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ABSTRACT

Background

This study presents two simulation modelling tools to support the organisation of networks of dialysis
services during the COVID-19 pandemic. These tools were developed to support renal services in the
South of England (the Wessex region caring for 650 patients), but are applicable elsewhere.

Methods

A discrete-event simulation was used to model a worst case spread of COVID-19 (80% infected over three
months), to stress-test plans for dialysis provision throughout the COVID-19 outbreak. We investigated
the ability of the system to manage the mix of COVID-19 positive and negative patients, and examined the
likely effects on patients, outpatient workloads across all units, and inpatient workload at the centralised
COVID-positive inpatient unit. A second Monte-Carlo vehicle routing model estimated the feasibility of
patient transport plans and relaxing the current policy of single COVID-19 patient transport to allow up
to four infected patients at a time.

Results

If current outpatient capacity is maintained there is sufficient capacity in the South of England to keep
COVID-19 negative/recovered and positive patients in separate sessions, but rapid reallocation of patients
may be needed (as sessions are cleared of negative/recovered patients to enable that session to be dedicated
to positive patients). Outpatient COVID-19 cases will spillover to a secondary site while other sites will
experience a reduction in workload. The primary site chosen to manage infected patients will experience
a significant increase in outpatients and in-patients. At the peak of infection, it is predicted there will
be up to 140 COVID-19 positive patients with 40 to 90 of these as inpatients, likely breaching current
inpatient capacity (and possibly leading to a need for temporary movement of dialysis equipment).

Patient transport services will also come under considerable pressure. If patient transport operates on
a policy of one positive patient at a time, and two-way transport is needed, a likely scenario estimates
80 ambulance drive time hours per day (not including fixed drop-off and ambulance cleaning times).
Relaxing policies on individual patient transport to 2-4 patients per trip can save 40-60% of drive time. In
mixed urban/rural geographies steps may need to be taken to temporarily accommodate renal COVID-19
positive patients closer to treatment facilities.

Conclusions

Discrete-event simulation simulation and Monte-Carlo vehicle routing model provides a useful method for
stress-testing inpatient and outpatient clinical systems prior to peak COVID-19 workloads.
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1 Introduction

Severe Acute Respiratory Syndrome-Corona Virus-
2 (SARS-CoV-2) COVID-19 (henceforth known as
COVID) is causing widespread disruption to normal
healthcare services, as the number COVID-positive
cases increases. In the UK a worst case scenario
is that 80% of the population are infected over a
three month period, if controls are not put in place
[1]. Although social distancing measures are in
place both in the UK and internationally, patients
with Chronic Kidney Disease who must visit dial-
ysis units are limited in their ability to be fully
isolated. It is possible therefore that spread in the
dialysis population will be faster than in the general
population.

Rapid guidelines for dialysis service delivery have
been published[2, 3, 4]. These include separation
of COVID-positive and COVID-negative patients;
dialysis units working with transport providers to
minimise the risk of cross-infection; and continuing
to treat patients as close to home as possible. [2].

Planning service delivery that separates COVID-
positive patients is complicated, due to the uncer-
tainty of the spread of SARS-CoV-2, the variability
seen in symptom onset, length of infectivity, and
regional delivery of dialysis.

We therefore sought to support decision making
in the period prior to peak infection by developing
mathematical models of dialysis service delivery and
patient transport. We aimed to provide reusable
tools to provide rapid information under various sce-
narios including a worst case three month spread.

2 Methods

We developed a discrete-event simulation (DES)
model of service delivery in the dialysis network.
DES is an appropriate method to capture the
stochastic dynamics of a capacity constrained sys-
tem and model patients individually [5]. DES has
been applied extensively in health service delivery
[6, 7, 8, 9] and previously to model dialysis demand
[10] as well as networks of care facilities [11]. We
also developed a Monte-Carlo vehicle routing model
to model patient transport. The algorithm used,
a combination of the Clarke-Wright Savings [12]
method and Iterated Local Search [13], finds good
solutions grouping and ordering patient pickup.

2.1 Study Setting

We apply the service delivery modelling tools [14]
in the South of England in the region of Wessex: a
mixed urban/rural setting where the renal dialysis
service cares for 644 patients. The service operates
a network of nine centres. The largest of which

is located at the Queen Alexandra (QA) Hospi-
tal, Portsmouth. To access dialysis services 75%
of patients make use of patient transport services.
During the epidemic, COVID-positive patients will
be treated separately from negative and recovered.
The Queen Alexandra will be used as the primary
site for positive outpatients and inpatients with
spillover to a second site (Basingstoke) when capac-
ity is insufficient. Patient transport services will
provide COVID only ambulances with a policy of
single patient transport.

In the analysis we excluded home patients (n = 80)
and due to its separation from the mainland the
Isle of Wight (n = 44).

The geography of units and patients is described in
more detail in appendix A.

2.2 Outcome measures

We estimated the the change in outpatient and in-
patient workload during the epidemic in terms of
COVID-positive negative and recovered, at each
dialysis unit in the network. Estimates were pro-
duced over periods three to six months. We also
estimated the number of patients who were required
to travel to a different unit from normal and the
change in travel time.

We estimated the vehicle total travel implications for
patient transport services given a range of COVID-
positive scenarios across the regions geography.

2.3 Data Sources

To ensure confidentiality, patient geographic loca-
tions was provided at the UK postcode sector level
(alternatives might be output areas or northings
and eastings). Travel times between these sectors
were estimated using Routino (routino.org) with
data from OpenStreetMap (openstreetmap.org).

The worst case time of spread of COVID-positive
was taken from Fergeson et al. [1]. Mortality rate,
time a patient was COVID-positive before admission
and inpatient length of stay were local parameters.

2.4 Analysis environment

All models were written in Python 3.8. We used
SimPy 3 [15] to implement the DES model. The
transport model was implemented using pandas [16]
and NumPy [17]. All charts were produced with
MatPlotLib [18]. We provide all code and data
used in the study and follow the STRESS reporting
guidelines for DES [19]. The dialysis model results
were run on an Intel i9-7980XE CPU with 64GB
RAM running Ubuntu 19.10 Linux. The transport
modelling results were run on an Intel i9-9900K
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CPU with 64GB RAM running the Pop! OS 19.10
Linux.

2.5 Verification and validation

We performed model testing (verification) as models
were developed in line with simulation standards
[20]. Two of the authors are experienced modellers
and verification included a code review and cross
working on models. Quantitative validation of mod-
els (checking models are appropriate detailed and
sufficiently accurate) is challenging in the COVID
epidemic as the forecast is of unprecedented con-
ditions. We instead worked closely with clinicians,
managers and informatics specialists within the lo-
cal health system to review iterative versions of the
model. We also opted to model a range of likely
scenarios including what is widely believed to be
the worst case.

2.6 Dialysis model

The dialysis model runs through a defined period
(e.g. one year) and simulates the progression of
patients through phases of COVID infection: nega-
tive, positive (with some requiring inpatient care)
and recovered or died. The speed of progression
of infection through the population may be varied
(typically 3-12 months).

As patients change COVID state the model seeks
to place them in the appropriate unit and session,
opening up COVID-positive sessions in units that
allow it. COVID-positive patients do not mix with
any other patients. Opening up COVID-positive
sessions causes other patients to be displaced from
that session, and the model seeks to reallocate them
either to the same unit or, if there is no space left,
to the closest alternative unit.

The dialysis model is run 30 times to simulate 30
alternative years as, due to the randomness of in-
fection, no two years will be exactly alike. Results
show typical (median) and extreme years.

2.6.1 Patient progression model

A simplification used in this model is that all pa-
tients should receive dialysis three times weekly,
with each patient allocated to a starting day for the
week of either Monday or Tuesday.

A proportion of patients moves through phases of
COVID state and care (figure 1). The proportions
of patients and times in each phase is either fixed or

sampled from stochastic distributions as given in ta-
ble 1. We assume that COVID patients must be sep-
arated from uninfected patients, and that patients
who have recovered from a COVID episode do not
mix with those currently testing COVID positive.
We do not deal specifically with suspected COVID
patients in the model, anticipating that rapid test-
ing will soon be available to diagnose which group
they belong to.

The baseline model takes a worst case progression
of COVID, infecting 80% of the dialysis population
over 3 months.

2.6.2 Unit search strategy

When allocating patients to units, the following
search strategy is employed.

• COVID negative: First look for place in cur-
rent unit attended. If no room there place in
the closest unit (judged by estimated travel
time) with available space.

• COVID-positive: Place all COVID-positive
patients first in Queen Alexandra Hospital,
Portsmouth, and if capacity there is fully
utilised open up capacity in Basingstoke. If a
new COVID session is required, the model will
displace all COVID negative patients in that
session, and seek to re-allocate them accord-
ing to the rules for allocating COVID negative
patients.

• COVID-positive inpatient : All inpatients
are placed in Queen Alexandra Hospital,
Portsmouth (though the model allows search-
ing by travel time if another unit were to open
to renal COVID-positive inpatients).

• COVID-recovered : Treat as COVID negative.

• Unallocated patients: If a patient cannot be
allocated to any unit, the model attempts to
allocate them each day.

Patients, in the model, may end up being cared for
at a more distant unit than their starting unit. Once
every week, the model seeks to reallocate patients
back to their starting unit, or closest available unit
if room in their starting unit is not available. This
will also compress COVID-positive patients into as
few units and sessions as possible.

COVID-positive sessions are converted back to
COVID negative sessions when they are no longer
needed.
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Figure 1: Schematic representation of patient pathway

Table 1: Baseline model parameters

Parameter Distribution Baseline values

Proportion patients infected Fixed 0.8
Time to infection Normal Mean = 60, SD = 15 (3 month spread)
Time positive/symptomatic (outpatient) Uniform Low = 7, High = 14
Proportion COV requiring inpatient care Fixed 0.6
Time inpatient COV before admission Uniform Low = 3, High = 7
Time inpatient COV Uniform Low = 7, High = 14
Mortality rate Fixed 0.15

2.7 Patient transport model

The transport model provides an estimate of the
vehicle travel time needed to transport COVID-
positive patients to (and from) an outpatient treat-
ment facility.

2.7.1 Transport scenarios

The model can vary the capacity of transport vehi-
cles (e.g. the number of seats per ambulance) and
the number of COVID positive patients in the popu-
lation who need COVID-positive capable transport
at any time.

We model the following daily scenarios:

• A population of 20 patients are COVID posi-
tive.

• A population of 40 patients are COVID posi-
tive.

• A population of 60 patients are COVID posi-
tive.

• Ambulances are able to pick up between 1 and
4 COVID positive patients on a single trip.

For example, if COVID spreads through the popu-
lation in three months, there may be 140 COVID-
positive patients. If 40% are inpatients, and 75%
require transport, there may be 60-70 patients re-

quiring COVID-positive transport (30-35 on each
day).

2.7.2 Simulation of pickup locations

There is no robust way to estimate which patients
will become COVID positive and at what time. The
model therefore uses a Monte-Carlo sampling ap-
proach to simulate different groups of patients be-
coming infected. The sampling uses the geographic
distribution of patient home postcode sectors.

• We assume that all patients are equally likely
to become infected.

• We weight the sample by the number of pa-
tients within each postcode sector. I.e. areas
with more patients are more likely to be sam-
pled.

The model works by performing multiple runs.
On each run a different cohort of patients is se-
lected. This means that hundreds of combinations
of COVID-positive patient locations can be explored.
The more common combinations will be sampled
more frequently due to the weighting. For each
sample a set of transport routes are created. The
transport routes group patients together and order
them for transport to the hospital. The grouping is
based on travel time.

We simplified the problem to consider a symmetric
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road network. That is travel time outward to a
patient is the same as inward travel time. In reality
road networks are asymmetric, for example due to
one way systems, and roadworks.

2.7.3 Transport route construction

After a set of patient locations is chosen a set
of routes are constructed. The number of routes
needed depends on capacity of the ambulance. Each
route has a home base for the ambulance. We have
simplified the problem so that the ambulance is
based at the QA (in reality it will start from an
depot elsewhere, but this is only one leg of multi-
ple journeys). In each scenario, we also simplified
the problem so that all ambulances have the same
capacity (no. of seats)

When vehicle capacity is equal to one then the cost
of all routes is equal to the travel time to and from
all patients. This is our baseline scenario and all
other scenarios are compared to it.

When vehicles have capacity greater than one, we
simplify the problem of patient transport to the
deterministic Capacitated Vehicle Routing Problem
(CVRP). The CVRP is a well known and studied
problem in the vehicle routing literature. As we
must solve medium to large CRVP instances thou-
sands of times we do not make use of an industrial
solver, such as Gurobi to solve to optimality, due
to model runtime. Here we use a two-step heuristic
approach. We first use Sequential Clarke-Wright
Savings [12] and then use this as the initial ‘home
base’ in a Iterated Local Search [13] meta-heuristic
algorithm.

3 Results

3.1 Dialysis network

Currently the median travel time from home to
dialysis unit (one way, with a single passenger) is
14 minutes. The minimum, lower quartile, upper
quartile, and maximum travel times are 1, 9, 22,
and 76 minutes.

Currently there is sufficient capacity for 668 dialysis
patients in the outpatient sessions which are cur-
rently open, with 583 patients currently receiving
dialysis (87% capacity utilisation).

Figures 2 to 4 show the effect of COVID progression
if 80% of patients are infected over three months. If
COVID progresses through 80% of the population
in three months then, at the peak, there are up to
about 125 COVID-positive patients (115-140 across
the 30 model runs). Outpatients positives peak at

about 65 (60-70) and inpatient positives peak at
about 70 (60-85).

In the planned strategy of using half of one of
the largest units (Queen Alexandra) for COVID-
positive dialysis outpatients, and then using a sec-
ond unit (Basingstoke, also providing up to half of
its capacity for COVID-positive dialysis outpatient
patients) for any excess, the dialysis system copes
without any patients being unable to be allocated
to a session (or without any need in dropping dialy-
sis frequency). Workload in units that do not take
COVID-positive outpatients will fall during the out-
break (though some work will flow back to them
if they need to care for COVID-negative patients
displaced from the units caring for COVID-positive
patients).

One unit (Queen Alexandra) takes all COVID-
positive inpatients in the model. The novel work-
load of treating COVID-positive patients who would
otherwise not need inpatient care will likely stress
inpatient care systems.

Outpatients may be displaced from their usual unit
of care either because they need to travel to a
COVID-positive session in another hospital, or be-
cause their unit has had to free up sessions for
COVID-positive sessions. These patients typically
require 20 minutes extra travel time to get to their
temporary place of care (assuming they are travel-
ling alone), with some requiring 50 minutes extra
travel in each direction to/from dialysis.

3.2 Patient transport

Figures 5 and 6 illustrate the travel times distribu-
tion inbound, and inbound plus outbound (doubled
inbound times), respectively, by transport capacity
size of the COVID positive patient cohort.

A patient transport policy where a single patients
are transported at a time has a median time substan-
tially higher than all multi-occupancy policies. In all
COVID caseload scenarios the largest improvement
is seen when a additional patient is transported in
each trip. Further improvement is seen if vehicle
capacity is increased to three or four patients.

For example, if 40 COVID-positive patients need
inbound and outbound transport, then a a median
of 80.0 hours (inter-quartile range = 12.5 hours) of
ambulance driving time (not including fixed drop-
off and clean times) is required per day. If the
transport capacity of vehicles is increased to two,
three or four patient seating capacity, the median
travel time requirements are reduced to 48 hours
(a 40% reduction relative to single occupancy vehi-
cles), 38 hours (52% reduction) and 33 hours (60%
reduction), respectively.
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Figure 2: Progression of patient population through COVID infection, assuming 80% become infected
over three months, with 15% mortality. The figure also shows the number of patients not allocated to a
dialysis session at any time. The bold line shows the median results of 30 trials, and the fainter lines show
the minimum and maximum from the 30 trials.

4 Discussion

The results indicate that, if current outpatient ca-
pacity is maintained, the dialysis units should be
able to cope with the worst-case scenario of rapid
(three month) spread of COVID, but that work-
loads will shift to the central hospital. Coping with
a rapid spread of COVID will require rapid reallo-
cation of patients to different sessions and units, an
effect likely to also impact on ambulance transfer
services who will see journey times increase, and
have reduced efficiency of having to split COVID
positive and COVID-negative patients.

It appears likely that there will be significant inpa-
tient pressures, with current capacity likely to be
breached. It may be necessary to consider moving
dialysis equipment during the peak COVID-positive
workload when demand on units taking COVID-
negative patients only will be reduced.

The current practice of transporting COVID-
positive patients individually appears unsustainable.
The results demonstrate that single seat ambulances
face a challenge in transporting COVID-positive pa-
tients to and from the QA on a given day. In each
scenario there is significant savings from using the
additional ambulance capacity for more COVID-
positive patients. In each scenario the biggest rela-
tive improvement is seen when capacity is increased

to 2 seats (e.g. reducing ambulance drive time from
75 to about 45 hours per day for 40 patient two-way
journeys). Increasing to 2-4seats has further benefit,
but returns are diminishing.

4.1 Limitations of the study

A general limitation to these types of models is the
level of uncertainty about the spread of COVID. We
have therefore sought to model worst-case scenarios
to enable contingency planning.

4.1.1 Dialysis model

• The model assumes that patients can be re-
allocated to units/sessions immediately. In
practice changes to session allocation (e.g.
shifting from COVID-negative to COVID-
positive are likely to be made a little in ad-
vance.

• The results reported here assume that cur-
rent capacity is maintained throughout the
COVID outbreak. We have not modelled the
effect of reductions in capacity that may be
caused by staff shortages.

• We have not modelled timing of sessions,
but the model progressively allocates COVID-
positive sessions as needed, and we would
assume that these sessions would come later
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Figure 3: The number of patients (COVID negative, COVID-positive, COVID-inpatient, and COVID-
recovered) allocated to each unit over time. The patient population progresses through infection over
three months (with 80% infected). The bold line shows the median results of 30 trials, and the fainter
lines show the minimum and maximum from the 30 trials.
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Figure 4: The number of patients displaced from their current unit (left panel) and the additional travel
time to the unit of care (right panel) for displaced patients. These results do not include those receiving
inpatient care. The patient population progresses through infection over three months (with 80% infected).
The bold line shows the median results of 30 trials, and the fainter lines show the minimum and maximum
from the 30 trials.

Figure 5: One-way ambulance transport time distributions (1000 model runs). Results compare population
COVID +ive and ambulance seating capacity (e.g. 2 = 2 seats.) Figures do not include ambulance
clean-down/turnaround time.
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Figure 6: Two-way ambulance transport time distributions (1000 model runs). Results compare population
COVID +ive and ambulance seating capacity (e.g. 2 = 2 seats.) Figures do not include ambulance
clean-down/turnaround time.

in the day, enabling cleaning at the end of the
day, ready for any COVID-negative session
the next morning.

• We have not included home dialysis patients,
which may affect inpatient demand. A likely
worst-case scenario (with home dialysis pa-
tients following the transmission spread, and
need for inpatient care, of the dialysis units,
is that inpatient demand may be increased
15%.

4.1.2 Transport model

• The findings provide estimates of total time
patient transport ambulances will need to
travel. They are not intended to provide rec-
ommendations of the minimum number of am-
bulances needed to maximise the number of
appointments and/or shifts that run on time.
A more accurate, but highly complex and
time consuming, formulation of this problem
is called the (static) dial-a-ride problem [21].
Dial-a-ride formulations explicitly take ac-
count of time windows for patient pickup and
drop-off and maximum patient ride-time. Fur-
ther dynamic complexity would be required
in order to incorporate two-way patient jour-
neys.

• The route optimisation uses two well known
heuristics. A heuristic algorithm offers a fast
method to obtain a good solution, but it does
not guarantee an optimal solution i.e the short-
est possible travel time achieved by optimal

assignment of patients to routes. It is possible
to solve the CRVP with 100 nodes to ‘optimal-
ity’ using industrial solvers such Gurobi. We
chose a heuristic approach primarily for solu-
tion speed as we made no assumptions about
the size of problem others networks could face
internationally. We note that a possible im-
provement to the approach could be to switch
to the Parallel version of Clarke-Wright sav-
ings.

• Figures for inward and outwards journeys do
no explore the potential efficiencies of drop-
ping patients back at their homes (after dialy-
sis) and picking new patients up at the same
time.
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