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Abstract – An opportunity exists in exploring epidemic modeling as a novel way to determine 
physiological and demic parameters for genetic association studies on a 
population/environmental (quasi) epidemiological study level.  First, the spread of SARS-COV-2 
has produced population specific lineages; second, epidemic spread model parameters are tied 
directly to these physiological and demic rates (e. g. incubation time, recovery time, 
transmission rate); and third, these parameters may serve as novel phenotypes to associate 
with region-specific genetic mutations as well as demic characteristics (e. g. age structure, 
cultural observance of personal space, crowdedness).  Therefore, we sought to understand 
whether the parameters of epidemic models could be determined from the trajectory of 
infections, recovery, and hospitalizations prior to peak, and also to evaluate the quality and 
comparability of data between jurisdictions reporting their statistics necessary for the analysis 
of model parameters across populations.  We found that, analytically, the pre-peak growth of 
an epidemic is limited by a subset of the model variates, and that the rate limiting variables are 
dominated by the expanding eigenmode of their equations.  The variates quickly converge to 
the ratio of eigenvector components of the positive growth rate, which determines the 
doubling time.  There are 9 parameters and 4 independent components in the eigenmode, 
leaving 5 undetermined parameters.  Those parameters can be strikingly population 
dependent, and can have significant impact on estimates of hospital loads downstream.  
Without a sound framework, measurements of infection rates and other parameters are highly 
corrupted by uneven testing rates to uneven counting and reporting of relevant values.   From 
the standpoint of phenotype parameters, this means that structured experiments must be 
performed to estimate these parameters in order to perform genetic association studies, or to 
construct viable models that accurately predict critical quantities such as hospitalization loads. 
 
Introduction 
 
Infection1,2, transcription and replication3,4 by SARS-COV-2 involves a number of rate limiting 
interactions with host cells that are likely to be modulated by mutations in cellular as well as 
viral genes.  At the same time, phylogenetic analysis shows geographic specificity5,6, indicating 
that geographic regions may show specific exposure to distinctive SNP combinations, or viral 
haplotypes, in SARS-COV-2.  This specificity suggests a benefit to exploring relationships 
between duration of the prodromic phase, proportions of asymptomatic cases7,  proportions of 
severe cases,  rates of recovery, among other infection attributes8, that define temporal 
progression of compartmental epidemic models, starting with SIR (Susceptible-Infected-
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Recovered) models9.  Beside host and viral genetic impacts, other aspects driving SARS-COV-2 
rates are population specific and demic, such as the impact of age on both asymptomatic and 
mild cases, as well as the proportion of severe and critical cases.  Other aspects include normal 
social distance, and how effectively social-distancing rules have been followed.  Hospital 
survival may also reflect impacts of some genetic susceptibility, presence of comorbidities 
(Hypertension, Diabetes, Asthma, lung disease, obesity and others yet to be identified) as well 
as the level of stress on the region’s medical facilities and medical staff. 
 
In this paper, we seek to identify the limitations of using compartmental models to estimate or 
test hypotheses concerning parameters governing the growth of SARS-COV-2 epidemics. We 
also seek to investigate what type of epidemic variable tracking is necessary to effectively 
quantify the parameters that are suitable for hypothesis testing at the level of environmental 
exposure in epidemiological studies. 
 
Methods 
 
Compartmental models count individuals at different stages of progression of a disease, where 
each stage of progression is marked by an event that has a well-defined rate.  For example, 
from time of infection to the time the person can transmit disease has a time distribution, that, 
for enough people in the compartment, will tend to center on an average by the central limit 
theorem for large enough samples drawn from any given distribution.  There is evidence that 
COVID-19 presents symptomatic cases and asymptomatic cases, with asymptomatic cases10–12 
less likely to be identified and isolated13–17.  There is an incubation period after infection that 
lasts until the incubating individuals become infectious.  There has been some early estimates 
based on confirmed cases13,18 with more evidence of pre-symptomatic transmission being 
noted19,20 yielding faster incubation.  Incubation partly accounts for the observed lag when 
social distancing or other viral spread prevention policies are imposed.  For the most part, 
infections appear to be transmittable prior to overt symptoms, allowing for a pre-symptomatic 
period that may convert to symptomatic.  At the same time, some of those asymptomatic 
people remain asymptomatic until they are non-contagious11. Patients may still be infectious 
for several days after symptomatic recovery.  Symptomatic patients likely to be hospitalized are 
hospitalized more quickly than non-hospitalized patients recover.  Hospitalized patients in ICU 
or required immediate ventilation tend to experience a longer time to recovery than non-
hospitalized patients.  Those that stay on the ventilator for long periods tend to have a high 
mortality rate, and may stay on the ventilator for many weeks prior to dying.8   
 
A compartmental model that captures the conditions status and durations count susceptible 
population members 𝑆, incubating 𝐸, infectious asymptomatic 𝐼 , infectious symptomatic 𝐼 , 
infectious people who will be hospitalized 𝐼 , those hospitalized who recover 𝐼 , and 
hospitalized leading to mortality 𝐼 .  Recoveries are 𝑅, and mortalities are 𝑅 .  The time from 
exposed to infectious is 𝛼 , where 𝛼 is partitioned into contributions to asymptomatic 
infectious 𝐼 , symptomatic infectious 𝐼 , and infectious that will be hospitalized 𝐼 , so that 
𝛼 = 𝛼 + 𝛼 + 𝛼 .  Total removal time among asymptotic infectious is 𝛾 , with a fraction 𝜁 
going to infectious symptomatic.  Infectious symptomatic removal time is 𝛾 .  The period prior 
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to hospitalization is (𝛼 + 𝛼 ) .  The rate that the proportion that recovers is 𝛼 , and 
that which dies is 𝛼 .  The model equations, reflecting an underlying Markov chain, 
expressing these connections and rates are: 
 
 

𝑑𝑆

𝑑𝑡
= −𝛽 𝑆

𝐼

𝑁
− 𝛽 𝑆

𝐼

𝑁
 

𝑑𝐸

𝑑𝑡
= 𝛽 𝑆

𝐼

𝑁
+ 𝛽 𝑆 

𝐼

𝑁
− 𝛼 + 𝛼 + 𝛼 𝐸 

𝑑𝐼

𝑑𝑡
= 𝛼 𝐸 − 𝜁𝛾 𝐼 − (1 − 𝜁)𝛾 𝐼  
𝑑𝐼

𝑑𝑡
= 𝛼 𝐸 + 𝜁𝛾 𝐼 − 𝛾 𝐼  

𝑑𝐼

𝑑𝑡
= 𝛼 𝐸 − 𝛼 𝐼  − 𝛼 𝐼  

𝑑𝐼

𝑑𝑡
= 𝛼 𝐼 − 𝛾 𝐼  

𝑑𝐼

𝑑𝑡
= 𝛼 𝐼 − 𝛾 𝐼  

𝑑𝑅

𝑑𝑡
= (1 − 𝜁)𝛾 𝐼 + 𝛾 𝐼 + 𝛾 𝐼  

𝑑𝑅

𝑑𝑡
= 𝛾 𝐼  

where 
𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝐼 + 𝐼 + 𝐼 + 𝐼 + 𝑅 + 𝑅  

Note that = 0, indicating conversions of all individuals in the system are accounted for.  
Parameter values derived from publications are listed in Table 1. 
 
The rate of infection for a susceptible individual depends on the probability that an infectious 
viral load is transferred, multiplied by the rate of encounters a susceptible individual has.  The 
encounters can involve: other susceptible individuals, or symptomatic infectious people, which 
as a group tends to be isolated with a corresponding depressed rate of encounters 𝛽 , and 
undetected asymptomatic infectious people whose interaction rate 𝛽  is substantially higher, 
subject to social distancing regulations.  The fraction of infectious symptomatic individuals that 
a given susceptible individual may encounter is 𝛽 , and the total number of susceptible 

individuals exposed to infectious symptomatic cases is 𝛽 𝑆.  Likewise, that for asymptomatic 

cases, the rate of symptomatic infections is 𝛽 𝑆.  These terms drive the creation of new 
infections in the population.  The force of the symptomatic group is the coefficient of 𝐼 , or  
𝛽 .  The number of the susceptible group that an individual can infect over their entire period 

of infectiousness is the reproduction number  𝑅 = 𝛽 , and similarly for the asymptomatic 

infectious group.  These numbers primarily drive the rate of growth of the infection in the 
population, which early in the expansion is measured by the doubling time. 
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Early in the evolution of the infection, which may be defined as when 𝑁 − 𝑆 ≪ 𝑁, the variables 
immediately involved in the feedback loop determine the rate limiting step.  Therefore, 
identifying 
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the equation governing the system in this regime is 
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This has solutions of the form 𝑋(𝑡) = 𝑒 𝑋(0).  The 𝑀 may be diagonalized by a matrix 𝑈 so 
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.   Since 𝑀𝑈 = 𝑈𝐾, Each of 

the columns of 𝑈 are eigenvectors 𝑢 , where 𝑀𝑢 = 𝜅 𝑢 .  This is an eigen equation, where the 

𝜅 s determine the time rate of exponential growth or decay with doubling time 𝜏 = , and 

the eigenvectors represent the linear combinations of 𝐸, 𝐼 ,𝐼 , and 𝐼  that grow or decay with 
the that eigenvalue.  The combinations of eigenmodes is determined by initial conditions.  The 
leading eigenvalue will dominate with exponential growth yielding fixed proportions of each of 
the 𝐸, 𝐼 ,𝐼 , and 𝐼  to each other. The other terms turn out to identify rates related to the delay 
time for the system to respond to changes in distancing policy due to incubation time, to 
imbalances between symptomatic and asymptomatic patients, and to the decay of 𝐼 . 
 
Data from New York State were obtained from The COVID Tracking Project21.   
 
 
 
Table 1.  Published times for compartmental conversions, proportions, and derived rates.   
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Parameter Times  Value Notes 
𝛼 5.1 (4.5-5.8) days22, 5.2 

(4.1 – 7.0)19 5.2 (3.78-
6.78)18 – 3.95(3.01-4.91)18 

0.196, 0.25 𝛼 = 𝛼 + 𝛼 + 𝛼  

𝜂  30.8%23, 20.6% (23-33%) – 
40%(36-44%)12 

0.3 𝛼 = 𝜂 𝛼 

𝜂  49.2% (by total), 68.7 0.492 𝛼 = 𝜂 𝛼 
𝜂  20%8, 1.3% 0.2, 0.013 𝛼 = 𝜂 𝛼 

𝜂  69%8 0.69 𝛼 = 𝜂 (𝛼 + 𝛼 ) 
𝜂  31%8 0.31 𝛼 = 𝜂 (𝛼 + 𝛼 ) 
𝛼   0.0588, 0.075, 

0.172 (est) 
𝛼 = 𝜂 𝛼 

𝛼   0.0964, 0.123 𝛼 = 𝜂 𝛼 
𝛼   0.0392, 0.05, 

0.00325 (est) 
𝛼 = 𝜂 𝛼 

𝛼 + 𝛼  7 days8 0.143  
𝛼   0.09867  
𝛼   0.04433  
𝛽     
𝛽     
𝜁 20.8 %11 0.208  

𝛾  14 days8, 9.5days11 0.0714, 0.105  
𝛾  14 days8, 9.5days11 0.0714, 0.105  

𝛾  31 days8 0.0323  
𝛾  42 days8  0.0238  

 
 
Results 
 
 
Testing in New York State, starting on 03/04/2020, labeled as day 1.  On 3/13, day 10, NY State 
received permission to contract for its own SARS-COV-2 testing.  Statewide “distancing” started 
on 3/20, day 17, with the signing of the “New York State on Pause” bill.  Prior to that, local 
jurisdictions had already been imposing local ordinances against assembly, and started closing 
schools.    
 
Figure 1 shows the cumulative total testing and positive test numbers indexed by day.  Testing 
has been driven by tracking contacts of discovered cases which is reflected heavily in the close 
alignment of total tests and positive tests.  On 3/13, the total number of tests increased from 
308 to 3200, with surges to the 5,000 level, then 7,000, then 14,000 showing rapid subsequent 
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growth.

 
Figure 1.  Levels of total testing and positive cases identified in New York State. 
 
 
Early in the testing, from day 1 to 19, the rate of growth of positive cases was 𝜅 = 0.3519 ±
0.01390, corresponding to a doubling time of 1.97 ± 0.08.  From day 20 to day 30, the rate of 
growth of positive cases was 𝜅 = 0.2027 ± 0.0076, corresponding to a doubling time of 3.42 ±
0.13.  These numbers suggested very high rates of contagious transmission.  These doubling 
times were reported by Governor Cuomo in some of his earliest briefings.   
 
If, as tracking numbers increased, testing surveillance was broad enough to pick up community 
spread individuals proportional to total numbers of tests applied, then the proportion of 
positives from the tests may reflect population rates.  However, if rates are tightly limited to 
immediate known cases, then the reported positives will be a better estimate of underlying 
population, since the fraction of those seeking medical assistance should be proportional to the 
exposed number in the population. When available tests increased, the apparent rate grew 
substantially.  Therefore, infected population growth may be more closely reflected in the 
fraction of positive results normalized by total number of tests applied, in spite of very highly 
biased sampling selection.  For a given proportion of ill patients who seek help, this should track 
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with the fraction of the population who is ill.  However, this may be subject to growing 
awareness of the population to get help with COVID-19 infections.   
 
First, consider the idea that tests may be broad enough to sample spread. When test numbers 
were low, the likelihood that targeted testing would reflect the general population was also low 
and sampling uncertainties large.  Therefore, a lower bound on testing levels was applied.  This 
cut samples prior to 3/20.  Later, test ratios started to demonstrate a downwards bend.  This 
shoulder was cut for samples beyond 3/30.  New York doubling time was estimated from a 𝜒  
regression between the log of positive test ratios versus time, yielding 𝜅 = 0.0471 ± 0.0095 
with a doubling time of 14.7 ± 3.0 adjusting for testing counts.  In the alternative scenario, 
positive samples reflect the proportion of symptomatic patients seeking medical aid, a 
possibility since the testing was so closely tied to diagnosed patients plus contact surveillance.  
A regression was performed on the cumulative positive counts shown in Figure 2c) yielding  𝜅 =
0.1170 ± 0.0021 per day, with a doubling time of 5.9 ± 0.1 days. 
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Figure 2.  Log-linear 𝜒  regression estimate of 𝜅 from New York State growth of fraction of 
positive tests.  a) linear regression representing a segment of the positive test rate vs. time; b) 
linear regression from a) represented within the entire test rate vs. time dataset;  c) is a fit to 
the log of the positive test count vs days starting at 20 days. 
 
Taking guidance from Table 1, values 𝛼 = 0.25, 𝛼 = 0.123, 𝛼 = 0.172, 𝛼 = 0.00325, 
𝛼 = 0.09867, 𝛼 = 0.04433, 𝜁 = 0.3, 𝛾 = 0.0714, 𝛾 = 0.0714, 𝛽 = 0.4748, and 𝛽 =
0.1071 yields a doubling time close to New York State from Figure 2c.  Figure 1 presents a log-
linear plot of the growth of the complete model equations integrated numerically using 
solve_ivp() employing RK45 from scipy, clearly showing that the early growth is dominated by a 
leading exponential mode.  The early lead-in shows the effects of decaying modes as the initial 
conditions converge to the fixed ratios of the leading eigenmode components.  The leading 
eigenvalue is 𝜅 = 0.1171, yielding a doubling time of 5.9 days, with eigenvector 𝑢 =
(0.6457 0.4212 0.6369 0.0081). The component associated with incubation decay is 𝜅 =
−0.483, associated with a response to policy change delay half-life of 1.4 days.  Its eigenvalue is 
𝑢 = (0.8940 −0.2671 −0.3596 −0.0085).  The eigenvalue 𝜅 = −0.0750 with half-life of 
9.2 days is associated with deviations between 𝐼  and 𝐼  from the dominating growth 
eigenvector, and has an eigenvector of 𝑢 = (−0.0064 0.2172 −0.9761 −0.0003) .  The 
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last eigenvalue is 𝜅 =  −0.143, associated with the decay of 𝐼  from equilibrium values with 
eigenvector 𝑢 = (0 0 0 1).   
 
Figure 3 shows a log-linear plot of the rate-limiting variables for a numerical integration of the 
entire system of differential equations.  The pre-peak segment shows a clear view of how the 
system is dominated by the leading exponential eigenmode of the growth, including the 
proportions between variables represented in the eigenvector of the leading eigenvalue, which 
determines the slope. 
 

 
Figure 3.  Log-linear plot of rate-limiting variables in the full system of equations integrated 
numerically.   
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Figure 4.  The evolution of the model given the apparent doubling time represented by the 
regression in Figure 2.  The peaks in variables in (a) show lagging as the compartments move 
through their sequence.   The susceptible and recovered variables are included in (b).    
 
Figure 4 shows the evolution of the system variables in a linear-linear plot.  The lags in the peak 
variables shown in figure 4a identify the peak pulse through the system of linear equations.  
The “est” entries in Table 1 for 𝛼  represent values commensurate with (but not a fit to) the NY 
hospitalization levels21.  They are a factor of 12 smaller than those fitting the Wuhan 
hospitalization rate8.  As such, it is clear that the impact of COVID on features such as 
progression to hospitalization, response to treatment for symptomatic patients, whether 
patients are identified in time to stop progression to serious or critical stages may impact 
survivability.  The model predicts 3294 fatalities per million, peak recovering hospitalizations of 
3347 on day 111, and peak mortality hospitalization (primarily long-term ventilator load) of 
1732 on day 114.  Figure 4b includes susceptible 𝑆 and recovered 𝑅 variables.  The range of 
variation of these variables appears to dwarf the fraction of the population that is incubating, 
infected, or involved with hospital load.  One feature of the equations is that the rate of flow of 
individuals through a compartment may not be reflected in the total number in the 
compartments at any given time, even at their peaks.  At the end, these rates would leave 
24,738 per million uninfected and susceptible, with 971,967 recovered per million. 
 
 

Region 𝜿 𝑻𝒅 (days) 
New York State21 
(cumulative cases) 

0.1170 ± 0.0021 5.9 ± 0.1 

New York State21 
(relative frequency) 

0.0471 ± 0.0095 14.7 ± 3.0 

Lebanon24 
(cumulative cases) 

0.05998 ± 0.00786 11.6 ± 1.5 

Australia  New 
South Wales25 
(cumulative cases) 

0.1984 ± 0.0153 3.5 ± 0.3 

 
Table 2.  Exponential growth rates, corresponding doubling times for various populations and 
measurements given available data. 
 
The difficulty in understanding how the testing protocol impacts estimations of rates is 
illustrated in the New York State rates shown in Table 2.  Considering cases as a representative 
sample of a fixed proportion of the infected population argues for computing a rate based on 
cumulative cases.  If, on the other hand, the testing generated a random sample of the broader 
population, more testing would identify more individuals simply because there were more 
tests.  If so, the proportion of positives to total tests may be a closer approximation to the 
population, and the total positives would be proportional to the square of the actual proportion 
of diseases, resulting in a doubling of 𝜅.  That seems to be roughly what was observed between 
the two New York State regressions.  On the other hand, cumulative rates for two other 
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jurisdictions, Lebanon and New South Wales, Australia, show rates similar to each of the two 
New York State numbers.  And while the New York State proportional model gives an expected 
factor of 2 in the rate, it is the cumulative rate that more closely resembles the growth and 
peak in New York, not the relative proportion rate.  More, the shifts in test availability and 
distancing initiation are all visible in the New York data, which contributes to the difficulty even 
of identifying exponential growth regimes, much less identifying an exponential rate that 
constrains the available model parameter space. 
 
Discussion 
 
One of the major goals of epidemic modeling is to predict mortality and resource load on 
community medical facilities: how many beds, how many ventilators, how much 
pharmaceuticals, among other resources will be needed to get through the epidemic.  Early 
epidemic growth for this system is dominated by the largest eigenvalue of 9 coefficients 
governing the rate-limiting variables.  This eigenvalue determines the doubling time of the 
growth, and imposes one constraint on those coefficients; the eigenvectors impose three more 
constraints on the system, leaving five coefficients undetermined.  Essentially, all of the rate-
limiting relevant epidemic variables grow at the same rate maintaining fixed ratios.  However, 
as they near peak, the variable trajectories become more differentiated, with lagging or leading 
peaks emerging as the impact of  filters through the system of equations.   However, at peak, 
it is already too late to allow time to acquire and deploy needed resources to hospitals and 
clinics.  By itself, the trajectory of these models in pre-peak growth offer little hint as to final 
needs.  Further, there are a number of combinations of parameters that would yield the same 
leading eigenvector and eigenvalue. 
 
More so, the parameters that govern these epidemic models tend to reflect physiological rates 
of how the disease expresses itself in individuals, as well as effects that are moderated by 
demic characteristics.  Examples are age structure in the population, which impacts both 
asymptomatic cases11,26 and severity of disease8.  Identification of asymptomatic cases has 
been problematic since testing protocols tended to require symptoms, or contacts with known 
infected people.  One case in California went untested for 10 days because she had no known 
contacts.  Cases that advance to severe or critical depend on other factors, such as treatment 
modalities prior to development of advanced symptoms.  The rate of transmission depends on 
physiological parameters as well as normal social distance and social distancing response to an 
epidemic, how public institutions such as schools are run, how grocery shopping interactions 
are handled, whether known infections are isolated and other factors specific to each 
community.  Given how widely these parameters may vary from population to population, how 
they vary: how they depend on the geographically specific dominating SARS-COV-2 lineages 
dominant within a given geography5,6, and how they depend on behavioral, social, age 
structure, and other factors of a population, it is worth seeking whether and how these factors 
relate to the expressed epidemic model rate parameters as phenotypes. 
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Since the problem of identifying rate limiting parameters prior to peak is underdetermined, 
these rates must be determined elsewhere.  Most statistical reporting does not provide nearly 
enough information to extract these factors, even at an environmental (quasi-) epidemiological 
experimental design standards.  Further, jurisdictions are applying tests to try to identify new 
cases that are related to other identified cases through contact.  The “enrollment protocol” was 
not designed to understand the spread in the population, but rather to try to identify patients 
and remove them from circulation by isolating them.  More and broader testing is applied as 
test kits become more available.  Test kits may not be uniform with loss of sensitivity depending 
on the stage of the infection and/or the type of swab taken (Nasal, nasopharyngeal or sputum).  
From jurisdiction to jurisdiction, testing and reporting protocols vary, making it difficult to 
compare jurisdictions, or even the same jurisdiction to itself from day to day.  The rate of 
growth and doubling time may reflect availability and levels of testing more than the actual 
disease in the population. 
 
Perhaps the best way to acquire the necessary parameters would be a prospective longitudinal 
study cohorts in multiple jurisdictions.  Enrollment should be randomized, reflect regional 
characteristics such as sex and age, and the criteria should be shared across populations 
participating in the study.   During the course of the study, subjects will be monitored for 
changes in status a) from susceptible to incubating recording dates of exposure (if possible), b) 
to infectious (symptomatic or asymptomatic, with a clearly defined standard for determining 
possible “infectious” condition) conversion and dates, c1) for asymptomatic to symptomatic 
conversions and dates or c2) recovery dates, d) symptomatic to recovery conversion dates, or 
e1) hospitalization dates, e2) recovery from hospitalization dates, e3) ICU admission dates, e4) 
ICU recovery date, e5) ventilator treatment start date, e6) ventilator recovery date, e7) date of 
death.  A record of how each subject moves through the model compartments, together with 
time distributions, can provide phenotypic parameters that modelling alone cannot, offering 
insight into the biology, response of the disease to medications, comorbid conditions, demic 
characterizations, and other features relevant to the impact of COVID-19. 
 
Further, these parameters provide a uniform basis for comparisons between populations 
necessary for complete model constructions that yield distributions of trajectories and 
confidence intervals for timing and peak loads, and which can provide a full epidemiological 
exploration of how individual subject phenotypes respond to environmental, genetic, 
comorbid, and behavioral factors that may yield valuable information for biological, clinical and 
pharmaceutical development.  As such, these models may be used to test and verify 
measurements of physiological parameters, and to identify evidence whether some factor 
strong enough to generate deviations is missing. 
 
Conclusions 
 
A response to an article in Nature27 stated: “A well-known lawyer, now a judge, once grouped 
witnesses into three classes: simple liars, damned liars, and experts. He did not mean that the 
expert uttered things which he knew to be untrue, but that by the emphasis which he laid on 
certain statements, and by what has been defined as a highly cultivated faculty of evasion, the 
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effect was actually worse than if he had.”  The statement was applied to the specific issue of 
expert forensic testimony.  The statement has been restated as “lies, damn lies, and statistics.”  
The message serves as a warning that statistics collected for certain purposes may not be suited 
to other purposes.  That unsuitability does not reflect any attempt at obfuscation.  Specifically, 
in this case, the use of testing, positive test counts, etc are tilted towards identifying patients 
who are likely to have specific treatment needs, and to try to identify contacts to stop epidemic 
spread.  These uses render the reported statistics problematic for modeling.  Physiological 
parameters based on identified patients may be biased in terms of the patients who were 
identified, and the methods by which they were identified.  Further, protocols shifted as 
previously unrecognized community spread and asymptomatic individuals were recognized to 
be significant contributors to viral spread. 
 
Finally, modeling not only can provide important information planners need for capacity loads, 
but models can also test whether the parameters as understood describe how the disease 
behaves in a population.  A failure to predict may indicate an important factor in the disease’s 
behavior that had not been recognized.  In order for this to work, a more formally structured 
prospective cohort study, with adequate annotations of pharmaceuticals, comorbidities, and 
other factors, is likely the best way to ensure all the rates are measured on a consistent footing 
throughout the course of the epidemic. 
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