COMPENSATED HYPOGONADISM IN MEN WITH SICKLE CELL DISEASE

Anna Paloma Martins Rocha Ribeiro¹
Carolina Santos Silva
Jean Carlos Zambrano
Juliana de Oliveira Freitas Miranda
Carlos Augusto Fernandes Molina
Cristiano Mendes Gomes
Eduardo de Paula Miranda
José de Bessa Júnior²

1. Department of Public Health and Epidemiology, Feira de Santana, Bahia, Brazil.
Division of Hematology, Medical School, State University of Feira de Santana, Feira de Santana, Bahia, Brazil

2. Division of Urology, Medical School, São Paulo University, Sao Paulo, Sao Paulo, Brazil

3. Department of Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil

4. Division of Urology, Medical School, Federal University of Ceara, Fortaleza, Ceara, Brazil

5. Division of Urology, Medical School, State University of Feira de Santana, Feira de Santana, Bahia, Brazil

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Introduction: Sickle cell disease (SCD) is associated with the development of hypogonadism, but there is still controversy regarding its etiology and clinical implications. **Objective:** To evaluate the prevalence of hypogonadism in a population of men with SCD and characterize its etiology. **Methods:** We performed a cross-sectional study of 34 men with SCD aged > 18 years. Sociodemographic and clinical data, including anthropometric measurements (weight, height, and BMI), were obtained. Early morning blood samples were collected and total testosterone (TT), free testosterone (FT), luteinizing hormone (LH), follicle-stimulating hormone (FSH), a complete blood count, and hemoglobin electrophoresis were measured. **Results:** Median age was 33 [26-41] years, and SS genotype was the most frequent (73.5%). The prevalence of eugonadism, compensated, and secondary hypogonadism was 67.5%, 26.4%, and 5.88%, respectively. No men with primary hypogonadism were identified in our sample. Those with compensated hypogonadism had also higher FSH levels than individuals with eugonadism; p < 0.001). **Conclusion:** In our study population of men with SCD a high prevalence of compensated hypogonadism was identified, which is a controversial and distinct clinical entity that warrants monitoring and further research.

Keywords: sickle cell disease, compensated hypogonadism, testosterone
INTRODUCTION

Sickle cell disease (SCD) is a relatively common genetic disease and comprises a group of disorders characterized by the presence of at least one hemoglobin S (1). The sickle gene mutation is common in sub-Saharan Africa and other parts of the world and it is estimated that more than 300 000 children are born each year with SCD, with millions of people currently affected across the globe (2,3), about two-thirds of them in Africa (ref). SCD has been recognized as a public health issue and a neglected problem by several key agencies, including the United Nations (UN) and the World Health Organization (WHO)(4). The chronic morbidity associated with SCD may lead to an increased socioeconomic burden and requires long-term quality of care (5) SCD is commonly associated with the development of hypogonadism, but there is controversy regarding its etiology, mechanisms, and clinical implications (5).

Hypogonadism is characterized by impaired testicular function, which may affect spermatogenesis and/or testosterone synthesis. Usually the diagnosis of hypogonadism requires identification of low serum testosterone (T) levels. Individuals with low T levels may be asymptomatic or present with a worse metabolic status, reduced energy, diminished physical performance, fatigue, depression, reduced motivation, poor concentration, infertility, reduced sex drive, erectile dysfunction and increased rates of all-cause mortality (6–8).

Although the development of androgen deficiency is currently considered multifactorial, male hypogonadism has been classically classified as hypergonadotropic (primary) or hypogonadotropic (secondary) according to its etiology (9). More recently a new clinical variant of hypogonadism defined as defined...
as compensated hypogonadism has been proposed, which is characterized by normal T and elevated LH levels. These authors suggested that compensated hypogonadism represents a distinct clinical state, which warrants monitoring despite its unknown etiology and consequences (8). Compensated hypogonadism has also been reported in 3% of patients with male infertility, with similar outcomes of those with primary hypogonadism (9).

Multiple theories have been proposed in attempts to explain the hypogonadism related to SCD. Zinc deficiency, socioeconomic factors, constitutional variables, and repetitive vaso-occlusive episodes in the testes and pituitary, are possible explanations though the definite cause remains unknown. Vaso-occlusion is the most widely accepted theory as recurrent microinfarctions in patients with SCD are commonly found in other organs and systems (10). Few studies have been designed to evaluate hormonal abnormalities in men with SCD and a more precise understanding is yet to be accomplished (11).

As studies evaluating detailed hormonal profiles in men with SCD are lacking, the aim of this study was to estimate the prevalence of hypogonadism in men with SCD and to characterize its etiology using a more comprehensive classification.
MATERIALS AND METHODS

Study design and population

This was a cross-sectional study involving 34 men with SCD aged 18 or older who were followed up at a local SCD referral center between January and December 2019. Men with a history of cryptorchidism, testicular tumors, testicular or inguinal surgery, or with acute onset of testicular at the time of the interview were excluded. A structured questionnaire, including sociodemographic (age, sex, self-reported race/color) and clinical variables (anthropometric measurements, type of hemoglobinopathy, therapy with hydroxyurea or NSAIDs, and the occurrence of priapism), was applied to participants. Anthropometric data (weight and height) were measured and used to calculate the BMI as weight in kilograms divided by height in meters squared (kg/m²).

Hormonal evaluation

Blood samples were collected between 7 and 9 a.m. for the determination of total testosterone (TT), free testosterone (FT), LH, and FSH levels, as well as a complete blood count and hemoglobin electrophoresis. The methods used for the laboratory tests included: hydrodynamic focusing, flow cytometry, SLS-hemoglobin, and Giemsa microscopy for the complete blood count; electrochemiluminescence assays (Atellica IM® analyzer, Siemens Healthcare Diagnostics Inc., Tarrytown, NY, USA) for the determination of T, LH, and FSH levels; an equation involving TT, sex hormone-binding globulin (SHBG), and the association constant of albumin for T, assuming a fixed albumin concentration of 4.3 g/dL, for the calculation of FT(12); and
high-performance liquid chromatography (HPLC) and capillary electrophoresis (Capillarys Hemoglobine) for the quantitation of hemoglobin fractions.

Subjects were classified into four groups according to T and LH levels (13):

men were considered to have eugonadism if $T \geq 300$ ng/dL and $LH \leq 9.4$ mUI/mL;
primary hypogonadism was defined as $T < 300$ ng/dL and $LH > 9.4$ mUI/mL;
secondary hypogonadism as $T < 300$ ng/dL and $LH \leq 9.4$ mUI/mL; and compensated hypogonadism as $T \geq 300$ ng/dL and $LH > 9.4$ mUI/mL. FSH levels above 7.8 ng/dL were considered elevated (14).

All subjects were verbally and individually approached and provided informed consent. This study was approved by our Research Ethics Committee.

Statistical analysis

Quantitative variables were presented as medians and interquartile ranges, while nominal variables were expressed as absolute values, percentages, or fractions. The Mann-Whitney U test was used to compare continuous variables, while the Fisher’s test was used to compare categorical variables. A $p < 0.05$ was considered statistically significant, and 95% confidence intervals were presented as a measure of precision. GraphPad Prism, version 8.0.3, San Diego-CA, USA, was used for data analysis.
RESULTS

Our sociodemographic data are detailed in Table 1. We assessed 34 men with a median age of 33 years [26-41], most of whom had an SS genotype (73.5%) and were black or brown (94.1%). Five (14.7%) of them were on continuous hydroxyurea therapy and all had been medicated with NSAIDs, with ibuprofen being the most commonly used drug.

Fifty percent of patients had LH levels of 5.92 mUI/mL [4.36 – 9.42]. Median FSH levels were 6.01 mUI/mL [4.08 – 8.96], clinical data are detailed in Table 2. In our sample, no men were diagnosed with primary hypogonadism, whereas 23 (67.6%) were classified as eugonadal and 2 (5.8%) as having secondary hypogonadism. In addition, compensated hypogonadism was identified in 9 men (26.4%) (Figure 1).

We found no differences regarding SCD genotype, anthropometric measurements, or disease severity between eugonadal men and those with compensated hypogonadism. Median FSH levels among men with compensated hypogonadism were significantly higher than among eugonadal men. The proportion of men with FSH levels above 7.8 mUI/mL was significantly higher among those with compensated hypogonadism (p < 0.0001) (Table 2).

DISCUSSION

Gonadal dysfunction, disturbances of the hypothalamic-pituitary-testicular axis, and the etiology of hypogonadism in patients with SCD are controversial issues, and there are still many uncertainties about the pathophysiology of these conditions and
their clinical significance(11). We investigated the prevalence of different types of
hypogonadism in men with SCD according to the classification described by Tajar et
al (2010) in the EMAS. The prevalence of compensated hypogonadism in our sample
of men with SCD was 26.4%, a figure considerably higher than those reported in
similar studies, 9.5%(13) and 3%(14), respectively.

Tajar at al. (2010) were the first to explore the concept of compensated
hypogonadism in a study with 3369 community-dwelling men aged 40-79 years from
eight European centers. They also introduced the concept that different
hypogonadism categories may present with different clinical features. According to
this study, sexual complaints were more frequently reported in cases of primary
hypogonadism, whereas isolated physical symptoms such as inability to walk long
distances or perform brisk physical activity were more common in compensated
hypogonadism (8).

A retrospective study involving 4173 men with sexual dysfunction by Corona et
al., reported that 4.1% of individuals had compensated hypogonadism and were
more likely to present with both increased frequency of psychological symptoms,
such as anxiety, obsessive-compulsive symptoms, and depression; and increased
cardiovascular mortality in comparison to those with primary or secondary
hypogonadism. The authors hypothesized that compensated hypogonadism could be
a surrogate marker of an underlying disease, rather than a new clinical entity(15).

Compensated hypogonadism also appears to be relevant in the elderly. Ucak
et al. (2013) conducted a study with 250 men over 70 years of age with compensated
hypogonadism and found their T and LH levels to be independently associated with
worsening performance of activities of daily living, as well as deteriorating cognitive
function, nutritional status, and mood, when compared to healthy controls. The
authors concluded androgen and LH levels should be assessed in elderly men, and those diagnosed with compensated hypogonadism should then undergo a physical and neuropsychiatric evaluation (16).

The clinical significance of compensated hypogonadism is still poorly understood, but this condition is known to be associated with both aging and an increased frequency of physical symptoms related to testosterone deficiency, but not with sexual complaints, as previously mentioned. These observations and its striking prevalence of 9.5% as reported in the EMAS raise the question of whether this subtype of hypogonadism warrants treatment. In, especially older men, may benefit from the inclusion of LH levels in the initial screening for hypogonadism (17).

Studies about compensated hypogonadism and its etiology are controversial and scarce in patients with SCD. Rhodes et al (2009)(18) did not found a statistically significant difference in the testosterone levels of 19 boys with SCD when compared to controls and so they were unable to detect primary hypogonadism. Özen et al. (2013)(19) studied 50 Turkish children aged 4 to 18 years and found, among the 35 boys included in the sample, one with hypergonadotropic (primary) hypogonadism and 3 with small testes and low testosterone, but with normal luteinizing hormone (LH) levels, suggesting this condition can be either primary or secondary. Abbasi and colleagues (1976)(20) analyzed hormone levels of 14 patients and found elevated concentrations of LH and follicle-stimulating hormone (FSH), as well as low testosterone (T), suggesting primary hypogonadism. Dada and Nduka (1980)(22) demonstrated reduced LH, FSH, and testosterone levels in 19 men with SCD, findings suggestive of hypothalamic axis dysfunction (secondary hypogonadism), rather than gonadal failure (primary hypogonadism). Martins et al(23) studied some aspects of compensated hypogonadism among 10 men with homozygous SCD.
Despite the limited number of patients, the authors referred to compensated hypogonadism as a likely transient condition and considered it a potential state of androgen resistance (23).

All subjects with compensated hypogonadism in our sample had FSH levels above 7.8 mU/mL, a threshold previously reported as a predictor of impaired spermatogenesis (24). It is likely that the exocrine compartment might be impaired in while the endocrine compartment might still be enough to sustain appropriate T production. A cross-sectional study with 786 Caucasian-European discussed the concept of compensated hypogonadism among infertile subjects. The authors found that this condition had a similar clinical characteristic to those with primary hypogonadism, and both groups had the worst clinical outcomes in terms of impaired fertility. While this classification was not designed for the setting of male infertility, it could be useful in clinical practice to indicate impaired spermatogenesis (14).

It is important to highlight that all men in our sample had history of ibuprofen intake for acute pain episodes. Previous published data indicate a strong association between ibuprofen use and the elevation of LH levels, which might lead to compensated hypogonadism. In a randomized controlled trial including 31 men aged 18-35 years who received 600 mg of ibuprofen twice daily for 6 weeks, the authors showed ibuprofen use increased LH levels in 23% after 14 days and 33% after 44 days (p = 0.01). They also linked ibuprofen use with a reduction in anti-Müllerian hormone levels and postulated this drug would affect steroidogenesis by inhibiting the expression of related genes, thus resulting in HPT axis dysfunction (25). However, this study evaluated solely the impact of short-term course of ibuprofen on hormonal profile, and clinical significance of its effect in the long-term are probably negligible.
Although our cohort had only 34 participants, it is one of the largest studies in the scientific literature to evaluate hormonal profiles in men with SCD. We also identified a high prevalence of an underreported and poorly understood condition, which might be of clinical significance for monitoring and counseling patients. The main limitation of this study is perhaps its cross-sectional design, as no definitive explanation for this condition may be given. In addition, this sample came from a specialized center for patients with SCD and may not represent the general population of SCD.
CONCLUSION

A high prevalence of compensated hypogonadism was identified in our sample of men with SCD, which may reflect early testicular injury and may progress to permanent dysfunction. It seems to be more prevalent in young men with SCD than in the general population of older men. Vaso-occlusive phenomena, testicular microinfarctions, changes in the testicular microenvironment, long-term or recurrent ibuprofen use, and genetic aspects might be associated with such findings. Although this clinical entity is not completely understood, continuous monitoring might be useful in preventing or anticipating additional clinical deterioration.

Disclosure statement
The authors report no conflicts of interest.

Funding
This study received no external funding.

Academic affiliation
This paper is part of the master’s dissertation of Anna Paloma Martins Rocha Ribeiro, Postgraduate Program in Public Health, State University of Feira de Santana.
REFERENCES

Table 1 – Sociodemographic and clinical data of men with SCD

<table>
<thead>
<tr>
<th>Variables</th>
<th>n (34)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCD genotype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homozygous HbSS</td>
<td>25</td>
<td>73.5</td>
</tr>
<tr>
<td>Heterozygous SC/SB-thal</td>
<td>9</td>
<td>26.5</td>
</tr>
<tr>
<td>Self-reported race/color</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>21</td>
<td>61.8</td>
</tr>
<tr>
<td>Brown</td>
<td>11</td>
<td>32.4</td>
</tr>
<tr>
<td>Yellow</td>
<td>1</td>
<td>2.9</td>
</tr>
<tr>
<td>Indigenous</td>
<td>1</td>
<td>2.9</td>
</tr>
<tr>
<td>Hydroxyurea therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>29</td>
<td>85.3</td>
</tr>
<tr>
<td>Yes</td>
<td>5</td>
<td>14.7</td>
</tr>
<tr>
<td>NSAIDs use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>34</td>
<td>100</td>
</tr>
<tr>
<td>Education level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary education</td>
<td>7</td>
<td>20.6</td>
</tr>
<tr>
<td>Secondary education</td>
<td>20</td>
<td>58.8</td>
</tr>
<tr>
<td>Higher education</td>
<td>7</td>
<td>20.6</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>6</td>
<td>17.7</td>
</tr>
<tr>
<td>Inactive</td>
<td>28</td>
<td>82.3</td>
</tr>
<tr>
<td>History of priapism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>18</td>
<td>52.9</td>
</tr>
</tbody>
</table>

Table 2 – Anthropometric and laboratory data of men with SCD

<table>
<thead>
<tr>
<th>Variables</th>
<th>Median [p25-p75]*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td>61.5 [56.3 – 67.3]</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.7 [1.64 – 1.75]</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>21.6 [19.2 – 23.8]</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>9.75 [8.05 – 12.0]</td>
</tr>
<tr>
<td>Total testosterone (ng/dL)</td>
<td>582.9 [428.8 – 685.9]</td>
</tr>
<tr>
<td>Free testosterone (ng/dL)</td>
<td>9.85 [8.07 – 11.37]</td>
</tr>
<tr>
<td>LH (mUI/mL)</td>
<td>5.92 [4.36 – 9.42]</td>
</tr>
<tr>
<td>FSH (mUI/mL)</td>
<td>6.01 [4.08 – 8.96]</td>
</tr>
</tbody>
</table>

Data are expressed as medians and interquartile ranges (25th and 75th percentiles)
Table 3 – Clinical, anthropometric, and laboratory data of eugonadal men with SCD in comparison to those with compensated hypogonadism.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Eugonadism (n = 23)</th>
<th>Compensated hypogonadism (n = 9)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homozygous HbSS (%)</td>
<td>16 (69%)</td>
<td>7 (77%)</td>
<td>0.943</td>
</tr>
<tr>
<td>Age (years)</td>
<td>34 [27 – 41]</td>
<td>33 [22-41]</td>
<td>0.612</td>
</tr>
<tr>
<td>Hydroxyurea therapy (%)</td>
<td>6 (26%)</td>
<td>0 (0%)</td>
<td>0.153</td>
</tr>
<tr>
<td>History of priapism (%)</td>
<td>4 (44%)</td>
<td>12 (48%)</td>
<td>0.162</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>21.6 [18.9-23.9]</td>
<td>21.7 [19.7-22.9]</td>
<td>0.991</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>9.8 [8.5-12.1]</td>
<td>9.3 [7.6-11.4]</td>
<td>0.331</td>
</tr>
<tr>
<td>FSH (mUI/mL)</td>
<td>5.37 [3.7-6.3]</td>
<td>9.5 [9.0-23.8]</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>FSH > 7.8 (%)</td>
<td>5 (21.7%)</td>
<td>9 (100%)</td>
<td>< 0.0001*</td>
</tr>
</tbody>
</table>

*Statistically significant differences

BMI: body mass index; FSH: follicle-stimulating hormone; LH: luteinizing hormone.