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Abstract

We present a stochastic compartmental network model of SARS-CoV-2 and COVID-19 exploring the e↵ects
of policy choices in three domains: social distancing, hospital triaging, and testing. We distinguished be-
tween high-risk and low-risk members of the population, and modeled di↵erences in social interactions due
to context, risk level, infection status, and testing status. The model incorporates many of the currently
important characteristics of the disease, including overcapacity in the healthcare system and uncertainties
surrounding the proportion and transmission potential of asymptomatic cases. We compared current pol-
icy guidelines from public health agencies with alternative options, and investigated the e↵ects of policy
decisions on the overall proportion of COVID-19-related deaths. Our results support current policies to
contain the outbreak but also suggest possible refinements, including emphasizing the need to reduce public,
random contacts more than private contacts, and testing low-risk symptomatic individuals before high-risk
symptomatic individuals. Our model furthermore points to interactions among the three policy domains;
the e�cacy of a particular policy choice depends on other implemented policies. Finally, our results provide
an explanation for why societies like Germany, with lower average rates of social contact, are more successful
at containing the outbreak than highly social societies such as Italy, despite the implementation of similar
policy measures.

1 Introduction

On December 31, 2019, a pneumonia of unknown cause was reported to the World Health Organization
(WHO) Country O�ce in China. The WHO named the disease COVID-19, caused by the novel coronavirus
SARS-CoV-2, and declared the outbreak a pandemic on March 11, 2020. As of the time of this writing,
April 19, 2020, the WHO has reported 2,241,359 confirmed cases and 152,551 deaths in 210 countries [1].
There is currently no vaccine for SARS-CoV-2 and no antiviral medication that specifically targets the virus.
In response to the pandemic, public health organizations have deployed plans developed to respond to a
possible pandemic similar to the influenza outbreak of 1918, which killed an estimated 50 million people
world-wide [2]. These plans describe, among other things, policies related to social distancing and the
allocation of scarce healthcare resources. Policy guidelines for testing individuals for exposure to SARS-
CoV-2 are less well-developed, and a shortage of available tests and testing facilities has hampered response
e↵orts in many countries.

The spread of an infectious disease can be strongly influenced by human behavior [3–9]. One study
estimates that three to four months of moderate social distancing could save 1.7 million lives in the United
States by October 1, 2020 [10]. In an examination of di↵erent non-pharmaceutical interventions, other
researchers found that a combination of case isolation, home quarantine, and social distancing of high-risk
individuals could halve the number of deaths in the United State and Great Britain [3]. Another recent
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study projects that prolonged or intermittent social distancing may be necessary into 2022 in order to
avoid exceeding hospital capacity thresholds [11]. Because the e↵ects of COVID-19 seem dependent on
demographics such as age, allowing for di↵erences in social interaction behaviors due to demography is an
important aspect of modeling this disease.

A defining characteristic of the current COVID-19 pandemic is a shortage of healthcare resources. In-
dividual hospitals as well as local, state, and federal agencies have developed guidelines to help healthcare
workers decide which patients will receive scarce, life-saving resources such as ventilators [12–16]. Guidelines
are based on ethical principles and societal norms, and governing principles generally include the duty to
care and the duty to treat people fairly. Strategies for determining who will receive scarce resources include:
1) first-come first-served, 2) randomized allocation (e.g., lottery), and 3) clinical judgment [12–14]. The
purpose of these guidelines is to relieve individual clinicians of the burden of deciding on-the-spot how to
allocate resources.

Public health o�cials must balance the needs for accessibility and accuracy when determining testing
policy during a pandemic [17]. False positives during the initial stages of the pandemic and false negatives
during the later phases can lead to biased estimates of infection prevalence and dynamics [18]. Guidelines
from the Centers for Disease Control and Prevention (CDC) currently prioritize testing for hospitalized
patients and healthcare facility workers with symptoms [19]. Individuals with second priority include high-
risk individuals and first responders with symptoms, while third priority goes to other individuals with
symptoms as well as health care workers and first responders. Current guidelines recommend testing people
without symptoms only when the testing needs of higher-priority individuals have been met.

While many models examine the e↵ects of a single policy domain on the dynamics of an infectious disease,
e.g., [3, 5, 15, 20–23], to our knowledge there are no studies examining several policy domains simultaneously.
Considering policy domains together can provide crucial insight into how di↵erent policy decisions interact.
For example, a mandatory quarantine of symptomatic individuals combined with an e�cient testing regime
may reduce the total number of deaths more than would be expected if the e↵ects of these policies were
modeled individually. Policies can also interfere with each other, so that the combined e↵ect is weaker than
expected. Our model provides a tool for investigating these interaction e↵ects among three policy domains
that have received recent attention from public o�cials and the media: social distancing, hospital triaging,
and testing.

Classical compartmental di↵erential equation models are an invaluable tool for understanding the general
course of an infectious disease at a population level. However, these models assume that any two individuals
interact with equal probability (homogeneous mixing), which is not the case in real physical interaction
networks and can result in significantly di↵erent disease dynamics [24–26]. A further simplifying assump-
tion frequently made in compartmental models is that transition rates are constant (Poisson assumption),
implying Markovian memorylessness and exponentially distributed transition times [27]. For COVID-19,
this is clearly not the case [28, 29]. Our study avoids both these pitfalls by implementing a non-Markovian
compartmental disease model evaluated on an interaction network, adopting a flexible modeling framework
for more realistic disease dynamics [30].

Our stochastic compartmental network model simulates how the SARS-CoV-2 virus spreads through an
abstract community of 1000 individuals. A 2-layer interaction network represents private and public so-
cial contacts as small-world and fully-connected graphs, respectively (Fig. 1a). Upon infection, susceptibles
(S) transition through contagious compartments (exposed (E), asymptomatic (A), infected (I) and hospi-
talized (H)), finally resulting in death (D) or recovery (R) (Fig. 1b). Our model incorporates important
characteristics of the current COVID-19 outbreak such as early transmissibility of the virus, asymptomatic
cases (Fig. 1c), and age-dependent di↵erential risk. We modeled behavioral di↵erences associated with risk
level and infection status, as well as the reduction in care caused by hospitals operating beyond their ca-
pacity thresholds (Fig. 1d). Our model also incorporates the uncertainty surrounding key epidemiological
parameters such as the proportion and transmissibility of asymptomatic cases [31].

The primary goal of this study was to evaluate the e↵ects of various policies regarding social distancing,
triaging, and testing on the disease dynamics of COVID-19. The abstract nature of our model enables a reli-
able evaluation of the relative, qualitative e�cacy of di↵erent policy decisions in reducing COVID-19-related
mortality, despite current uncertainty in various key parameters. The model can be easily updated and
expanded once more accurate parameter estimates are available, and can be tailored to a specific community
or country in order to evaluate the quantitative e↵ects of policies being considered for implementation.
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2 Methods

2.1 Model description

We modeled the spread of an imported case of SARS-CoV-2 across a multi-layered physical interaction
network of size N = 1000 as an abstract proxy for a town or local community. We considered a closed
population, and given the short time frame also chose not to include birth, deaths, or migration events. We
distinguished between two types of interactions: First, private (local) interactions (e.g., friends, school and
work colleagues) were modeled using a Watts-Strogatz small-world network with average connectivity of k
neighbors and 5% probability of edge rewiring (Fig. 1a). (Edge rewiring refers to the replacement of edges
in a regular network according to a stochastic algorithm so that properties of small-world networks, such
as clustering and short path lengths, are achieved [32].) Second, public (global) interactions (e.g., grocery
shopping, banking) were modeled using a fully connected network [33]. We assumed that, in the absence of
an epidemic, an individual has on average the same number of k private and k public interactions, and thus
assigned a weight of k/(N �1) to each edge in the public interaction network. A multi-national study found,
on average, between 8 and 20 per-person per-day contacts [9], so we considered k 2 {4, 6 (baseline), 10}.

We modeled the di↵erential risk associated with COVID-19 by distinguishing between high-risk indi-
viduals (older individuals or individuals with known comorbidities [34]) and low-risk individuals (younger
individuals without known comorbidities). Each node represented a high-risk (low-risk) individual with
probability phigh-risk = 1/3 (plow-risk = 2/3). Our model includes seven qualitatively di↵erent compartments:
S = susceptible, E = exposed (infectivity increases), A = asymptomatic (low infectivity), I = symptomatic
(high infectivity), H = requiring hospitalization due to severe infection (high infectivity), and two final com-
partments R = recovered (no infectivity) and D = died from COVID-19 infection (Fig. 1b). The length of
time recovered individuals remain immune is currently unknown, however given the short time frame (weeks
to months) of this model, we assumed no reinfections. To model the spread of an imported case of the virus
in a fully susceptible community, we initialized the simulation with one random node in compartment E; all
others started in S.

Model inputs related to the specific characteristics of SARS-CoV-2 and COVID-19 were derived from
published literature where available (Table 1). Virus and disease parameters without established estimates
were included as random variables from broad uniform distributions. We considered time to be discrete with
one unit of time corresponding to a day. The lengths of time individuals spend in a contagious compartment
were modeled as Poisson random variables with parameters derived from the literature (Table 2).

Upon infection, individuals transition from one compartment to the next - until they recover or die - based
on a stochastic process (Fig. 1b). Susceptible individuals become infected (and transition to the exposed
compartment E) through contact with contagious individuals. Contrary to SARS [35], recent reports indicate
that SARS-CoV-2 can be transmitted before the onset of symptoms and by asymptomatic cases [36–38].
To account for this early transmissibility in our model, individuals in compartments E, A, I and H may
all transmit the virus, with transmission rates dependent on the time since infection. We assumed that
exposed individuals (compartment E) become contagious 2 days before peak viral load, which coincides with
symptom onset in symptomatic cases (i.e., the latent period is two days shorter than the incubation period).
Transmission rates over time typically follow a Gamma distribution [39]. Based on preliminary data [40], we
used a Gamma-distributed transmission rate with shape=2 and scale=2 (Fig. 1c). We further assumed that
asymptomatic cases cannot be more contagious than symptomatic ones. SARS-CoV-2 transmission rates
are currently not well understood [29], so we considered a range of values for the peak transmission rate
of symptomatic cases (at symptom onset), �I 2 U(0.05, 0.4) and a dependent range for asymptomatic ones,
�A 2 U(0,�I).

Once exposed individuals reach peak infectivity they transition to the asymptomatic (A) or symptomatic
(I) compartment. The proportion of asymptomatic COVID-19 infections is currently unknown; we therefore
sampled the overall proportion of asymptomatic infections from a uniform distribution, 1�pE!I = pE!A ⇠
U(0.05, 0.5), and further sampled the ratio of asymptomatic infections in low-risk versus high-risk individuals
from another uniform distribution, plow-risk

E!A
/phigh-risk

E!A
⇠ U(1, 5).

A proportion of symptomatic individuals develop a severe infection requiring hospitalization; this rate
may depend on the underlying health of the individual. We thus included two hospitalization parameters
in the model (Table 1): pI!H = 1� pI!R describes the overall proportion of symptomatic cases that even-
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Figure 1: (a) Example of the two-layer interaction network used in this study. The private, small-world net-
work (red edges) is shown on top of the public, fully-connected network (gray edges). Low-risk (blue circles)
and high-risk (black squares) individuals are distinguished. (b) Illustration of the stochastic transmission
model with compartments S = susceptible, E = exposed, A = asymptomatic, I = symptomatic, H = hospi-
talized, R = recovered, D = deceased. Individuals in I and H may received a positive test (green “tested”
oval). Edges that are influenced by policy decisions are colored: red = social distancing, green = testing,
blue = hospital triage. Branching probabilities at E, I and H are risk-group dependent and the edge of the
respectively more likely transition is thicker. (c) Illustration of the time-dependent transmission rate of an
exposed individual increasing until peak viral shedding, which coincides with transition to compartment I
(if symptomatic) or A (otherwise). (d) Average care per person (blue solid line) and total care provided
(red dashed line) by a health care system with a capacity threshold of 100% operating at a certain level of
(over)capacity. Once the capacity threshold is reached, the average care per person is 1/

p
hospital capacity.
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tually develop a severe infection and require hospitalization, while phigh-risk
I!H

/plow-risk
I!H

describes the increased
likelihood of a high-risk individual requiring hospitalization. We fixed pI!H = 7% and considered a range
[4, 10] for the di↵erential risk ratio [3, 41, 42].

We fit the overall proportion of hospitalized individuals dying from COVID-19, pH!D, to align with a
COVID-19 infection fatality rate (IFR) of 1% [3, 42]. That is,

pH!D =
IFR

phigh-riskphigh-risk
E!I

phigh-risk
I!H

+ plow-riskplow-risk
E!I

plow-risk
I!H

.

As before, we introduced a ratio describing the di↵erential risk of dying from COVID-19 for high- and low-risk
individuals, phigh-risk

H!D
/plow-risk

H!D
⇠ U(4, 10). To simulate deaths in our network model, we made the simplifying

assumption that each day a severely infected person has the same chance of dying from COVID-19 (i.e., the
time to death is geometrically distributed with the distribution parameter corresponding to a per-day death
rate). We fit the per-day death rate for low-risk and high-risk individuals to align with plow-risk

H!D
and phigh-risk

H!D
,

respectively.
Each day, the network model updates simultaneously as follows:

• Susceptibles may become infected through private or public interactions with contagious individuals.
The interaction probabilities are based on the multi-layered interaction network.

• Newly infected individuals move to the compartment E and risk-group-dependent random variables
are drawn describing the future course and transition times of the infection.

• Hospitalized individuals die at a risk-group-dependent per-day death rate.

• The transition times to the next compartment of all contagious individuals are reduced by a day.
Individuals with a transition time of zero transition to the next compartment.

To investigate the e↵ects of social distancing, triaging, and testing, we added additional features to this
base stochastic network model, described in the next section.

2.2 Model extensions

2.2.1 Social distancing

We modeled the general e↵ects of social distancing policies with two parameters, private activity level aprivate

and public activity level apublic, which describe the average degree to which an individual without symptoms
(in compartments S, E, A or R) reduces private and public interactions. An individual who has not adopted
social distancing behaviors has activity levels of 1, while perfect isolation corresponds to activity levels of 0.

We assumed that symptomatic individuals (in compartment I) further reduce their private and public
activity levels due to symptoms and empathetic fear of infecting others at an average rate of rsymptoms ⇠
U(0, 1). Similarly, we assumed that severely infected individuals requiring hospitalization (in compartment
H) are completely isolated. Finally, we assumed that individuals in the high-risk group may, independently
of their compartment, choose to reduce their activity levels more than the low-risk group. We therefore
included an additional high-risk activity reduction, rhigh-risk ⇠ U(0, 1).

The probability that two individuals who practice social distancing still meet, with the potential to
infect one another, is given by a mass action-like product of their respective activity levels. For example,
the probability that a symptomatic, low-risk individual meets a high-risk friend is given by aprivate(1 �
rsymptoms) · aprivate(1� rhigh-risk).

In reality, each person decides individually how to adapt her social behavior in response to COVID-19.
For this reason we assigned activity levels to an individual (node) rather than a contact (edge). To compare
policy e�cacies, however, we combined all individual-based activity levels into an overall, population-wide
contact reduction rate. In a community without symptomatic infections (i.e., at the start of the simulation,
before community members contract COVID-19), this overall contact reduction rate is a function of the
underlying interaction network, the private and public activity levels, the additional activity reduction of
high-risk individuals and the proportion of high-risk individuals.
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Parameter Meaning Value/Range References

Interaction network parameters

N population size 1000
k average number of private/public interactions 4,6 (default),10 [9] 2k 2 [7.95, 19.77]

psmall�world
probability that an edge in the private small-
world network is re-wired

5%

phigh-risk proportion high-risk individuals 1/3? [43] 37.6% (n=430,000)

Virus and disease parameters

�I transmission rate of symptomatic individuals [0.05, 0.4] [29] 9.6% (n=1,286)
�A transmission rate of asymptomatic individuals [0,�I ] no data
pE!A proportion of asymptomatic infections [5%, 50%] [37] 20.6-39.9% (n=634)

p
low-risk
E!A

p
high-risk
E!A

ratio of asymptomatic infections in low-risk vs.
high-risk individuals

[1, 5] no data

pI!H

probability of symptomatic individuals requir-
ing hospitalization

7% [41] 5% (n=44,415)
[3, 42] 7.38%†

p
high-risk
I!H

p
low-risk
I!H

ratio of high-risk vs. low-risk symptomatic in-
dividuals requiring hospitalization

[4, 10] [3, 42] 6.47†

IFR
COVID-19 infection fatality rate (if hospital-
ized receive perfect care)

1%
[42] 0.657% (n=44,672)
[3] 0.9%†

p
high-risk
H!D

p
low-risk
H!D

ratio of high-risk vs. low-risk hospitalized in-
dividuals dying from COVID-19

[4, 10] [3, 42] 6.33†

Table 1: Model parameters with reported estimates and sample sizes (n) from the literature where applicable
and available. The third column shows the value we used or the range we sampled uniformly. ?[43] considers
only the U.S. adult population. Adding 0-17 year-olds with an assumed high-risk rate of 21.2% (the estimate
for 18-59yr olds) and projected 2020 US census data [44] yields an overall high-risk estimate of around 1/3.
† numbers derived from Table 1 in [3] and projected 2020 US census data [44]

Parameter Meaning Distribution Reported mean (µ)/median (m)

tE!I

time in exposed compartment if in-
fection will be symptomatic

Poisson(5)
[28] m=4 (n=1,099)
[29] µ=5.95, m=4.8 (n=183)
[45] m=5.1 (n=181)
[7] µ=4.2 (n=140)
[46] µ=5.2 (n=49)

tE!A

time in exposed compartment if in-
fection will be asymptomatic

Poisson(5)
no data, assumed to be distributed as
tE!I

tI!H

transition time from symptom onset
to hospitalization

Poisson(8)
[29] µ=4.64, m=3.41 (n=391)
[47] m=11 (n=191)
[48] m=7 (n=138)
[49] m=7 (n=41)

tI!R

transition time from symptom onset
to recovery (end of viral shedding)

Poisson(20)

[29] m 2 [17.5, 22.9] age-dependent (n=228)
[42] µ=24.7 (n=165)
[47] m=20 (n=137)

tA!R

transition time from full viral shed-
ding to recovery

Poisson(20)
no data, assumed to be distributed as
tI!R

tH!R

transition time from hospitalization
to recovery

Poisson(12)
[28] µ=12.8, m=12 (n=1,099)
[7] µ=11.5 (n=140)
[47] m=12 (n=137)
[50] µ=17.4 (n=21)

Table 2: Distributions used to model the time an individual spends in each transient compartment (all times
in days). Mean (µ) and median (m) estimates and sample sizes (n) from the literature are reported.
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2.2.2 Hospital Triaging

The baseline model assumes unlimited healthcare resources, but in reality the number of hospital beds,
ICU beds, ventilators, and trained health care professionals are all limited. We modeled limited healthcare
resources by adding a capacity threshold under which the healthcare system can provide perfect care (3 beds
for every 1000 individuals [51]). We assumed that this capacity threshold doubles during times of emergency,
but the increase is not large enough to provide perfect care for all hospitalized individuals.

In the absence of data, we modeled the decrease in the average care provided per person with a square-root
function, where average care per person = 1/

p
hospital capacity. Once the number of individuals requiring

hospitalization (in compartment H) rises above the capacity threshold, overall care is inadequate and triaging
questions regarding resource allocation arise (Fig. 1d). We evaluated four options: (1) fill empty beds based
on a wait list (corresponding to a first-come first-served strategy), (2) fill empty beds randomly (e.g., lottery),
(3) fill empty beds with least-severely infected based on clinical judgment (in the model, clinical judgement
corresponds to the known remaining time to recovery), and (4) provide the same level of imperfect care to
each individual (e.g., sharing of a single ventilator among multiple patients). Under the first three policies,
patients receiving care will receive perfect care until they recover or die, and the sole di↵erence among these
three policies is how empty beds are allocated.

In the baseline model, each hospitalized individual (in compartment H) who does not die on a given day
moves closer to recovery. Under the imperfect care scenario, hospitalized individuals only move a partial day
closer to recovery, corresponding to the amount of imperfect care they receive on that day. Individuals who
receive perfect care move a full day closer to recovery, while individuals who receive only palliative care do
not progress towards recovery.

2.2.3 Testing

To evaluate the e�cacy of testing policies in reducing COVID-19-related deaths, we assumed a fixed maxi-
mum number of tests available per day, and that testing begins as soon as the first person becomes symp-
tomatic. We further assumed that, per CDC guidelines, severely infected individuals arriving at a hospital
(compartment H) receive priority testing [52]. Remaining available tests are administered to symptomatic
individuals (compartment I), and a shortage of tests precludes testing of individuals without symptoms
(compartments S, E, A, and R). We compared two primary testing policies for symptomatic individuals: (i)
test high-risk individuals first, or (ii) test low-risk individuals first. Further, within each primary testing
policy, we compared two secondary testing policies: (i) test individuals in the order in which they developed
symptoms (i.e., test first symptomatic first), or (ii) test individuals in the reverse order in which they devel-
oped symptoms (i.e., test recent symptomatic first). Finally, we included in the model a delay in test results
of up to seven days.

While testing hospitalized individuals serves an essential clinical role, testing symptomatic individuals
is solely preventive. Individuals who test positive are currently placed under quarantine, which in theory
completely prevents virus transmission. In reality this is not always the case, especially when self-quarantine
is conducted at home. We therefore included the average activity reduction of a positively tested individual
as a further model parameter, and assumed a positive test yields a 80%� 100% reduction in activity levels
for the duration of the infection, in addition to the already-reduced activity levels due to symptoms, (i.e.,
rpositive ⇠ U(0.8, 1)). For example, a high-risk, symptomatic individual who tested positive meets a low-risk
friend with probability aprivate(1� rhigh-risk)(1� rsymptoms)(1� rpositive) · aprivate.

2.3 Model analysis

Because the true values of many virus- and disease-related parameters are currently uncertain, we sampled
all unknown parameters from a broad uniform distribution. For most analyses (Figs. 2,S5,3a,4a,b), we ran
the model 106 times, each time with a di↵erent parameter setting picked at random from the parameter
space. To ensure su�cient coverage of the high-dimensional parameter space, for most analyses we opted
for a large number of sample points versus replication. We sampled most parameters uniformly from their
respective range. Only for the private and public activity levels as well as the additional high-risk contact
reduction, we diverted from this approach and did not sample uniformly at random from [0, 1], in order to
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ensure that the distribution of overall contact reduction, which is derived from these three parameters and
the underlying network, was wide enough to be representative (Table S1).

When comparing the e↵ect of triage policies we balanced coverage with precision by sampling 103 pa-
rameter settings and running the model 250 times for each parameter setting for each triage policy. We
initialized the runs of each triage policy with the same 250 random seeds to ensure our estimates were
comparable. This approach works particularly well for the triage policies as triage choices do not a↵ect the
model until hospitals operate at overcapacity. To compare primary and secondary testing policies (Fig. 4c)
we followed the same approach, except that we sampled from a lower-dimensional parameter space. We fixed
the maximum number of tests per day at ten, assumed no delay, and considered only three and twenty levels
of additional contact reduction by symptomatic individuals and high-risk individuals, respectively (details
in second-to-last column of Table S1). Finally, when comparing the interaction between all policy domains
(Fig. 5), we sampled 103 parameter settings and ran the model 100 times for each parameter setting and
each of the 2 · 2 · 4 = 16 combinations of policy choices (0 vs. 40 maximal tests per day; triage policies:
imperfect but equal care vs. treat least severely infected first; four contact reduction levels: 0%, 25%, 50%,
75%; details in last column of Table S1).

2.4 Model outcomes

The primary model outcome considered in this study is the average number of deaths, or relatively speaking,
the proportion of the population that dies from COVID-19. Related model outcomes, considered in Figs. S1,
S2, S3, include the proportion of the population infected with SARS-CoV-2, the COVID-19 infection fatality
rate (%dead / %infected), the COVID-19 case fatality rate (%dead / %symptomatic), the peak hospital
(over)capacity (peak %hospitalized / capacity threshold), the initial basic reproductive number (average
number of secondary infections caused by the individual who initially imports SARS-CoV-2 into the com-
munity), the time at which half of all infections happened (a measure of ”flattening the curve” [53]), the
average disease generation time (the time between infection of an individual and the time when the infecting
person was infected), and the proportion of transmissions caused by asymptomatic cases (in compartment
E or A).

2.5 Quantitative analysis

The model was implemented and all model analyses were run entirely in Python 3.7 [54]. The countour
plots in Figs. 2, 3a, S5 were generated by binning the data using a 20x20 equidistant grid, and subsequent
smoothing using a 2-dimensional Savitzky-Golay filter [55, 56]. To avoid over-smoothing, we chose a small
window size of 5 and used only linear functions. Similarly, we used a one-dimensional Savitzky-Golay filter
with window size 200 and linear functions to serve as a generalized moving average of the 1000 data points
presented in Fig. 3b. In Figs. 4b,c, we summarized the raw data using a linear regression line.

3 Results

All model outcomes we investigated (Fig. S1,S2) were highly correlated (Fig. S3), therefore our results focus
mainly on the proportion dead. Variation of virus- and disease-related parameters across the parameter space
(Table S1) yielded an average initial basic reproductive number (R0) of 2.76 and an average disease generation
time of 5.29 days (Fig. S2), both within the range of current estimates[3, 7, 48]. Higher transmissibility and
higher R0 values were associated with faster generation times, which in turn were associated with hospital
overcapacity and a faster spread of the virus (Fig. S4). Asymptomatic cases (truly asymptomatic or not
yet symptomatic) caused most infections, which explains the ease with which SARS-CoV-19 is spreading
across the world (Fig. S5). Interestingly, the average contact reduction of symptomatic cases influenced the
proportion of infections caused by asymptomatic cases more than the rate of actual asymptomatic cases.

As expected, social distancing measures reduced the number of deaths. When we considered interaction
networks with the same number of public and private contacts, a reduction in public contacts had a stronger
e↵ect on the number of deaths than an equal reduction in private contacts (Figure 2). The behavioral response
of symptomatic individuals influences the level of overall contact reduction needed to keep hospitals under
their capacity threshold (Figure 3a). However, hospitals quickly reach and surpass their capacity unless very
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a

b

Figure 2: E↵ect of overall private and public contact reduction on the average proportion dead (red, top row)
and the average percentage of averted deaths (green, bottom row). The latter is computed by comparison
with no contact reduction. Results are shown for communities with k private and k public average contacts
per day, for di↵erent values of k.

ba

Figure 3: (a) E↵ect of overall contact reduction and additional contact reduction of symptomatic individuals
on the projected peak hospital capacity. To the left of the hospital capacity threshold (red line), not all
hospitalized individuals receive perfect care, resulting in longer recovery times and higher mortality. (b)
Relative e�cacy of four hospital triage policies for varying degrees of outbreak severity summarized by the
average proportion of deaths (x-axis). E�cacies are computed by pairwise comparison of the projected death
count with the imperfect-but-equal-care scenario.
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a b

c

Figure 4: (a) E↵ect of increased numbers of tests (x-axis) and processing delays (y-axis) on the average
percentage of averted deaths (compared to no testing; left-most column). (b) E↵ect (linear regression) of the
average contact reduction by individuals with positive test results on the percentage of averted deaths under
an e�cient testing scenario (blue box lower right, panel a) and an ine�cient testing scenario (orange box
upper left, panel a). (c) Impact of policies regarding testing prioritization of symptomatic individuals on the
average percentage of averted deaths (compared to the worst policy). The primary policy decision involves
which risk group to prioritize (low-risk (green) or high-risk (orange)). The secondary policy decision involves
who to test first within each risk group (newly symptomatic (solid lines) or first-symptomatic (dashed lines)).
The results are stratified for three di↵erent levels of additional contact reduction due to symptoms (subplots)
as well as for varying levels of additional contact reduction of high-risk individuals (x-axis). Linear regression
fits are shown.
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a b

Figure 5: Interactions of the three policy domains on COVID-19-related deaths. The level of social contact
reduction (x-axis) is plotted against combinations of testing policies (solid lines, gold: maximum testing,
blue: no testing) and triage policies (dashed lines, circles: treat least severely infected first; solid lines,
crosses: imperfect but equal care). (a) Policy choices versus proportion dead in the community. (b) Relative
e↵ects of policy choices in reducing the proportion dead, compared to the worst-case scenario of no testing
and imperfect-but-equal-care triage policy.

strong levels of overall social distancing are implemented, even assuming perfect isolation of symptomatic
individuals.

We compared di↵erent triage policies found in the literature to a worst-case scenario in which hospitals
operating at overcapacity provide an imperfect but equal level of care to all patients (Fig. 3b) [12, 13, 16].
Current hospital policy of providing limited resources to the least-severely infected patients (based on clinical
judgment) proved the most successful in reducing the proportion dead. Of the policies we investigated, the
next most successful was to fill empty beds on a first-come first-served basis, while a policy which fills empty
beds randomly resulted in a very similar number of deaths as imperfect-but-equal-care.

Increasing the availability of testing and reducing the delay between administering a test and receiving
results both reduce the total number of deaths (Fig. 4a). We investigated the e↵ect of a reduction in social
activity by infected individuals who have tested positive under e�cient and ine�cient testing scenarios. In
an e�cient testing scenario, 20 to 40 symptomatic individuals (2 � 4% of the community) are tested per
day and there is at most a one day delay between test administration and results, while under ine�cient
testing only one or two individuals are tested per day and results take 6 to 7 days. Our model indicates
that e↵ective quarantining of positively tested individuals (i.e., increased contact reduction) results in a
meaningful reduction in deaths when testing is e�cient, while it proved to have only a small e↵ect when
testing is ine�cient (Fig. 4b).

Our model only considers the e↵ect of testing on social behavior and not clinical outcomes, but within
this framework we found that prioritizing testing of low-risk individuals consistently reduces the number
of deaths more than testing high-risk individuals first (Fig. 4c). When we analyzed the di↵erence between
testing recently-infected individuals first versus prioritizing individuals who have been infected longer, we
found that testing recently infected individuals first is more e↵ective.

Our results point to interaction e↵ects among the three policy domains we investigated. Policies influence
each other: the e�cacy of a particular policy choice depends on what other policies are implemented (Fig. 5).
When social distancing is low, the choice of triage policy makes the biggest di↵erence to the number of deaths,
more so than the choice of testing policy. When social distancing is high however, triaging choices hardly
matter, while testing becomes proportionately more important.
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4 Discussion

Consistent with other COVID-19 related modeling studies (e.g. [3, 7, 20, 21]), our model results generally
support current policies to reduce the public health impacts of the SARS-CoV-2 virus and COVID-19
infection.

A possible refinement of current social distancing policies is suggested by our comparison of interaction
networks. We found that, for equally connected networks, a reduction in public contacts has a stronger e↵ect
on the number of deaths than an equal reduction in private contacts (Figure 2). This may be because public
encounters allow the virus to spread randomly throughout the entire community, while private contacts
enable only local spread. Based on these findings, future public health notices could increase their emphasis
on the need to reduce contact with random individuals in the community.

Considering interaction networks with di↵erent levels of social connection (Figure 2) may provide an
explanation for di↵erences in the impact of the virus in di↵erent countries. A seminal study conducted in eight
European countries found average per-day contact numbers of about 8 in Germany, 14 on average, and 20 in
Italy [9]. At the time of this writing, Italy has su↵ered devastating e↵ects from COVID-19 while Germany
has weathered the pandemic relatively well. Because of the cultural di↵erences in social connectivity, if
Germany and Italy (for example) both reduce their contacts by the same percentage, Germany will avert a
higher percentage of deaths. Our results suggest that more social societies must reduce their contacts more
in order to attain the same level of reduction, and that a potentially fruitful avenue for future research might
investigate whether these results hold more broadly across di↵erent cultures.

Currently, CDC guidelines prioritize the testing of symptomatic high-risk over low-risk individuals. Their
goal is to ensure that individuals with a higher risk of complications are identified early and appropriately
triaged [52]. Our model does not account for heterogeneity in clinical outcomes due to testing; the only e↵ect
of testing is on behavior through the reduction in social activity as the result of a positive test. Under this
framework, our results indicate that prioritizing the testing of low-risk individuals more e↵ectively reduces
the overall death count than prioritizing the testing of high-risk individuals. Low-risk individuals have higher
contact rates than high-risk individuals [9], so reducing the social activity of infected low-risk individuals
slows the spread of the disease. Recognizing these di↵erences in social activity levels may be important to the
CDC when considering testing guidelines, as there may exist a trade-o↵ between a short-term reduction in
deaths due to appropriate triage of high-risk individuals and a long-term, overall higher death count caused
by this choice.

The importance of testing policy is further highlighted by our interaction analysis. Several of our results
suggest that policies influence each other, so that the e�cacy of a particular policy choice depends on what
other policies are implemented. The strength of social distancing of symptomatic individuals a↵ects whether
symptomatics or asymptomatics drive disease dynamics (Fig. S5), as well as the level of overall contact
reduction needed to keep hospitals below capacity (Fig. 3a). Examining all three policy domains together,
the relative e�cacy of testing and triaging depends on the level of social distancing (Fig. 5).

In order to keep the model both tractable and understandable, we considered a basic contact network that
di↵erentiates between private and public contacts as well as high-risk and low-risk individuals. We did not
consider heterogeneity in connectivity or individual risk behavior (e.g., super-spreaders [26]), or adaptation
of policies over time. These homogeneities may explain the bimodal posterior distribution of the proportion
of infected individuals (Fig. S2). Future studies may reveal if and how our results might change in more
realistic interaction networks [57], which may include temporal movement of individuals [58], age-assortative
mixing [21, 30], or the presence of individual-based heterogeneity in risk behavior.

Many key parameters of the COVID-19 epidemic are still unknown and may vary from community to
community. We therefore ran our stochastic transmission model for a large variety of parameter settings.
Due to the inherent uncertainty in many model parameters however, the model-generated, absolute values
of the response variables may not be explicitly meaningful, as they depend on the particularities of the
underlying parameter space. The goal of our study is not to report model predictions such as the expected
absolute number of deaths; rather, our model is a tool that can be used, despite the uncertainty in key
parameters, to compare the e�cacy of various policies aimed at reducing the societal impact of COVID-19.
We have focused on relative comparisons of three policy domains, as relative findings are more robust to
inaccuracies in the underlying parameter space.

The presented model considers a variety of important factors in the current COVID-19 pandemic, in-
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cluding high-risk versus low-risk groups, di↵ering social distancing behaviors, and the uncertainty around
the proportion and infectivity of asymptomatic cases. Importantly, the model can be easily expanded and
updated as more details about SARS-CoV-2 and COVID-19 emerge. Our results support current policies to
contain the outbreak and suggest possible refinements to public health policy and education. Our results also
provide a possible explanation for why some societies are more successful at containing the outbreak despite
the implementation of similar policy measures. Follow-ups to this study could deepen our understanding of
how heterogeneity in network structure and risk behavior a↵ect the interplay of policy decisions and disease
dynamics.
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