
numbers show sizes of groups in location. Arrows show possible daily movements. Blue test tubes
show locations, where mass testing can be applied. Percentages in the corner show relative abundance
of social groups in city population.

Schematic view of daily contacts is shown in Figure 2. All population of the city is split into 3 
group:

• Retired – 24%. Shown as man with a cane pics. 
• Adult able-bodied – 56%. Shown as simple man pics.
• Children and students – 20%. Shown as girl with pigtails pics. 
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The division was made in accordance with Moscow demographic statistics. Each picture represents
location of contacts, amount of contacts used in model and participating social groups. Model suggests
that exactly 3 people live in each house (shown red in left top corner), all 3 groups can live, but the
composition is random. There are 3 ways available every day: 

• To office (shown yellow on the right of the Figure 2) connected by two subway trains each way,
which is  typical  for Moscow. 5 people in  each train represent  amount  of citizens,  who are
located relatively close to each other and may transmit the infection, despite that usually there
are more people in a single coach, but they are scattered along the coach.

• To grocery (shown dark red in left bottom corner of Figure 2). It is suggested that attendance of
the children is negligible. Groceries may also represent pharmacies or other shops.

• To school or university (shown green below the house). Teachers are not taken into account.

People  in  the  same  houses  (housemates),  same  offices  (co-workers),  same  schools  or
universities (classmates) are given once randomly and do not change from one day to another. On
contrary, people in each train and grocery are absolutely random each time. That represents the real
situation, when people have both regular and accidental contacts. Color of contact places shows relative
susceptibility to quarantine (red color corresponds to independence to quarantine, dark red and yellow
– moderate  susceptibility,  green – high susceptibility).  Mass public events are out of scope of the
model, because they are implied to be banned already. 

Relative  probabilities  of  the  infections  per  day,  Ppl,  were  proportionate  to  duration  of  the
presence in particular place and tuned to make the model balanced in order to use all ways of infection
transmission. Ppl were: 3 for house, 1 for office, 0.1 for each couch in subway, 0.5 for school and 0.05
for  grocery.  Absolute  probability  of  a  contagion  in  a  place,  Pi,  was  dependent  on  Ppl,  total
contagiousness of all people in the place, SPj, and relative virulence of SARS-CoV-2, Pvir.

Pi=1−exp(−Pvir P pl ΣP j) (1)

3. Heterogeneous infectors

The model suggests that contagiousness of a person, Pj, is proportionate to amount of viruses
exhaled by him per minute, which is in turn proportionate to concentration of viruses in sputum or
pharyngeal mucus,  Cvir.  The latter  can be estimated by RT-PCR tests  from sputum, throat or nasal
swabs, i.e. 

Cvir=2Δ ct Cet , (2)

Where Dct is differential cycle threshold for the specimen and the etalon and Cet is the concentration of 
RNA in etalon sample. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 27, 2020. ; https://doi.org/10.1101/2020.04.22.20076166doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.22.20076166
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3. A) RT-PCR relative cycle threshold (Dct) distribution. Blue bars – data from Ref. 12 Red curve
is best fit gaussian. B) Random generated log-normal viral loading distribution (blue bars). Red area 
corresponds to superspreaders. Different superspreaders thresholds are shown as black bars with 
corresponding prevalence.

Figure 3A shows RT-PCR cycle threshold distribution for COVID-19 positive patients shown as
blue bars 12. Difference in Dct equal to 24 means that viral loading for COVID-19 patients may alter in
224 = 16 million times. Error of Dct is about 3 11. Red curve shows gaussian fit for the Dct, which means
log-normal for viral  loading. The best fit gave us:  m = 2 and  s = 3.6. Those values were used to
generate distribution of simulated viral loading proportionate to contagiousness of citizens, presented in
Figure 3B. The value of C0 corresponds to median viral loading. The distribution gives us fractions of
superspreaders  depending  of  chosen  superspreaders  threshold,  St,  i.e.  10%  for  x100  threshold
(superspreaders are defined as people, who are 100+ times more contagious than median infectors),
5.6% for x300, 2.8% for x1000 as it is shown in red area in Figure 3B. Data from Ref. 12 contain only
75 tests, but similar log-normal dependences were obtained for SARS 15, 778 tests of pandemic H1N1
influenza outbreak 30 or even for virus concentration on fomites 16 (see Figures S1-S3 in Suppl. Info for
details).

4. Options: quarantines and mass testing

The model takes quarantine into account. The efficiency of quarantine for different locations
and social groups is shown in Figure 2 as color legend from red to green. Contagions in houses are not
affected  by quarantines.  Schools  and universities  are  closed  in  any quarantine.  Offices,  trains  and
groceries  are  partially  affected  by  quarantines.  The  model  assumes  that  amount  of  workers  or
customers are dropped by the quarantine factors,  Qof,  and  Qgr,  correspondingly, after  its beginning.
Office quarantine affects certain subgroup of able-bodied citizens, who start to work remotely and do
not comute to office.  Other workers (like policemen, e.g.)  are not affected by quarantine.  Grocery
quarantine  affects  all  able-bodied  and  retired  people,  i.e.  they  shop  less  often,  sometimes  prefer
delivery services, so their average attendance to groceries reduced, but there is no division on stable
subgroups.  The Q factors  can be changed several  times during evolution of  pandemic.  I  used the
following relationship:
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Q−1=Qgr−1=
(Qof −1)

2
(3)

Mass testing is another option of the program and it can be applied for all customers of public
transport  and  groceries  as  it  marked  as  blue  test  tubes  in  Figure  2.  The  screening  detects  only
superspreaders with given threshold and put them in complete isolation (programmed as admission)
after obtaining test results (2 days). Mass testing can be switched on a particular day.

5. Outbreak prognosis for London, Moscow and New York City

Figure 4. A) Typical SEIAR simulation curves. B) Official data and model simulation of COVID-19
outbreaks in London (blue), Moscow (red) and New York City (green). Arrows show introduction of
quarantines with corresponding Q factors. Doubling times are shown above the curves.

Typical curves for all 5 SEIAR compartments are shown in Figure 4A. The sum of E, I and A
was used as infected population (IP). Simulation of pandemic dynamics in London, Moscow and New
York City (NYC) is shown in Figure 4B. Arrows point to quarantine interventions with corresponding
Q factors. Times of IP doubling are shown above the simulated curves for all cities.
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Figure 5. Simulated COVID-19 pandemic curves for London, Moscow and New York City without
mass testing (blue), and with mass testing with different superspreaders threshold, St, 100 (green), 300
(yellow) and 1000 (orange). Official data are shown as black circles. Pie charts show prevalence of
superspreaders between different St ranges and their impact on transmission. Bar charts show total and
peak infected population values for all cities and testing options.

Figure 5 shows COVID-19 developments in three cities without testing (blue curves), and with
testing and isolation of superspreaders with St = 100 (green), 300 (yellow), 1000 (orange). Public data
of confirmed cases are shown as black dots. Hospital beds and intensive care units (ICU) capacities are
shown as horizontal dashed lines (see Suppl. Info for details). Rapid isolation of superspreaders leads
to substantial mitigation of pandemic for both total and peak IP (shown on bar chart in Figure 5, see
numerical data for Figure 5 in Suppl. Info.). For cities with strong quarantine (London and NYC) this
testing strategy with St = 100 strongly reduces amount of total IP (4.5-4.8 fold decrease is predicted),
while for Moscow with weak quarantine more prominent is reduction of peak IP (8-fold). 

Choice of St is very important for practical implementation of mass testing strategy, because it
is a trade in between difficulty and efficiency. Higher St corresponds to lower amount of daily required
RT-PCR tests, but it  fails to detect superspreaders below  St.  Prevalence of superspreaders between
different St values as well as corresponding effect of COVID-19 transmission by them are shown on
pie charts in Figure 5. Note, that regardless to St value, throat or/and nasal swabs must be taken from
all people attending offices and groceries, which is also a challenge for metropolises. Low St is less
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important  for  London,  where  both  relatively  low  initial  IP and  strong  quarantine,  i.e.  it  is  10%
difference for peak IP and 50% for total IP between St = 100 and 1000. Differences increase for total IP
with increase of initially IP and reaches 160% for NYC, while low Q in Moscow gives 300% reduction
for peak IP. The last one is crucially important, because predicted 2 million COVID-19 patients in
Moscow is far over its healthcare capacity, which can result in about 0.5 million excessive deaths.
Nevertheless,  the  prognosis  demonstrates  catastrophic  scenario  for  Moscow,  therefore  strong
quarantine such as one used in London or NYC is highly recommended regardless of possible new
testing strategy application.

6. Mass testing strategy

Figure 6. Schematic view of matrix group pool testing strategy. Specimens are mixed both in rows and
columns. Red test tubes show superspreaders. Light red test tubes show normal spreaders and mixtures
with superspreaders. While test tubes are negative. Light blue background highlights specimens in the
intersections, which are require subsequent separate testing.

Superspreaders isolation based mitigation requires mass testing strategy for detection of them.
The simplest strategy is make one test for person, but it requires about 2 million test daily, which is
obviously impossible to do. However, daily tests requirements can be reduced at least by the factor of
500, if smart matrix group pool testing scheme used (see Figure 6). Note, that this scheme is very
efficient for detection of superspreaders, but it misses all other infected people. The exact amount of
tests depends on the superspreaders threshold St. If it is assumed that viral loading for median spreader
is 10 times higher than sensitivity of RT-PCR test (which is true for most used test-systems), then test
will give positive result for a superspreader mixed into a pool with 10*S t = 1000 for St = 100 and even
more for higher thresholds. But matrix testing requires 2 tests for each specimen, i.e. one in a row and
one in a column. Then all specimens in the intersections (highlighted blue) can be tested separately
without mixing. This will provide extremely low false positive result ratio, because viral loading is
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huge in positive tests. In case of low prevalence the additional amount of separate tests will be much
lower than 500. Thus, that strategy allows to detect superspreaders by perform 5000 tests daily for
megapolices such as Moscow, New York City and London.

Conclusions

Thus,  the  proposed stochastic  SEIAR-model  for  COVID-19 pandemic  demonstrated  crucial
importance of superspreaders, who are people with SERS-CoV-2 viral loading at least 100 exceeding
median value. Superspreaders with 10% prevalence amongst infected people transmit 45% cases of
COVID-19, therefore their rapid isolation can significantly mitigate pandemic and save thousands of
people, as it was shown for London, Moscow and New York City. The isolation can be performed via
mass matrix group pool strategy, applied for all people attended to offices and groceries. This strategy
requires reasonable amount of RT-PCR tests about 5000 per day.  The obtained results  can be also
applied  to  other  cities  and  countries  and  used  not  only  for  COVID-19  pandemic,  but  for  other
infectious diseases with high heterogeneity of spreaders.
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