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Abstract

Some nations have the option of pursuing a policy of complete elimination of
covid-19 instead of a policy of “flatttening the curve” so that the load the dis-
ease places on medical facilities is bearable. A policy of elimination requires
a rather onerous “lockdown”. As the goal of elimination is approached, it is
therefore important that there be an informed trade-off between the risk of
disease re-emergence and the duration of the “lockdown”. Here it is shown
that an important factor in assessing this trade-off, is the distribution of
secondary cases, not just the expected value of this distribution, R0. It is
shown that a distribution in which “super-spreaders” are more prominent in
the epidemiology, allows for an earlier release from “lockdown” with reason-
able safety despite some probability of asymptomatic cases. There is some
evidence to support such a distribution for covid-19. Analytical calculations
and simulations show that once there is only one recognised case in some
subregion, release from “lockdown” will be reasonably safe after just one or
two further incubation periods.
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Introduction

The experience of China indicates that covid-19 can be eliminated. Elimina-
tion requires lowering the reproductive rate of the infection by “lockdown”
measures until there are very few active cases and then waiting for several
incubation periods without new cases before ending the “lockdown”. How-
ever, it will always remain possible that, because of asymptomatic cases, the
infection will re-emerge after lifting of “lockdown”. This paper shows that
the risk of such re-emergence depends quite markedly on the distribution of
the number of secondary cases, not just its average value, R0.

The importance of the distribution of secondary cases, is illustrated by
several contrived probability distributions for the policy where restrictions
are lifted once there is just a single symptomatic case. More realistic prob-
ability distributions and simulation are used to estimate the probability of
re-emergence with three different policies - lifting restrictions when there is
just one symptomatic patient, waiting one incubation period after this time
before lifting restrictions and waiting two incubation periods before lifting
restrictions.

This paper assumes that an attempt has been made to eliminate covid-19
from a region/province/nation. It assumes no appreciable herd immunity. It
also assumes that there is no quarantine free cross border human travel into
the region considered and this restriction will be maintained. It is assumed
that the attempt has been successful in that numbers of symptomatic covid
cases have dwindled to a single case which is then isolated.

However, it is known that a proportion of cases are asymptomatic. Here
this proportion pa, is taken to be 50%. It is further assumed that the symp-
tomatic cases up to their time of isolation and the asymptomatic cases, both
have the same distribution for the number of secondary infections they gener-
ate. It is assumed that all symptomatic covid cases are recognised by testing
but there is no testing of asymptomatic people. It is also assumed that R0

will resume its pre-covid value when restrictions are lifted. For the purposes
of this paper, the average number of secondary cases R0, in an unrestricted
population is assumed to be 2.5 .
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Methods

It is known from the theory of branching processes in discrete time, that the
probability of extinction of a branching process is given by the (smallest)
solution to the equation φ(u) = u where φ(x) is the probability generating
function for the number of secondary cases of a single index case [1]. For
example, if there is a probability of 0.99 that an index case has no secondary
cases and probability 0.01 that the case has 250 secondary cases - giving
R0 = 2.5, then φ(x) = 0.99x0 + 0.01x250. The solution to the equation
φ(u) = u is found by Newton’s method. It is denoted by pe ≡ pextinction. The
probability of extinction is calculated similarly for a number of other con-
trived distributions for the number of secondary cases generated by a single
infected person, all with R0 = 2.5. The coefficient of variation (

√
variance
mean

), is
calculated for each of these distributions. The probability of extinction for
two standard probability distributions are also calculated. The calculations
here assume that once a closed region is down to a single symptomatic case,
there may or may not be secondary cases from this case prior to their isola-
tion and there may also be secondary cases from asymptomatic cases present
at the time of isolation of this last symptomatic case. However, even where
there are such secondary cases, the branching processes from however many
secondary cases there are, may go extinct.

We assume as an uninformative Bayesian prior, that the number of asymp-
tomatic cases at the time when there is only 1 symptomatic case, is given
by a geometric distribution, so that the probability that there are k asym-
tomatic cases is (1− pa)× pka. The probability that none of these cases give
rise to an ongoing chain of secondary, tertiary, ..., cases is denoted by pT0,
the probability of Total elimination. It is found by summing the probability
that there are k asymtomatic cases ×pke for all k from 0 to ∞. This gives

pT0 = (1−pa)pe
1−pape

Two less contrived, standard, distributions are considered further. These
are the Poisson distribution corresponding to an unstructured randomness
where any infected person is equally likely as any other to seed many sec-
ondary cases. The second distribution is the negative binomial distribution.
There is now some evidence from observation of the initiation of the epidemic
in various countries, that the initial seeding cases gave rise to offspring cases
in a pattern suggestive of a negative binomial distribution with parameters
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specified below [2]. This is a distribution with a thin but very long right tail,
indicating an important role for super-spreaders. A distribution for the num-
ber of secondary cases where very occasional superspreaders are prominent in
the epidemic, is also suggested by variation in the time to community trans-
mission in various nations, despite likely repeated introduction by travellers.
If most infected travellers seldom spread the disease, the onset of commu-
nity transmission may be delayed until the rather rare super-spreader arrives.

For the Poisson distribution and this Negative Binomial distribution, two
further policy scenarios are considered - continuing restrictions for 1 incuba-
tion period after the last symptomatic person has been isolated, and contin-
uing retrictions for 2 incubation periods. It is difficult to obtain an analytic
equation for the probability of extinction and so simulation is used. Each
simulation employs 10 million runs. A fortran program corresponding to
these simulations is given as an attachment.

Results

The probability distributions considered, all give an expected number of sec-
ondary cases, R0 = 2.5 They are described below, with P (X = k) represent-
ing the probability of k secondary cases :-
1) P (X = 0) = 0.99 and P (X = 250) = 0.01 as in the section above
2) P (X = 0) = 0.9 and P (X = 25) = 0.1
3) P (X = 0) = 0.5 and P (X = 5) = 0.5
4) P (X = 0) = 1

6
and P (X = 3) = 5

6

5) P (X = 2) = 1
2

and P (X = 3) = 1
2

(as close as possible to deterministic
R0 = 2.5)
6) P (X = 0) = P (X = 1) = . . . = P (X = 5) = 1

6

7) P (X = j) is Poisson with parameter λ = 2.5
8) P (X = j) =

(
j+r−1

k

)
(1− p)rpj with p = 2.5

2.5+0.1
= 0.96154 and r = 0.1 This

is a Negative Binomial. Its parameters are inferred from details in reference
[2] and correspond to R0 = 2.5 with dispersion measure r = 0.1

The table below gives the probability, pe, that a single branching process
with the given numbered distribution becomes extinct in that it does not
result in an indefinitely large number of descendants. A column giving the
coefficient of variation is given for each disribution. Also given is pT0, that is
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the probability that overall there will be no re-emergence of the epidemic, de-
spite releasing restrictions without waiting an incubation period to check for
symptomatic cases to arise either from previous unrecognised asymptomatic
cases or from the symptomatic case before isolation.

Distribution number Coeff of variation pe pT0

1) 9.95 0.991 0.982
2) 3.00 0.909 0.833
3) 1.00 0.519 0.350
4) 0.447 0.171 0.093
5) 0.200 0.0 0.0
6) 2.79 0.211 0.118
7) 0.632 0.107 0.057
8) 3.22 0.861 0.755

The following table considers distributions 7) and 8) in more detail. As
well as the policy of releasing restrictions zero incubation periods after the
last symptomatic case is isolated, simulations are used to calculate the prob-
ability of no epidemic re-emergence if there is a policy of releasing restrictions
after 1 incubation period and after 2 incubation periods. These probabilities
are denoted by pT1 and pT2 respectively. For comparison, information given
in the previous table on the probability of extinction if restrictions are lifted
on isolation of the last symptomatic case, is repeated.

Distribution number pT0 pT1 pT2

7) 0.057 0.608 0.894
8) 0.755 0.9805 0.9987

Unfortunately, in implementing policies whose outcome are denoted pT1

and pT2, there will be occasions where relief from “lockdown” will be fur-
ther delayed by re-emergence of symptomatic cases before the one or two
incubation periods are completed. In the case of the Poisson disstribution
labelled 7), this happens 50% and 58% of the time. In the case of the nega-
tive binomial distribution labelled 8), this happens 27% and 28% of the time
respectively.
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Discussion

A policy of elimination requires a more intense “lockdown” than a policy of
“flattening the curve” so that the epidemic peak is within the capacity of a
region’s ICU beds. However, a study by the Imperial College [3] shows that
there are two rather fine lines between flattening the curve sufficiently and on
the one hand, elimination, or on the other hand, an insufficiently flattened
epidemic and a huge death rate. Even if “optimal” curve flattening can be
achieved there will still be many deaths. In addition, whilst slightly less in-
tense lockdown is required for curve flattening rather than elimination, the
period of “lockdown” for curve flattening, will have to be continued for far
longer. An advantage of the curve flattening approach is that curve flatten-
ing could lead to herd immunity and thus allow less restricted international
travel to parts of the world that have not achieved elimination, though this
prospect is uncertain. On the other hand, international travel without quar-
antine will not be possible between a country that has achieved elimination
and a country which has not, at least until a vaccine is available. For this
author, the arguments in favour of a policy of elimination are ovewhelming,
for nations/regions which have the resources to implement it and who have
secure borders. New Zealand is following a policy of elimination and there
seems to be emerging realisation that this is a real option for Australia. Since
the intensity of “lockdown” required for elimination will be quite onerous, it
is important that the length of “lockdown” required is balanced against the
probability that this lockdown period will be successful in eliminating the
virus.

It is clear from the results, that simple knowledge of R0 = 2.5 is not
sufficient for calculations that will enable decision makers to balance risk
of re-emergence of the epidemic against length of lockdown. In general, it
can be seen that distributions with a large coefficient of variation, that is,
distributions which in this context give a greater role to occasional super-
spreaders, are those where elimination can be achieved more quickly after
the last symptomatic case is diagnosed. The negative binomial distribution
used here gives a large role in the epidemic for occasional superspreaders, in
contrast to the Poisson distribution. There is also some evidence for the neg-
ative binomial distribution with the parameters given. Commonsense would
also suggest that people are unlikely to be uniform in their propensity to
spread the virus, either because socially they are a more central node in a
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large network, or perhaps because some may have more biological propensity
to infect others. However, even with the less likely, more pessimistic choice,
the Poisson distribution, the calculations show that there is better than 89%
chance of elimination if two incubation periods pass without re-emergence
of symptomatic cases. With the Negative Binomial distribution, elimination
would then be almost certain. It would seem that, when numbers of symp-
tomatic cases have been reduced to rather low levels, lockdown periods, could
be decreased further by subdividing a region. If a region implementing an
elimination strategy can be subdivided into subregions which can be tem-
porarily disconnected from each other in terms of human travel, such that
each subregion has only one case, relief from restrictions can commence quite
quickly.

There are some clear limitations to this study. No sensitivity analysis
has been done beyond calculations for the specific distributions described.
In particular, there is no sensitivity analysis for likely different values for the
proportion asymptomatic pa, or R0 under lockdown. However, the fortran
programs below could facilitate such a sensitivity analysis if there was more
knowledge about the range of plausible values. The calculations and simula-
tions also assume discrete time steps and a different analysis will be required
to account for branching in continuous time. There are some assumptions
that are too pessimistic, for example, some asymptomatic cases will be de-
tected by contact tracing. There is also implicitly some assumptions that
may be too optimistic. For example, it is assumed that there is no animal or
human long term carrier of the virus in the region under consideration. Nev-
ertheless this study gives cause for optimism about the length of lockdown
required for any region attempting to eliminate this disease.
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Attachments
Fortran program using Newton’s method to calculate the probability of ex-
tinction of the branching process for various probability distributions

! prog to calculate prob extinction for various distributions with R0=2.5, using Newton’s method

! an individual pair of initial statement functions needs to be "uncommented" for a particular run

! xnum(x) is the function phi(x)-x, where phi(x) is the pgf of the relevant distribution.

! xden(x) is the derivative of xnum(x)

! Case 1)

! xden(x)=2.5*x**249-1.

! xnum(x)=0.99+0.01*x**250-x

! Case 2)

! xden(x)=2.5*x**24-1.

! xnum(x)=0.9+0.1*x**25 -x

! Case 3)

! xden(x)=2.5*x**4-1.

! xnum(x)=(0.5+0.5*x**5)-x

! Case 4)

! xden(x)=2.5*x**2-1.

! xnum(x)=(1.+5.*x**3)/6.-x

! Case 5)

! Clearly no possibility of extinction

! Case 6)

! xden(x)=(1.+2.*x+3.*x**2+4.*x**3+5.*x**4)/6.-1.

! xnum(x)=(1.+x+x**2+x**3+x**4+x**5)/6.-x

! Case 7) Poisson

! xden(x)=-1.+2.5*exp((x-1.)*2.5)

! xnum(x)=exp((x-1.)*2.5)-x

! Case 8) neg bi r=0.1 p= 0.96154 so 1-p=0.03846

! xden(x)=(0.03846**0.1)*0.096154*((1.-0.96154*x)**(-1.1))-1.

! xnum(x)=(0.03846/(1.-0.96154*x))**0.1-x

pa=0.5

! initialise newton iteration to find zero of f(u)=phi(u)-u

x=0.86068 !may need adjustment for convergence

Do i=1,10

xnew=x-xnum(x)/xden(x)

print *,’x,xnum,xden xnew’,x,xnum(x),xden(x),xnew

x=xnew
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end do

pe=xnew

pt=pa*pe/(1.-(1.-pa)*pe)

! pe is the probability of extinction of a branching process from a single individual

! pt is the probability of extinction of all descendants, assuming that there are an additional number

! geometrically distibuted (with parameter pa) asymptomatic cases

print *,’pe= ’,pe,’pt= ’,pt

stop

end

The fortran program below calculates by simulation, the probability of
elimination when there are two incubation periods in which, under “lock-
down” conditions, number of secondary cases are determined by a negative
binomial distribution, with R0 reduced from 2.5 to 0.8, but with the original
coefficient of variation unchanged. This is achieved by changing r from 0.1
to 20

183
and changing p from 2.5

2.6
to 183

208
. Since this negative binomial is used re-

peatedly in the simulation, it is useful to calculate its cumulative distribution
using a separate program. Because of numerical instability the distribution
is truncated at 170 secondary cases with some arbitrary provision for the the
tiny but not entirely negligible tail beyond 170. It will be clear to fortran
programmers how the program can be simplified to deal with a policy of
lifting lockdown after one instead of two incubation periods. It will similarly
be clear how to modify it for a Poisson distribution with λ = 0.8 during the
lockdown period and with pe changed so that it is the probability of extinc-
tion for a Poisson branching process given in the first table. A few other very
short, almost trivial, programs are also used in this project. They are not
copied here but are available on request to the author.

! program to simulate stopping rule for anti-covid measures

! simulates probability of no re-emergence if stopping after one incubation period with no symptomatic found

Dimension cumprob(0:170)

!

! Open file relating a random number between 0 and 1 to number of outcomes of the neg binom distribution

Open(20,file="cumnegbinom.dat") ! cumulative negative binomial distribution with p=25/26 and r=0.1 No!!!!

! cum neg binom modified so R0 at 0.8

Do i=0,170

read(20,*)cumprob(i)

end do

pa=0.5 ! prob of someone infected being asymptomatic

pe=0.86068 ! prob of extinction of line from a single case with neg binomial distribution with parameters p=25/26, r=0.1.

! ie when normal R0 is resumed

! Initialise counters

isum=0 ! Counter for number of cases where there are symptomatic offspring after 1 incubation period in lockdown

isum2=0 ! Counter for number of cases where there are symptomatic offspring after 2 incubation periods in lockdown

isumsuxs=0 ! Counter for number of cases where at least one offspring is infected and gives lines that don’t go extinct

! after two incubation periods

nnn=10000000 ! number of runs regardless of whether they generate a pattern that satisfies stopping rule

! Start big loop iterating through nnn cases with random numbers determining undetected cases

bigloop:Do n=1,nnn

! find probability that there are m asymptomatics as well as the last index symptomatic

m= igeomran(idum) !Tthis calls a function which gives a number from a geometric random variablewith parameter pa

mp1=m+1
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! Count offspring of index case plus offspring of all asymptomatics

call totoffcalc(mp1,cumprob,ioffspring) !ioffspring is a counter for total number of offspring from m+1 neg binom distributions

! print *,’mp1 ioffspring’,mp1,ioffspring

! Now need to find probability that all offspring are asymptomatic and if so the probability that all lines of descent from these asymptomatics

! end in extinction.

! Go back to beginning without counting stopping rule as a failure if still >=1 symptomatics present

w=ran3(idum) !Uniform random number generator

if(w>pa**ioffspring)then !This gives a probability 1- pa^ioffspring so it is the probability there are ioffspring

! and some are symptomatic.

isum=isum+1 !Need to count such cases so that we can deduct them from our nnn simulations

cycle bigloop !as they do not meet the stopping rule protocol

else

call totoffcalc(ioffspring,cumprob,ioffsprng2)

w=ran3(idum)

if(w>pa**ioffsprng2)then !This gives a probability 1- pa^ioffsprng2 so it is the probability there are ioffsprng2

isum=isum+1 ! with some symptomatic. Need to count such cases so that we can deduct them from our nnn simulations

cycle bigloop !as they do not meet the stopping rule protocol

end if

w=ran3(idum)

if(w<pe**ioffsprng2)then ! we have met the stopping rule protocol and all remaining lines go extinct

isumsuxs=isumsuxs+1

end if

end if

!! print *,’ptotextinct,w,is,isuxs ’,ptotextinct,w,isum,isumsuxs

end do bigloop

probsuccess=real(isumsuxs)/real(nnn-isum)

print *,’isumsuxs,isum,probsuccess’,isumsuxs,isum,probsuccess

stop

end

subroutine totoffcalc(mp1,cumprob,ioffspring)

Dimension cumprob(0:170)

ioffspring=0

Do j=1,mp1

v=ran3(idum)

!! print *,’v=’,v

Do i=0,170

if(v<cumprob(i))then

! print *,’i,v,cump(0),cump(i)’,i,v,cumprob(0),cumprob(i)

exit

end if

end do

! Numerical instability prevents calculation of prob negbinom>170, but first 170 account for 0.99997 of distribution

k=i

if(v>cumprob(170))k=200

! print *,’i,k=’,i,k

ioffspring=ioffspring +k

end do

return

end
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