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 26 

ABSTRACT 27 

The Islamic Republic of Iran reported its first COVID-19 cases by 19th February 2020, 28 

since then it has become one of the most affected countries, with more than 73,000 cases 29 

and 4,585 deaths to this date. Spatial modeling could be used to approach an 30 

understanding of structural and sociodemographic factors that have impacted COVID-19 31 

spread at a province-level in Iran. Therefore, in the present paper, we developed a spatial 32 

statistical approach to describe how COVID-19 cases are spatially distributed and to 33 

identify significant spatial clusters of cases and how  socioeconomic and climatic features 34 

of Iranian provinces might predict the number of cases. The analyses are applied to 35 

cumulative cases of the disease from February 19th to March 18th. They correspond to 36 

obtaining maps associated with quartiles for rates of COVID-19 cases smoothed through a 37 

Bayesian technique and relative risks, the calculation of global (Moran’s I) and local 38 

indicators of spatial autocorrelation (LISA), both univariate and bivariate, to derive 39 

significant clustering, and the fit of a multivariate spatial lag model considering a set of 40 

variables potentially affecting the presence of the disease.  We identified a cluster of 41 

provinces with significantly higher rates of COVID-19 cases around Tehran (p-value< 42 

0.05), indicating that the COVID-19 spread within Iran was spatially correlated. Urbanized, 43 

highly connected provinces with older population structures and higher average 44 

temperatures were the most susceptible to present a higher number of COVID-19 cases 45 

(p-value < 0.05). Interestingly, literacy is a factor that is associated with a decrease in the 46 

number of cases (p-value < 0.05), which might be directly related to health literacy and 47 

compliance with public health measures.  These features indicate that social distancing, 48 

protecting older adults, and vulnerable populations, as well as promoting health literacy, 49 

might be useful to reduce SARS-CoV-2 spread in Iran. One limitation of our analysis is that 50 

the most updated information we found concerning socioeconomic and climatic features is 51 
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not for 2020, or even for a same year, so that the obtained associations should be 52 

interpreted with caution. Our approach could be applied to model COVID-19 outbreaks in 53 

other countries with similar characteristics or in case of an upturn in COVID-19 within Iran.     54 

 55 

Keywords: COVID-19, Iran, SARS-CoV-2, spatial clusters, spatial epidemiology, 56 

spatial statistics. 57 

 58 

Author Summary 59 

Iran was among the first countries reporting a rapid increase in the number of COVID-19 60 

cases. Spatial epidemiology is useful to study the spatial distribution of a disease and to 61 

identify factors associated with the number of cases of such disease. By applying these 62 

methods, we aimed to identify whether there are clusters of regions in Iran with high or low 63 

number of COVID-19 cases and the association of different factors with these numbers, 64 

considering spatial relationships and maps representing these associations. Interestingly, 65 

we found regions of high number of cases and that more COVID-19 cases were present in 66 

provinces with more urbanization, aging population, number of physicians, efficient 67 

communications, and greater average temperatures, whereas less COVID-19 cases were 68 

present in provinces with more literacy. This study allowed us to understand the spatial 69 

behavior of the disease and the importance of having adequate health policies, literacy 70 

campaigns, and disseminating health information to the population. 71 

  72 

  73 
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INTRODUCTION 74 

On 11th March 2020, the General Director of the World Health Organization (WHO), Dr. 75 

Tedros Adhanom Ghebreyesus, declared the new infectious respiratory disease COVID-76 

19, caused by the infection of novel coronavirus SARS-CoV-2 as a pandemic, due to the 77 

rate of growth of new cases, the number of affected people, and the number of deaths (1). 78 

As of the time of this writing (April 15th, 2020), the number of infected cases world-wide 79 

corresponded to more than 1 million, being the most affected countries: Italy (16,523 80 

deaths), Spain (13,341 deaths), USA (10,792 deaths), France (8,911 deaths), United 81 

Kingdom (5,373 deaths), and Iran (3,739 deaths)(2,3).   82 

 Iran was among the first countries outside of China to report a rapid increase in the 83 

number of COVID-19 cases and associated deaths; its first confirmed cases were reported 84 

on 19th February 2020 in the province of Qom imported from Wuhan, China(4). 85 

Nevertheless, some reports suggest that the outbreak may have happened two or six 86 

weeks before the government official announcement (5). Iran had one of the highest 87 

COVID-19 mortality rates early in the pandemic, and its rate of spread has been amongst 88 

the highest. However, as with other countries, it may be a sub-estimation of cases, and 89 

there may be other cases not officially reported (6). 90 

The large count of COVID-19 cases and mortality in Iran are multifactorial. Iran’s response 91 

to the epidemic has been highly affected by several imposed economic sanctions and 92 

armed conflicts within the last 20 years. Moreover, its difficult economic situation due to a 93 

recession, having inflation rates that are among the highest in the region, has taken a toll 94 

on its public health system (7,8). Although there are approximately 184,000 hospitals and 95 

primary health-care staff, limitations in the availability of COVID-19 testing kits, protective 96 

equipment, and ventilators are quite important. On the other hand, over the last years, Iran 97 

has slowed the rate of mortality associated with infectious and maternal diseases. It is 98 

currently undergoing an epidemiological transition where infectious diseases interact with 99 
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chronic conditions (2). In this sense, Iran may represent other similar developing world 100 

countries with poor health systems and an increased prevalence of chronic diseases.  101 

Spatial statistics have emerged as a useful tool for the analysis of spatial epidemiology, 102 

concerning mapping and statistical analyses of spatial and spatial-temporal incidences of 103 

different pathogens. The aim of this paper is to perform spatial analyses which allow us to 104 

better understand the COVID-19 outbreak in Iran, not only in terms of the strength of its 105 

presence and socioeconomic and structural factors which facilitate the disease spread 106 

within Iranian provinces, but also in terms of how the disease is spatially distributed and 107 

which variables are spatially related with it considering the spatial effect to obtain adequate 108 

inferences. Given the role of climate and socio-economic factors in determining the 109 

distribution of cases and its impact world-wide, we also aimed to incorporate said factors 110 

as predictors of SARS-CoV-2 spread (9,10).This could aid to understand the burden of 111 

COVID-19, its distribution in the country, and its implication on public health within Iran and 112 

similar countries (11) and could contribute to public health measures by providing insight 113 

to inform the implementation of interventions or to understand socio-demographic factors 114 

associated with the SARS-CoV-2 spread and COVID-19 heterogeneity as it has been 115 

applied to previous infectious diseases (12–16). 116 

MATERIAL AND METHODS 117 

Data sources 118 

We obtained province-specific data considering 31 provinces or polygons in Iran (Table 1). 119 

From the Statistical Centre of Iran (17), we extracted information concerning: 1) people 120 

settled in urban areas in 2016 (%), calculated from the population and household of Iran 121 

by province and sub-province information of the census, 2) people aged ≥60 years in 2016 122 

calculated from the population disaggregated by age groups, sex, and province 123 

information of the census, 3) population density (people per ���) in 2016, 4) literacy rate 124 

of population aged ≥6 years in 2016, obtained from the document of selected results from 125 
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the 2016 census, 5) the Consumer Price Index percent changes on March 2020 for the 126 

national households in contrast to the corresponding month of the previous year (point-to-127 

point inflation), and  6) the average temperature (°C) of provincial capitals and 7) annual 128 

precipitation levels (mm) in 2015, both part of the climate and environment information. 129 

From the Iran data portal (18), we obtained, from the health section: 1) the number of 130 

physicians employed by the ministry of health and medical education in 2006 and 2) the 131 

number of beds in operating medical establishments in 2006 and from the government 132 

finance section: 3) the province contribution to gross domestic product (GDP) in 2004. We 133 

used a Transportation Efficiency Index (TEI)(19), constructed through Data Evelopment 134 

Analysis, being an indicator of the extent in which each province efficiently utilize their 135 

transportation infrastructure. The TEI has values between zero and one, values near to 136 

one indicate provinces better communicated, but we standardized it (values of each 137 

province minus its mean divided by the associated standard deviation) to allow 138 

interpretations in a better scale in terms of how the increase in a certain number of 139 

standard deviations of the TEI is associated with the number of COVID-19 cases. The 140 

cumulative number of cases with confirmed COVID-19 by Province from February 19th to 141 

March 18th, 2020, was also obtained (20). It is important to notice that, in order to obtain 142 

more accurate rates of cases with COVID-19, population size in 2020 by province was 143 

derived by using mathematical projection methods (arithmetic, geometric, exponential, and 144 

logistic or saturation methods) using information contained in the population and housing 145 

censuses from 2006, 2011, and 2016. Since all methods provided similar results, we show 146 

here only those associated with the arithmetic method. Shapefiles were obtained from the 147 

Stanford Libraries Earthworks: https://earthworks.stanford.edu/catalog/stanford-148 

dv126wm3595, in which files are freely available for academic use and other non-149 

commercial use (21).  150 

COVID-19 rate estimation by Iranian provinces 151 
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We obtained quantile maps associated with raw rates of COVID-19 cases, as well as 152 

smoothed case rates by province using an empirical Bayes estimator, which is a biased 153 

estimator that improves variance instability proper of rates estimated in small-sized spatial 154 

units (22) (i.e. provinces with a larger population size have lower variance than provinces 155 

with a smaller population size). Since raw and smoothed rates were surprisingly similar, 156 

only results of smoothed rates are reported. We also obtained maps concerning excess or 157 

relative risk, serving as a comparison of the observed number of cases by the province to 158 

a national standard. For the variable concerning the number of people aged ≥60 years by 159 

province, raw, and smoothed rates were obtained using empirical Bayes, and the latter 160 

were used in all analyses. 161 

Spatial weight estimation and spatial autocorrelation 162 

Since all spatial analyses require spatial weights, we obtained queen contiguity weights 163 

(23). Provinces were considered as neighbors when they share at least a point or vertex in 164 

common, obtaining a squared matrix of dimension 31 (31x31 matrix) with all entries equal 165 

to zero or one, the latter value indicating that two provinces are neighbors. From these 166 

neighbors, weights are calculated by integrating a matrix in a row-standardized form, i.e., 167 

equal weights for each neighbor and summing one for each row. Moran's I statistic was 168 

obtained as an indicator of global spatial autocorrelation (24), and its significance was 169 

assessed through a random permutation inference technique based on randomly 170 

permuting the observed values over the spatial units (25). Local indicators of spatial 171 

autocorrelation (LISA) were obtained, being these a decomposition of Moran’s I used to 172 

identify the contribution of each province in the statistic (26). LISA was used to derive 173 

significant spatial clustering through four cluster types: High-High, Low-Low, High-Low, 174 

and Low-High. For instance, the High-High cluster indicates provinces with high values of 175 

a variable that are significantly surrounded by regions with similarly high values.  176 

Analogous to Moran's I and LISA, estimates can be calculated to identify the spatial 177 
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correlation between two variables and to identify bivariate clustering (27). For instance, to 178 

identify provinces with high values in a first variable surrounded by provinces with high 179 

values for a second variable (cluster High-High). Bivariate clustering and quartile maps 180 

were obtained for each of the significant variables in a linear spatial model, to have a 181 

better understanding of the individual spatial effect of each of these variables over the 182 

smoothed rates associated with the disease. 183 

Spatial multivariate linear models 184 

Spatial multivariate linear models were fitted to identify variables that significantly impact 185 

the 186 

number of log-transformed COVID-19 cases (28).  This response variable was chosen 187 

since 188 

the corresponding model better satisfies all statistical assumptions, the other variables 189 

introduced in the Data section were simultaneously introduced as explanatory, first 190 

removing from the model all variables generating multicollinearity. Ordinary Least Squares 191 

(OLS) estimation was used to identify whether a linear spatial model was necessary by 192 

using a Lagrange Multiplier (LM) and a robust LM statistics to compare the non-spatial 193 

model with spatial models (29). Two kinds of spatial models were compared; the spatial-194 

lag model considers the spatially lagged response as an additional explanatory variable, 195 

whereas the spatial-error model considers that the error is a linear function of a spatially 196 

lagged error plus another error term. Another model was obtained by performing a 197 

backward selection process, considering the elimination of the most non-significant 198 

variable in each step and the minimization of the Akaike Information Criterion (AIC). This 199 

process allowed us to identify whether the associations obtained through this model were 200 

similar as those obtained through the model including all variables. For significant 201 

variables in the linear spatial models, interpretations in the original scale (i.e., as counts) 202 

were derived and we performed bivariate LISA significant clustering between each of 203 
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these significant variables and the rate of cases with COVID-19, as explained above. All 204 

statistical analyses were conducted using GeoDa version 1.14.0. A two-tailed p-205 

value<0.05 was considered as the significance threshold. 206 

RESULTS 207 

Rates description and spatial autocorrelation of COVID-19 case rates between provinces 208 

Maps for quartiles corresponding to the smoothed rates and excess risk of COVID-19 209 

cases are shown in Figure 1. We observed that the highest rates of COVID-19 and excess 210 

risk values were located in the Northern region of Iran corresponding to the provinces of 211 

Qom, Marzaki, Mazandaran, and Semnan. There were also high rates associated with the 212 

provinces of Alborz, Gilan, Qazvin, and Yazd (last quartile). We observed significant 213 

spatial autocorrelation (Moran’s I=0.426, p=0.002), indicating that COVID-19 rates 214 

between provinces are significantly spatially related.  From the heat and significance maps 215 

corresponding to significant clusters using an empirical Bayes spatial technique, we 216 

delimited a High-High cluster in red, indicating a northern zone around Tehran and Alborz 217 

with significant high COVID-19 rates surrounded by areas with similarly high rates. 218 

Conversely, we delimited a Low-Low cluster in blue indicating southern provinces with 219 

small rates surrounded by areas with similarly lower rates, which includes the provinces of 220 

Bushehr, Homozgan, Sistan, and Baluschestan. Interestingly, Golestan showed in light 221 

purple, has significantly lower COVID-19 rates despite being surrounded by a cluster of 222 

provinces with higher rates (Figure 2). 223 

Selection of multivariate linear spatial model for COVID-19 spread 224 

Since the variable hospital beds is strongly associated with variables GDP and number of 225 

physicians (Kendall correlation coefficients above 0.55), we eliminated it from all models to 226 

avoid multicollinearity (Supplementary material). We confirmed that a spatial model was 227 

necessary since the error term from the OLS fitting showed significant spatial 228 

autocorrelation (Moran’s I= 0.134, p-value=0.025). Additionally, the LM and Robust LM 229 
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statistics indicated that a spatial lag model was required since the spatial parameter (�) 230 

associated with the spatially lagged response was significant (LM=10.669, p-value=0.001; 231 

Robust LM=13.557, p-value < 0.001), which did not occur with the spatial error model 232 

since the corresponding spatial parameter was not consistently significant (LM=1.256, p-233 

value=0.262; Robust LM=4.144, p-value=0.042). Thus, only the spatial lag model was 234 

fitted obtaining a significant spatial parameter (� = 0.723, p-value<0.001), which indicated 235 

that the rate of an area in the linear model is affected by COVID-19 rates in neighboring 236 

areas (R2=0.877, ��=0.146). Normality and homoscedasticity assumptions were 237 

reasonably satisfied.  238 

Predictors of COVID-19 spatial spread in Iranian provinces 239 

The significant variables associated with the model obtained through the selection scheme 240 

were the same as those associated with the model including all variables. This simplified 241 

model excluded population density, Consumer Price Index, and annual precipitation. The 242 

estimated coefficients were similar for both models; however, we analyzed the estimations 243 

associated with the model including all variables to consider effects controlled for these 244 

three variables. Hence, the variables that significantly impact the log-transformed number 245 

of COVID-19 cases include: the percentage of people settled in urban areas (p-value = 246 

0.019), smoothed rate of people aged ≥60 years (p-value < 0.001), literacy rate (p-value = 247 

0.006), average temperature (p-value < 0.001), number of physicians employed (p-value < 248 

0.001), and the TEI (p-value = 0.035) (Table 2).  A 10% increase in urban population or a 249 

1% increase in the population aged ≥60 years has a percentage increase of 29.29% 250 

(95%CI 26.55 – 32.10%) and 46.65% (95%CI 26.54% -69.95%), respectively, on the 251 

number of COVID-19 cases. Moreover, an increase of 1°C in the temperature levels, an 252 

increase of 1 physician, or an increase of one deviation over the standardized TEI also 253 

have a percentage increase of 11.98% (95%CI 5.54-18.80%), 0.08% (95%CI 0.06 - 254 

0.11%), and 16.98% (95%CI 1.14-35.30%), respectively, over the number of COVID-19 255 
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cases. Finally, a 1% increase in the literacy rate showed a percentage decrease of 10.44% 256 

(95%CI 3.18-17.16%) on the number of cases.  257 

Spatial lag predictors and province clusters 258 

Quartile maps for each of the significant variables in the spatial lag model are shown in 259 

Figure 3. Finally, concerning bivariate LISA significant clustering, we observed a positive 260 

spatial relationship (Moran’s I=0.341, p-value=0.002) between urban population and 261 

COVID-19 rates; provinces with high urban rates surrounded by areas with high COVID-19 262 

rates are the same as the ones in the High-High cluster for COVID-19, except for 263 

Mazandaran, and similarly for the Low-Low cluster, except for Bushehr. There is also a 264 

positive spatial relationship (Moran’s I=0.279, p-value=0.002) between the population aged 265 

≥60 and COVID-19 rates. Both High-High and Low-Low clusters include similar provinces 266 

as the ones in the clusters for COVID-19, except for Qom and Alborz, which have 267 

significantly lower rates of people aged ≥60 years but are spatially surrounded by areas 268 

with high disease rates. Concerning literacy rates, we also identified a positive spatial 269 

relationship between literacy and disease rates (Moran’s I=0.362, p-value=0.005). The 270 

associated High-High cluster and that obtained for COVID-19 rates are formed by the 271 

same provinces, whereas in the south, Hormozgan and Bushehr have high literacy rates 272 

but are surrounded by areas with low disease rates.   273 

Concerning average temperature levels, the global spatial autocorrelation is negative 274 

(Moran’s I=-0.107, p-value=0.103). The High-High clusters for temperature and COVID-19 275 

rates are similar, except for Marzaki and Alborz, where there is significantly lower 276 

temperature surrounded by areas with high COVID-19 rates. In the south, there is a 277 

significantly high temperature with spatially lower disease rates.    278 

There is a positive spatial relationship (Moran’s I=0.302, p-value=0.003) between the 279 

number of physicians and the COVID-19 rate. There is a High-High cluster in the north 280 

with a High-Low zone between formed by Marzaki, Qom, and Semnan, with a significantly 281 
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lower number of physicians; however, they are spatially surrounded by areas with higher 282 

disease rates. Concerning the TEI, the spatial correlation is close to zero (Moran’s I = -283 

0.096, p-value=0.112), indicating a particular random global spatial relationship between 284 

TEI and the disease rate. The High-High cluster is the same as the High-High cluster for 285 

the disease, except for Mazandaran and Alborz, which have significantly low TEI but are 286 

surrounded by areas with high disease rates. In the south, two provinces, which formed a 287 

Low-Low cluster for COVID-19 cases, are now areas with high TEI spatially associated 288 

with areas with low disease rates.  289 

DISCUSSION 290 

Here, we demonstrate that the rates of COVID-19 cases within Iranian provinces are 291 

spatially correlated. This could be due to the origin of the outbreak, which started on the 292 

north of Iran, and can be seen through an important province cluster with the highest 293 

number of COVID-19 cases that we found around Tehran and Qom.  Several 294 

mathematical models have been used to model the COVID-19 outbreak, mostly focused 295 

on forecasting the number of cases and assessing the capacity of country-level healthcare 296 

systems to manage disease burden (30–32). In the present report, we demonstrate that 297 

the spatial relationship and socio-demographic factors associated with the provinces must 298 

be considered to model the disease adequately, and this report also highlights structural 299 

factors that may lead to inequities in COVID-19 spread. Of relevance, we highlight the role 300 

of social determinants of health in sustaining SARS-CoV-2 transmission and provide 301 

additional evidence that human mobility or province interconnectedness might be 302 

associated in favoring disease spread (33). 303 

Importantly, our approach demonstrates that urbanization, aging population, education, 304 

average temperatures, number of physicians, and inter-province communications are 305 

associated with the case numbers amongst Iranian provinces. The obtained results do not 306 

consider the spatial effect, which is accumulated since the spatially lagged response is 307 
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part of the explanatory variables, and they consider fixed values for all variables except the 308 

one being interpreted. Overall, these variables spatially correlate with the COVID-19 309 

province clustering indicating a consistent association with the observed variables.  The 310 

greatest increase in the number of COVID-19 cases is associated with people aged ≥60 311 

years, urban population, and how well the provinces are communicated, with age having 312 

one of the most important associations, an increase of 1% in the corresponding rate 313 

implies a percentage increase of 46.65% over the number of cases. Of relevance, 314 

mortality attributable to COVID-19 complications is higher in this age group, and age 315 

increases the likelihood of developing the symptomatic disease and increased disease 316 

severity (34,35).  Nevertheless, the association with older age could have different 317 

meanings depending on the number of comorbidities, with some reports labeling COVID-318 

19 as an age-related disease (36). Our data demonstrate that the spatial spread of 319 

COVID-19 has a relationship with population aging structures, a concept that must be 320 

explored in this setting to obtain population-specific estimates and lethality and which 321 

could represent a significant structural inequality related to COVID-19 burden (37). 322 

Urbanization rates also are associated with a percentage increase over the number of 323 

COVID-19 cases; we observed a similar association regarding province 324 

interconnectedness, which goes in line with recent information on human mobility and its 325 

effect in decreasing disease spread through social distancing (33). Urbanization, as a 326 

demographic phenomenon, leads to increased interconnectedness and human mobility as 327 

well as increased population density; these two factors facilitate disease spread. Emerging 328 

zoonotic diseases similar to SARS-CoV-2 have been linked to major structural factors that 329 

have been reported in other studies, including population growth, climate change, 330 

urbanization, and pollution (38,39). Thus, communication and the degree of urbanity, and 331 

what this implies in terms of pollution, overcrowding, among other factors, seem to be 332 

relevant to determine the number of COVID-19 cases and should imply geographical 333 
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targets for public health interventions to monitor disease spread and disease containment 334 

(40).   335 

The only effect associated with a decrease in the number of COVID19 cases in our study 336 

was attributed to literacy, which might reflect several factors that ultimately influence 337 

disease spread. Data from several countries, including Iran, identified that higher health 338 

literacy was associated with a lower number of COVID-19 cases, probably reflecting 339 

attitudes towards public health measures including social distancing, early disease 340 

detection, and hand hygiene (41,42). Interestingly, this poses a potential public health 341 

intervention given that individuals with reduced health literacy, not only might have higher 342 

rates of COVID-19, but also increased likelihood for depression and impaired quality of life 343 

in suspected cases. Literacy’s protective effect on disease spread also indicates a strong 344 

influence on social inequity and vulnerability as risk factors for COVID-19 spread, 345 

particularly on the influence of health equity, which will likely define the long-term impact of 346 

COVID-19 in many developing countries (43). 347 

Concerning average temperature levels, we were able to obtain information associated 348 

only with the capitals and not the provinces, being a limitation of the analyzed information, 349 

obtaining some inconclusive results. On one hand, the global spatial autocorrelation was 350 

negative, though not statistically significant, indicating that global areas with higher 351 

temperatures are spatially related to areas with lower disease rates. On the other hand, on 352 

the spatial linear model, we derived that more temperature is associated with more cases. 353 

However; the former result does not contradict the latter since the direct effect in each 354 

province of a variable over the response is different from the spatial relationship between 355 

two variables. The latter considers one of the variables as spatially lagged (COVID-19), 356 

and thus the direct effect between variables in the same province is not included. In fact, 357 

this problem occurs in all the bivariate analysis, so care should be taken in all the 358 

interpretations. Notably, our results are consistent with previous analyses which have 359 
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analyzed the impact of climate on SARS-CoV-2 stability and spread (44). However, these 360 

results should be further studied considering the climate data limitations, that we obtained 361 

mixed results, and that some studies suggest there is no evidence that spread rates of the 362 

disease decline with higher temperatures (45).  363 

Our study had some strengths and limitations. We approached COVID-19 using spatial 364 

analysis, which allowed us to identify province-level factors that are associated with the 365 

disease spread and which may be shared by other countries with similar socioeconomic or 366 

geographic structures by potentially identifying targets for country-wide public health 367 

interventions. This approach considers disease spread beyond individual-specific factors 368 

and could also be used to monitor areas of a potentially high number of undiagnosed 369 

cases that could facilitate disease spread and the surge of delayed waves of COVID-19 370 

after initial mitigation (46,47). Methodologically, all our analyses consider the spatial nature 371 

of the data. We identified significant spatial clustering and in terms of the spatial 372 

multivariate linear model, by including a spatial effect, we consider that the number of 373 

cases in an area is affected by those in neighboring areas. In this way, a lack of 374 

independency between spatial units is considered, being independence assumed in a 375 

usual linear model, thus obtaining more precise estimations. Of course, other statistical 376 

methods are available for this task, as generalized linear mixed models or geographically 377 

weighted regression; however, they do not use spatial weights, making our results more 378 

comparable with the Moran’s I or spatial clustering, which are based on such weights.  A 379 

limitation of our approach is that most of the variables used to explain COVID-19 disease 380 

rates were taken from previous years and not updates, given the unavailability of recent 381 

estimates. Furthermore, smoothed COVID-19 rates were calculated using a projection of 382 

the population in 2020 since the most recent census corresponds to 2016, thus rates could 383 

have slightly different values.  In this sense, the explanatory variables were not projected 384 

since information of previous years was not always available; however, precise projections 385 
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for each variable were out of the scope of this work; and, it is also possible that some 386 

variables have a time lagged effect over the response. However; the time lagged effect we 387 

included was unintentional and dependent on the information available and not 388 

considering a lagged time effect  as defined by experts; for instance, for GDP we used a 389 

time lag of 16 years, when perhaps it should have been of fewer years.   When obtaining 390 

estimates using both projected and population size in 2016, we observed no significant 391 

changes in the results, which confirms the robustness of our approach. In fact, with all the 392 

mathematical projection methods similar results were obtained. However, the projections 393 

by province could be improved by considering a demographic balance equation and 394 

probabilistic projection methods as the ones obtained by country by the UN (48). In this 395 

sense, we suspect similar results would still be obtained since our projected values by 396 

country are similar to those obtained by the UN. We also observed that the smoothed and 397 

raw rates of COVID-19 cases were similar, with an absolute difference between them of at 398 

most 0.607 (considering rates for every 1000 individuals), this was probably due to Iran not 399 

having provinces with extremely small or large population size.  Future work could be 400 

focused on evaluating spatio-temporal modeling, which could be useful to monitor disease 401 

spread and identify additional factors relating not only to transmission rates but also to 402 

transmission dynamics. Since COVID-19 is currently challenging health systems all over 403 

the world, science-centered public health decisions could benefit from spatial modeling to 404 

investigate larger factors targeted for public health interventions. 405 

In conclusion, COVID-19 spread within Iranian provinces is spatially correlated. The main 406 

factors associated with a high number of cases are older age, high degrees of 407 

urbanization, province interconnectedness, higher average temperatures, lower literacy 408 

rates, and the number of physicians. Structural determinants for the spread of emerging 409 

zoonotic diseases, including SARS-CoV-2, must be understood in order to implement 410 
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evidence-based regional public health policies aimed at improving mitigation policies and 411 

diminishing the likelihood of disease re-emergence. 412 
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TABLES  561 

Table 1. Features extracted for spatial analyses disaggregated by Iranian provinces to predict the spread of COVID-19 cases. 562 

Abbreviations: GDP, Gross Domestic Product; TEI, Transportation Efficiency Index 563 

Province Cases
+
 

Urban 
population 

(%)* 

>60 
years 
(%)* 

Area 
(km2)* 

Density* 
Literacy 

(%)* 

Average 
temperature 

(°C)* 

Annual 
precipitation 

(mm)* 
Physicians** 

GDP** 
(2004) 

Hospital 
beds** 
(2006) 

Inflation* TEI*** 
Population**** 

(2020) 

Alborz 906 92.639 8.914 5122 529.559 92.2 16.7 220.5 2632.5 12.577 15327.5 28 0.524 2952309.6 

Ardebil 213 68.169 9.371 17800 71.372 83.1 10.9 296.5 354 1.127 1654 23.4 0.46 1287965.6 

Bushehr 46 71.854 6.841 22743 51.154 89.2 26.5 272.5 429 3.227 1345 24.4 0.301 1267760.8 

Chahar 
Mahall and 
Bakhtiari 

58 64.092 8.691 16328 58.045 84.7 11.8 309.7 499 0.727 1234 22.7 0.754 989763 

East 
Azarbaijan 571 71.859 10.732 45651 85.642 84.7 14 286.9 1104 3.927 5964 21 0.56 4057677.6 

Esfahan 1538 88.019 10.643 107018 47.850 89.9 17.7 96.3 2109 6.527 8261 24.2 0.696 5314080.4 

Fars 386 70.119 9.456 122608 39.567 88.8 18.9 271.5 1661 4.527 7154 22.3 0.591 5054966.8 

Gilan 924 63.343 13.250 14042 180.223 87.3 17.3 1388.3 1211 2.327 3716 24 0.472 2570553.6 

Golestan 351 53.275 7.796 20367 91.757 86.1 18.8 477.8 998 1.527 1769 25.4 0.372 1942263 

Hamadan 155 63.123 10.801 19368 89.748 85 13.1 215.7 688 1.627 3089 22.9 0.429 1722206.8 

Hormozgan 124 54.707 6.046 70697 25.127 87.8 27.8 152.2 492 2.227 1686 32.1 1 1935000.6 

Ilam 120 68.130 8.508 20133 28.816 84.9 18 842.4 145 0.827 875 27.9 1 598205.2 

Kerman 127 58.728 7.811 180726 17.511 81.5 17.2 109.8 955 2.527 3325 25.7 0.47 3345302 

Kermanshah 152 75.220 10.023 25009 78.069 85.4 16.5 512.8 755 1.627 2922 22.6 0.536 1958199.6 

Khuzestan 359 75.453 7.052 64055 73.539 86.3 27.3 269.7 1599 14.627 7511 22.3 0.95 4853540.2 

Kohgiluyeh 
and Buyer 

Ahmad 
45 55.741 7.139 15504 45.991 84.4 15.7 611.1 232 4.027 573 24.1 1 756590.4 

Kordestan 189 70.756 9.304 29137 55.016 84.5 15.4 444.4 605 1.127 2155 18.8 0.818 1690503.8 

Lorestan 363 64.460 8.830 28294 62.227 83 17.9 535.6 616 1.327 2153 26.7 0.963 1765773.8 

Markazi 782 76.935 10.892 29127 49.077 87 15.1 284.8 514 2.327 1866 23.4 0.689 1441887.8 

Mazandaran 1494 57.780 11.414 23842 137.723 88.7 18.6 724.7 1585 3.527 4475 25.9 0.269 3451293.2 
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North 
Khorasan 100 56.118 8.500 28434 30.354 83.3 14.8 227.4 288 0.727 730 24.7 0.533 859384 

Qazvin 526 74.751 8.925 15567 81.824 88.6 15.7 313.7 429 1.427 1403 25.4 0.544 1331517.8 

Qom 1074 95.178 7.696 11526 112.119 88.7 19.6 111.6 319 1.127 1493 24.6 1 1404771.8 

Razavi 
Khorasan 661 73.058 8.478 118851 54.139 89.1 17.2 183.4 3328 5.027 9131 20.5 0.658 6786580.2 

Semnan 577 79.803 9.978 97491 7.204 91.5 19.5 107.5 493 0.927 1269 22.7 0.868 759273.6 

Sistan and 
Baluchestan 

88 48.491 4.886 181785 15.265 76 19.8 103.7 657 1.127 2117 26.5 1 2967563.6 

South 
Khorasan 

100 59.023 9.757 95385 8.061 86.8 17.4 144.3 512 0.527 660 24.5 0.605 853989.2 

Tehran 4260 93.854 10.443 13692 969.007 92.9 19.1 209.3 2632.5 12.577 15327.5 28 1 14135033.8 

West 
Azarbaijan 

300 65.423 8.562 37411 87.280 82 12.5 277.3 993 2.027 3630 23.3 0.644 3412933.4 

Yazd 471 85.316 8.788 129285 8.806 90.9 21.3 38.4 610 1.227 2395 23.1 0.941 1189817 

Zanjan 261 67.253 9.783 21773 48.568 84.8 14 283.1 492 1.027 1264 22.4 0.651 1090842.6 

    * Statistical Centre of Iran 564 

   ** Iran data portal 565 

  *** Obtained from reference (12) 566 

 **** Population projected by using the population census 2011 and 2016 and an arithmetic method 567 
+Cases obtained from John Hopkins Database (https://coronavirus.jhu.edu/map.html)568 
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Table 2. Spatial lag models estimated via maximum likelihood to predict log-transformed COVID-19 case distribution between Iranian 569 

provinces (model including all variables and model obtained through a selection scheme). 570 

Variable Coefficient SE z-value p-value 

 
All 

variables* 
Selection 
scheme** 

All 
variables 

Selection 
scheme 

All 
variables 

Selection 
scheme 

All 
variables 

Selection 
scheme 

Spatial parameter (ρ) 0.723 0.737 0.107 0.104 6.734 7.069 <0.001 <0.001 

Model constant 2.510 2.853 2.550 2.425 0.984 1.176 0.325 0.239 

Urban population (%) 0.026 0.026 0.011 0.010 2.345 2.653 0.019 0.008 

Population aged ≥60 0.383 0.331 0.075 0.062 5.089 5.324 <0.001 <0.001 

Population density -0.0002  0.0007  -0.258  0.797 

Literacy -0.110 -0.103 0.040 0.040 -2.771 -2.591 0.006 0.010 

Average temperature (°C) 0.113 0.114 0.030 0.028 3.748 4.105 <0.001 <0.001 

Precipitation levels (mm) -0.0003  0.0003  -0.98  0.327 

Physician distribution 0.0008 0.0008 0.0001 0.0001 5.740 5.746 <0.001 <0.001 

GDP -0.051 -0.057 0.038 0.034 -1.343 -1.699 0.179 0.089 

Consumer Price Index 0.032  0.039  0.812  0.417 

TEI 0.157 0.155 0.074 0.074 2.112 2.081 0.035 0.038 

*Likelihood Ratio Test=15.628, p< 0.001 (no spatial vs spatial model); R2=0.877; AIC=57.165; ��= 0.146 
** Likelihood Ratio Test=18.682, p< 0.001 (no spatial vs spatial model); R2=0.872; AIC=52.704; ��= 0.152 
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FIGURE LEGENDS 574 

 575 

Figure 1. Maps associated with COVID-19 cases by province from February 19th to March 20th, 2020. A) Quartiles were 576 

corresponding to rates smoothed through an empirical Bayes procedure. B) Excess or relative risk.  577 
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 578 

 Figure 2. Spatial clustering associated with rates of COVID-19 cases by province from February 19th to March 20th, 579 

considering queen contiguity weights. A) Significant spatial clustering obtained through Local Indicators of Spatial Autocorrelation 580 

(LISA) comparisons. Four types of a cluster are possible: High-High, Low-Low, High-Low, and Low-High. For instance, the High-High 581 

cluster (red) indicates provinces with high values of a variable that are significantly surrounded by regions with similarly high values.  582 

B) P-values associated with the spatial clustering in A), C) Scatter plot associated with the smoothed rates vs. their corresponding 583 

spatially lagged values, including the associated linear regression fitting, whose slope corresponds to the Moran's I statistic, a global 584 

spatial autocorrelation measure. 585 
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 587 

Figure 3. Quartiles associated with all the explanatory variables significant in the spatial lag model with response variable 588 

the logarithm of the number of COVID-19 cases. A) People settled in urban areas in 2016 (%). B) People aged ≥60 years, rates 589 

obtained through empirical Bayes smoothing. C) Literacy of population aged ≥6 years in 2016 (%). D) Average temperature (°C) of 590 

provincial capitals in 2015. E) Number of physicians employed by the ministry of health and medical education in 2006. F) 591 

Transportation Efficiency Index (TEI). 592 
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 593 

Figure 4. Bivariate LISA's significant spatial clustering between each of the significant variables in the spatial lag model and 594 

the rate of cases with COVID-19 smoothed through the empirical Bayes approach. The scatter plots associated with the 595 

variables vs. the spatially lagged smoothed rate of COVID-19 cases are presented as well, including the associated linear regression 596 

fitting, whose slope corresponds to the bivariate Moran's I statistic, a global spatial bivariate autocorrelation measure. A) People 597 

settled in urban areas in 2016 (%). B) People aged ≥60 years, rates obtained through empirical Bayes smoothing. C) Literacy of 598 
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population aged ≥6 years in 2016 (%). D) Average temperature (°C) of provincial capitals in 2015. E) Number of physicians employed 599 

by the ministry of health and medical education in 2006. F) Transportation Efficiency Index (TEI). 600 

 601 
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