Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Years of life lost due to the psychosocial consequences of COVID19 mitigation strategies based on Swiss data

View ORCID ProfileDominik A. Moser, View ORCID ProfileJennifer Glaus, View ORCID ProfileSophia Frangou, View ORCID ProfileDaniel S. Schechter
doi: https://doi.org/10.1101/2020.04.17.20069716
Dominik A. Moser
1University of Bern, Institute of Psychology, Bern, Switzerland
2Lausanne University Hosptital, Child and Adolescent Psychiatry Service, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dominik A. Moser
  • For correspondence: dominik.moser{at}psy.unibe.ch
Jennifer Glaus
2Lausanne University Hosptital, Child and Adolescent Psychiatry Service, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jennifer Glaus
Sophia Frangou
3Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, Canada
4Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sophia Frangou
Daniel S. Schechter
2Lausanne University Hosptital, Child and Adolescent Psychiatry Service, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
5Université de Genève Faculté de médecine, Department of Psychiatry, Geneva, Switzerland
6New York University Grossman School of Medicine, Department of Child and Adolescent Psychiatry, New York, NY USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Daniel S. Schechter
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Background The pandemic caused by COVID-19 has forced governments to implement strict social mitigation strategies to reduce the morbidity and mortality from acute infections. These strategies however carry a significant risk for mental health which can lead to increased short-term and long-term mortality and is currently not included in modelling the impact of the pandemic.

Methods We used years of life lost (YLL) as the main outcome measure as applied to Switzerland as an exemplar. We focused on suicide, depression, alcohol use disorder, childhood trauma due to domestic violence, changes in marital status and social isolation as these are known to increase YLL in the context of imposed restriction in social contact and freedom of movement. We stipulated a minimum duration of mitigation of 3 months based on current public health plans.

Results The study projects that the average person would suffer 0.205 YLL due to psychosocial consequence of COVID-19 mitigation measures. However, this loss would be entirely borne by 2.1% of the population, who will suffer an average 9.79 YLL.

Conclusions The results presented here are likely to underestimate the true impact of the mitigation strategies on YLL. However, they highlight the need for public health models to expand their scope in order to provide better estimates of the risks and benefits of mitigation.

Introduction

Coronavirus disease 2019 (COVID-19) has led to the first truly global pandemic. At the time of writing this paper, there were over two million reported cases worldwide and more than 130,000 deaths attributed to COVID19 acute infection (1). Based on models of its spread, and potential for morbidity and mortality, most governments worldwide have adopted mitigation strategies that essentially limit social contacts (2, 3). The goal of these measures is to “flatten the curve” of acute presentations so as to prevent widespread morbidity and the break-down of health care systems. Variants of these social mitigation strategies range from “social distancing”, at-home-confinement-referred to as “self-isolation”, to selective “quarantine”, and to population “lockdown” that includes restriction of movement outdoors and closure of schools and all non-essential services and businesses.

None of the existing models have factored the possible adverse mental health effects of mitigation at a population level. These adverse effects can be intuitively anticipated but have never been rigorously modelled (4). Negative mental health outcomes can be attributed to the emotional and physiological effects of the risk posed by the virus and by reduced physical activity, social interaction and human physical contact (5-7). Studies on prior pandemics, such as the Severe Acute Respiratory Syndrome (SARS)found that the length of quarantine was an important predictor of post-traumatic stress disorder (PTSD), depression and anxiety with a cumulative prevalence exceeding 30% of the population (8, 9). Psychosocial stressors within families and loneliness for those living alone are also likely to spike in confinement and have adverse effects on mental and physical health (10-13). Available data suggest that stress associated with population-wide disasters increases the level of violence, including domestic violence and child abuse (14, 15). These are recognised risk factors for mental health and substance abuse problems (16) as well as suicide (17).

The anticipated impact of the COVID19 pandemic on mental health is expected to be significant but has not been considered in formulation current public policies. To address this gap, the present study makes a rapid model-projection concerning the years of life lost (YLL) if restrictive social mitigation measures are implemented for a period of 3 months. This duration was chosen as it aligns with the expected duration of social mitigation in many countries. We use data from Switzerland as an example. The model focuses on what we consider to be the major contributors to YLL affecting the majority of the population, namely: suicide, emergence or increase in psychopathology, childhood physical abuse and continued restriction of movement and at home confinement.

To be clear, this model focuses on changes to psychosocial risk factors. The COVID-19 crisis may also have other adverse consequences that may impact on longevity such as economic adversity, changes to activities of daily living such as eating, sleeping, smoking and ordinary alcohol consumption or decrease in medical provision to those who have health problems unrelated to COVID-19. Such additional factors are however beyond the scope of the present study. A more precise estimation of the mental health impact of the pandemic will be possible as relevant data become available.

Methods

Model

We conducted a literature review focusing on studies reporting on YLL in connection to situations conceptually similar to the current pandemic. These included data from studies on confinement in different contexts and from previous disasters including pandemics. We focused on studies from developed countries, primarily Switzerland, and when not available, from Europe followed by the United States, based on the United Nations Development Programme-Country Classification System. Switzerland has a population of 8.57 million (18) and introduced an “extraordinary situation” on March 16 2020. All boarders were closed to travel, all schools, markets, restaurants, non-essential shops, bars and entertainment and leisure facilities were closed, and all public and private events and gatherings were prohibited (19). Several regions had already taken a number of these measures in the preceding days and weeks. The Federal Council called on members of the public to avoid all unnecessary contact, maintain physical distance from others and stay whenever possible at home. According to government announcements these measures are expected to continue until at least April 27 2020 while a number of measures aimed at “social distancing”, including prohibition of gatherings, are expected to last until at least June 8 (20).

The following risk factors were considered based on their importance and data availability: Suicidality, depression, alcohol use disorder, childhood trauma due to domestic violence, changes in marital status, and social isolation. The projection of YLL for each of these factors is further described below. Data concerning the incidence of the risk factors as well as their impact on YLL were then applied to a model that assumes population-wide severe social mitigation policies (stay-at-home and restriction of outdoors movement) for a duration of 3 months. As a general rule, the present model erred on the conservative side when choosing YLL. For purposes of illustration only, we also present projected YLL for countries other than Switzerland based on their population size (21) assuming similar prevalence of risk factors. The model involved a six step process.

For each factor:

  1. Estimation of baseline risk of outcome i (BRi) based on the literature

  2. Estimation of YLL per incident of outcome i (YLLi) from the literature

  3. Estimation of increased risk factor during the pandemic for outome i (PRi), where possible based on literature

  4. Estimation of the increased incident cases relating to the pandemic outcome i (PICi)

    PICi=(PRi-1)*BRi*0.25

    Where PRi is the estimate of the increased risk of outcome i relating to the pandemic, D is the duration of the social mitigation measures, which is fixed 0.25 years (3 months)i

  5. Estimation of YLL for incidencei due to the pandemic (PYYLi)

    PYLLi= PICi *YLLi

  6. Calculation of summary statistics

PICs is the sum of all PICi; PYLLs is the sum of all PYLLi

Average YLL per impacted Person: PICs / PYLLs

Percentage of Persons impacted: PICs/100* Population of Switzerland (8.57 million)

Average PYLL per person of the general population: PYLLs/ Population of Switzerland (8.57 million)

To align with current models that focus on acute mortality, we focus on the 3-month period which represents an underestimate of the overall impact of the pandemic.

Results

A summary of the results is provided in Table 1 and details of the estimation of the increased YLL linked to the pandemic are presented below.

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table 1:

Projection of lost years of life for the population of Switzerland due to demographics and mental health changes related to a mass confinement of 3 months.

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table 2

indicates how many Years of life lost selected other countries would be projected to have, were their disorder and social representation were the same as Switzerland’s (it is simply a multiplication of the years of life lost by the size of the population). Population numbers for countries other than Switzerland were sourced from Wikipedia (21).

Suicidality

Bri

In 2017, Switzerland counted 1043 suicides excluding assisted suicide or euthanasia. Non euthanasia-related suicide was the cause of death in 16 out of 1000 deaths (22).

YLLi

US data from 2016, showed 1.542 million years were lost due to suicide (23) across 44965 suicides (24) leading to 34.3 YLL per death (1.542 million/44965).

PRi

We extrapolated on the relationship between confinement and suicidality from data from the penitentiary system. Community cell-confined prisoners already have an increased suicide rate by factors between 3.5 and 21 compared to the general population (25, 26). However, the risk of suicide for prisoners in single cells is further increased approximately 9 to 15 times (27).

Extrapolating from these data, we assume that confinement in the household increases their likelihood of suicide by a factor of 3 in multi-person households and a factor of 27 in single-person households (3*9). We assume this increase is stable for the entire 3-month duration. In Switzerland, 16% of the population live in single-households (28). These calculations result in a population-wide PRi of 6.84 (0.16*27 + 0.84*3).

PICi: 5.84* 1043*0.25= 1523 additional suicides.

PYLLi: = 1523*34.3 = 52239.

Depression

General

As mood and anxiety disorders are comorbid, we used data on depression in our model as it is likely to capture much of the distress related psychopathology; additionally, depression has the most convincing link to YLL which is our outcome of interest (29).

Bri

We used population prevalence data for depression as they capture both incident and pre-existing conditions(30, 31). Accordingly, we estimated that the pre-pandemic risk of depression for the Swiss population in a 3-month period is 3.45% (i.e. 8.57 million*0.0345= 295’665) with 64.7% of affected individuals being women. Because BRi is already adjusted for the 3-month period, no further correction for PICi was undertaken.

YLLi

Using data from a prior study on depression (32), we assumed loss of 7.91 years of life for men and 6.22 for women. Given the male-female ratio for depression (64.7% women) this results in YLLi = 6.82.

PRi

Three years after the SARS epidemic, the proportion of persons with symptoms related to higher stress was still increased by a factor of 3.47 among those who had been in quarantine, thus demonstrating the long-term implications of the phenomenon (33). A study of an Australian population quarantined due to equine flu suggested a similar 3-fold increase in depression (34). We used the latter estimate as it was the most conservative. We also factored in that -given therapy-84% of individuals with depression are likely to remit within 3 years (31). To be conservative and to capture cases most likely associated with mortality, we adjusted the model accordingly leading to a PRi of 1.32.

PICi: 295665*0.32=94613.

PYLLi: 94613*6.82= 645’2260 YLL.

Alcohol use disorder

General

Distress under any circumstances is a known risk factor for alcohol abuse disorder (AUD). There is abundant evidence of increased alcohol consumption during the current pandemic (35). Although the use of other substances seems to be increased as well, our model focuses on AUD as it is the most prevalent substance abuse disorder and the major contributor to mortality worldwide (36). Substance use disorders are significantly associated with increased mortality due to increased accidents, impulse-dyscontrol leading to violence and suicide, as well as increased physical morbidity (i.e. cardiovascular, gastro-intestinal, hepatic, and other somatic conditions) (37-39).

Bri

In Switzerland, 16.1 of men and 3.2% of women were estimated to suffer from AUD, meaning that 83.5% of cases are men and 16.5% are women (36).

YLLi

A cross-national Scandinavian study indicated that life expectancy among inpatients with AUD was reduced by 24-28 years compared to the general population (39). When only deaths from natural causes are considered, then life expectancy is reduced by 18.1 years in men and 16.5 years in women (38). To be conservative, and to account for the preponderance of men with AUD we assumed a reduction of life expectancy by 18 years in men (83.5% of cases) and 16 years in women (16.5% of cases) resulting in a total YLLi of 17.67 years.

PRi

We assume a population-level increase in AUD of 0.15% per month, with the first month leading to a higher incidence (0.3%). Therefore, countermeasures lasting 3 months would increase incidence by approximately 0.6%.

PICi: 0.6% of the population (8.57 million) = 51’000.

PYLLi: 51000*17.67 = 901’170.

Marital Status

General

Recent media reports indicate that divorce rates have increased since the instigation of COVID-19 mitigation policies (11, 40) In individual cases, divorces and separations can be beneficial to individual health and stress levels (for example in situations of abuse). Overall, however, even after taking into account risk factors that contribute to divorce and separation (i.e. financial stressors, mental and physical illness and substance abuse), divorce and separation given the experience of relational and economic stress, loss, and greater likelihood for social isolation, have been shown to have a negative impact on longevity (10). Causes for this may also include detrimental habits that individuals may adopt to cope with the stress, loss, and isolation (such as increased smoking (41)). Additionally having parents who divorce during childhood has been estimated to increase mortality by 44% and reduce life expectancy by an average of 4 years (42).

Bri

In 2018, there were 16542 divorces in Switzerland leading to a BRi=33084. Additionally 12212 minors were affected by the breakdown of marital relationships (43).

YLLi

A German study estimated that YLL atteibutable to divorce range between 3-8 years for women and 4-9 years for men (44). For this projection, 3.5 YLLi were modeled per couple (4 years for men, 3 years for women) and 4 years for each affected minor (42).

PRi

We based our calculation on the increase in divorce rate for the year following the Hurricane Hugo disaster (45) (wherefore factor D is omitted in the calculation of PICi). PRi was modelled as 1.63.

PICi

for adults: 33084 *0.63 = 20842; for affected minors: 12212*0.63 = 7694.

PYLLi

for adults: 20842*3.5= 72947; for affected minors: 7694*4=30776.

Childhood trauma due to domestic violence

General

Although family violence is commonly targeted towards both women and children, we focus specifically on the effects on children as specific impact on women was hard to quantify.

Bri

Even when not directly being the victim themselves, children being witnesses to violence can be an adverse childhood event.

In 2013, 9381 victims of domestic violence registered by the Swiss police. However, a survey indicated that that this latter number of victims would only represent 22% of the actual number, which would increase the number to 42641 victims per year (9381/22*100). 64.5% of domestic violence referred to violent interactions between either parents and their children or current romantic partners (46) (42641*0.645=27’503). Of Swiss multi-person-households 46% include children (28) and on average there are 1.76 children living in each of these households (47). BRi is therefore assumed to be 22’266 (27503*0.46*1.76).

YLLi

Experiencing 3 or more adverse childhood events (ACEs) is associated with 9.5 years of reduced expected quality longevity (48). Among adults, 25% report having experienced multiple averse childhood events (49). Because of this we conservatively project that only about every fourth of these events will lead to the full loss of 9.5 years; we therefore adjusted the YLLi to 2.37 years.

PRi

According to the World Health Organization (WHO), there has been a threefold increase in family violence since the start of the pandemic (50). However, additional events are not likely to be normally distributed across victims (46) and the measures to which these numbers refer may have been stricter than the one in Switzerland; accordingly we adopted a conservative PRi = 2.

PICi: 22266*1*0.25=5567.

PYLLi: 5567*2.37=13194.

Social isolation and reduced social connectedness

General

No studies were found that indicated the cost of social isolation or reduced social connectivity in YLL in a way directly adaptable to the present study. Moreover, the entire population is somewhere on a spectrum from socially hyperconnected to socially isolated. However, studies concerning risk ratios do exist.

Bri

The entire Swiss population of 8.57 million is on a spectrum from socially connected to socially isolated, depending on their personal circumstances.

YLLi

Based on the most recent data, Switzerland counted 67008 deaths in 2018 that were distributed across age groups as follows: category 1 (ages: 0-19): 0.8%; cat 2 (20-39): 1.2%; cat3 (40-64): 11.1%; cat 4 (65-79): 25.0%; cat5 (80+): 61.9% (22). There are no data informing on the baseline number of deaths that can be attributed to social disconnection or loneliness. In response, we averaged the life-expectancy of men and women and calculated YLLi according to the following steps: 1) life expectancy by category was taken from the Federal Statistics office of Switzerland which gives remaining life expectancy at birth, 30, 50, 65 and 80 years of age. (51). 2) We then conservatively adjusted YLL for each age category as a very rough approximation. This approximation is -if anything-aimed at underestimating the remaining life expectancy (cat 1: 73.45, cat 2: 54.2, cat 3: 34.8, cat 4: 15.5, cat 5: 4.95). 3) Overall, remaining life expectancy was then multiplied with the percentage of deaths in each age group, leading to a cumulative YLLi =12.03 for each additional death.

PRi

Having more social connections has been associated with lower death rate with an odds ratio of 1.5 (52). Conversely, a comprehensive meta-analysis indicated that social isolation is associated with an increase of all-cause mortality by a factor of 1.29 (53). Similarly, a large-scale study estimated that social isolation increased the hazard risk by a factor of 1.26 after adjusting for multiple potential confounders including anxiety, depression and lower socio-economic status (54). In our model, we use the most conservative estimate of 1.26. In a phase of confinement, we assume that a majority of 75% of the population experiences either reduced social connectedness and/or increased social isolation. This would lead to a PRi of 1.208.

PICi

Based on the 2018 data on the number of deaths in Switzerland (n=67008) (22), PICi was estimated as 67008*0.208*0.25=3484.

PYLLi: 3484*12.03=41’912.

Summary Statistics

The findings presented above are summarized in Table 1. The contribution of the different risk factors to PYLL in descending order was: Alcohol use disorder: 901’170, Depression: 645’260, Divorce: 103’723, Suicide: 52’239, Reduction of Social contact: 41’912, Averse childhood events due to domestic violence: 13’194.

The sum of all PYLLi was 1’757’498, this represents 0.205 PYLL per person in Switzerland (1757498/8.57 million) (Table 1). In other words, we project a loss of 10 weeks and 5 days due to COVID-19 related mitigation strategies if YLL is equally distributed in the entire Swiss population. The sum of all PICi was 179’520 which represents 2.1% of the Swiss population (179520/8.57 million). Assuming that this subpopulation will be most impacted, the average PYLL was estimated to be 9.79 (1757498/179’520=9.79).

Discussion

The current study focused on years of life lost due to the social mitigation strategies implemented in response to the COVID19 pandemic, with a primary focus on the consequences of at home confinement and restriction to freedom of movement.

The literature suggests that increased duration of confinement is associated with worse outcomes for psychological health of those confined (4). While some of the stress related problems ensuing from confinement may remit, an important portion of this damage may prove to be hard or impossible to reverse and the affected individuals may experience on going suffering. Our projection suggests that the Swiss population will incur a substantial increase in mortality as a consequence of confinement related psychosocial stress, which should be considered in forming public health responses to the pandemic. It is important that policy makers factor mental health when conduction cost-benefit analyses of mitigation strategies.

The present study hopes to have achieved two aims: 1) to provide information that helps authorities to consider whether and, if so, how to enact these countermeasures and what resources to employ for mitigation of their adverse consequences: 2) to make the case for more comprehensive modelling of the effect of pandemic-responses beyond the immediate risk attributed to acute infection.

Limitations

As we demonstrate here, the evidence base for building such comprehensive models is limited and accordingly we had to make several assumptions. In this sense, our model projection is obviously constrained by the limitations of the available literature which, itself, involves a number of unknowns. Given the time constraints, the uncertainty in those assumptions is increased; the authors however judge the urgency of such projections to be very high at the moment. Moreover, in this respect our model is not dissimilar to current projections of the spread and consequences of COVID19 which are being continually revised as more. Additionally, the present projection is not all-encompassing concerning potential effects of confinement: such as (prolonged) grief, elder abuse, increase of sedentary lifestyle or change of diet. The pandemic is also likely to have multiple additional consequences including distress due to job losses and financial hardship. The projection also does not model potentially positive changes in behaviour, for example reductions in car accidents and air pollution. Due to frequent co-occurrence of certain phenomena it is possible that a single individual may be affected by more than one of the factors presented. When possible, data were adjusted for age, sex and socioeconomics. However, for several factors, possibilities to do so were impeded by virtue of limitations of the current literature.

Data Availability

All data is available within the manuscript itself

Competing interests

The authors received no financial support for the submitted work; the authors report no financial relationships with any organizations that might have an interest in the submitted work in the previous three years; the authors report no other relationships or activities that could appear to have influenced the submitted work.

References

  1. 1.↵
    Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020.
  2. 2.↵
    Team IC-hSUF, JL M. Forecasting COVID-19 impact on hospital bed-days, ICU-days, ventilator-days and deaths by US state in the next 4 months. 2020.
  3. 3.↵
    Ferguson N, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Baguelin M, et al. Impact of non- pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf. 2020.
  4. 4.↵
    Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020;395(10227):912–20.
    OpenUrlCrossRefPubMed
  5. 5.↵
    Kerr F, Wiechula R, Feo R, Schultz T, Kitson A. Neurophysiology of human touch and eye gaze in therapeutic relationships and healing: a scoping review. JBI Database System Rev Implement Rep. 2019;17(2):209–47.
    OpenUrl
  6. 6.
    Ellingsen DM, Wessberg J, Chelnokova O, Olausson H, Laeng B, Leknes S. In touch with your emotions: oxytocin and touch change social impressions while others’ facial expressions can alter touch. Psychoneuroendocrinology. 2014;39:11–20.
    OpenUrl
  7. 7.↵
    Jones NA, Sloan A. Neurohormones and temperament interact during infant development. Philos Trans R Soc Lond B Biol Sci. 2018;373(1744).
  8. 8.↵
    Hawryluck L, Gold WL, Robinson S, Pogorski S, Galea S, Styra R. SARS control and psychological effects of quarantine, Toronto, Canada. Emerg Infect Dis. 2004;10(7):1206–12.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    Reynolds DL, Garay JR, Deamond SL, Moran MK, Gold W, Styra R. Understanding, compliance and psychological impact of the SARS quarantine experience. Epidemiol Infect. 2008;136(7):997–1007.
    OpenUrlCrossRefPubMed
  10. 10.↵
    Rendall MS, Weden MM, Favreault MM, Waldron H. The protective effect of marriage for survival: a review and update. Demography. 2011;48(2):481–506.
    OpenUrlCrossRefPubMedWeb of Science
  11. 11.↵
    Smith E. Divorce rates jumping in corona-quarantined couples. https://pagesix.com/2020/03/24/divorce-rates-jumping-in-corona-quarantined-couples/: Page Six; 2020 [
  12. 12.
    Hawkley LC, Capitanio JP. Perceived social isolation, evolutionary fitness and health outcomes: a lifespan approach. Philos Trans R Soc Lond B Biol Sci. 2015;370(1669).
  13. 13.↵
    World Health Organisation W. Global action plan on physical activity 2018-2030. 2019.
  14. 14.↵
    Stark L, Ager A. A systematic review of prevalence studies of gender-based violence in complex emergencies. Trauma Violence Abuse. 2011;12(3):127–34.
    OpenUrlCrossRefPubMed
  15. 15.↵
    Schumacher JA, Coffey SF, Norris FH, Tracy M, Clements K, Galea S. Intimate partner violence and Hurricane Katrina: predictors and associated mental health outcomes. Violence Vict. 2010;25(5):588–603.
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    1. Neria Y,
    2. Galea S,
    3. Norris FH
    Van Der Velden PG, Kleber RJ. Substance Use And Misuse After Disasters. In: Neria Y, Galea S, Norris FH, editors. Psychopathology After Disasters: Cambridge University Press; 2009.
  17. 17.↵
    Reger MA, Stanley IH, Joiner TE. Suicide Mortality and Coronavirus Disease 2019-A Perfect Storm? JAMA Psychiatry. 2020.
  18. 18.↵
    Switzerland FSOo. Ständige Wohnbevölkerung nach Staatsangehörigkeitskategorie, Alter und Kanton, 2. Quartal 2019. 2019 [Available from: https://www.bfs.admin.ch/bfs/en/home/statistics/population.assetdetail.9566127.html.
  19. 19.↵
    Press release: Coronavirus: Federal Council declares ‘extraordinary situation’ and introduces more stringent measures. [press release]. 2020.
  20. 20.↵
    Press releas: Federal Council to gradually ease measures against the new coronavirus. [press release]. 2020.
  21. 21.↵
    Wikipedia. List_of_countries_and_dependencies_by_population 2020 [Available from: https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population.
  22. 22.↵
    Switzerland FSOo. Specific causes of death 2020 [Available from: https://www.bfs.admin.ch/bfs/en/home/statistics/health/state-health/mortality-causes-death/specific.html.
  23. 23.↵
    Institute NC. Years of Life Lost 2020 [Available from: https://progressreport.cancer.gov/end/life_lost.
  24. 24.↵
    Prevention CfDCa. Fatal Injury Reports, National, Regional and State, 1981 - 2018 [Available from: https://webappa.cdc.gov/sasweb/ncipc/mortrate.html.
  25. 25.↵
    Roma P, Pompili M, Lester D, Girardi P, Ferracuti S. Incremental conditions of isolation as a predictor of suicide in prisoners. Forensic Sci Int. 2013;233(1-3):e1-2.
  26. 26.↵
    Eck M, Scouflaire T, Debien C, Amad A, Sannier O, Chan Chee C, et al. [Suicide in prison: Epidemiology and prevention]. Presse Med. 2019;48(1 Pt 1):46–54.
    OpenUrl
  27. 27.↵
    Duthe G, Hazard A, Kensey A, Shon JL. Suicide among male prisoners in France: a prospective population-based study. Forensic Sci Int. 2013;233(1-3):273–7.
    OpenUrl
  28. 28.↵
    Switzerland FSOo. Households Statistics 2019 [
  29. 29.↵
    1. Patel V,
    2. Chisholm D,
    3. Dua T,
    4. Laxminarayan R,
    5. Medina-Mora ME
    Charlson FJ, Baxter AJ, Dua T, Degenhardt L, Whiteford HA, Vos T. Excess Mortality from Mental, Neurological, and Substance Use Disorders in the Global Burden of Disease Study 2010. In: Patel V, Chisholm D, Dua T, Laxminarayan R, Medina-Mora ME, editors. Mental, Neurological, and Substance Use Disorders: Disease Control Priorities, Third Edition (Volume 4). Washington (DC)2016.
  30. 30.↵
    Wittchen HU, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jonsson B, et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol. 2011;21(9):655–79.
    OpenUrlCrossRefPubMed
  31. 31.↵
    Ten Have M, Penninx B, Tuithof M, van Dorsselaer S, Kleinjan M, Spijker J, et al. Duration of major and minor depressive episodes and associated risk indicators in a psychiatric epidemiological cohort study of the general population. Acta Psychiatr Scand. 2017;136(3):300–12.
    OpenUrlPubMed
  32. 32.↵
    Plana-Ripoll O, Pedersen CB, Agerbo E, Holtz Y, Erlangsen A, Canudas-Romo V, et al. A comprehensive analysis of mortality-related health metrics associated with mental disorders: a nationwide, register-based cohort study. Lancet. 2019;394(10211):1827–35.
    OpenUrlCrossRefPubMed
  33. 33.↵
    Wu P, Fang Y, Guan Z, Fan B, Kong J, Yao Z, et al. The psychological impact of the SARS epidemic on hospital employees in China: exposure, risk perception, and altruistic acceptance of risk. Can J Psychiatry. 2009;54(5):302–11.
    OpenUrlCrossRefPubMed
  34. 34.↵
    Taylor MR, Agho KE, Stevens GJ, Raphael B. Factors influencing psychological distress during a disease epidemic: data from Australia’s first outbreak of equine influenza. BMC Public Health. 2008;8:347.
    OpenUrlCrossRefPubMed
  35. 35.↵
    Clay JM, Parker MO. Alcohol use and misuse during the COVID-19 pandemic: a potential public health crisis? The Lancet Public health. In Press.
  36. 36.↵
    WHO WHO. Global status report on alcohol and health2018. 2018.
  37. 37.↵
    Hiroeh U, Appleby L, Mortensen PB, Dunn G. Death by homicide, suicide, and other unnatural causes in people with mental illness: a population-based study. Lancet. 2001;358(9299):2110–2.
    OpenUrlCrossRefPubMedWeb of Science
  38. 38.↵
    Hiroeh U, Kapur N, Webb R, Dunn G, Mortensen PB, Appleby L. Deaths from natural causes in people with mental illness: a cohort study. J Psychosom Res. 2008;64(3):275–83.
    OpenUrlCrossRefPubMedWeb of Science
  39. 39.↵
    Westman J, Wahlbeck K, Laursen TM, Gissler M, Nordentoft M, Hallgren J, et al. Mortality and life expectancy of people with alcohol use disorder in Denmark, Finland and Sweden. Acta Psychiatr Scand. 2015;131(4):297–306.
    OpenUrlCrossRefPubMed
  40. 40.↵
    Prasso S. China’s Divorce Spike Is a Warning to Rest of Locked-Down World. https://www.bloomberg.com/news/articles/2020-03-31/divorces-spike-in-china-after-coronavirus-quarantines: Bloomberg; 2020 [
  41. 41.↵
    Bourassa KJ, Ruiz JM, Sbarra DA. Smoking and Physical Activity Explain the Increased Mortality Risk Following Marital Separation and Divorce: Evidence From the English Longitudinal Study of Ageing. Ann Behav Med. 2019;53(3):255–66.
    OpenUrl
  42. 42.↵
    Martin LR, Friedman HS, Clark KM, Tucker JS. Longevity following the experience of parental divorce. Soc Sci Med. 2005;61(10):2177–89.
    OpenUrlCrossRefPubMed
  43. 43.↵
    Switzerland FSOo. Scheidungen, Scheidungshäufigkeit 2020 [Available from: https://www.bfs.admin.ch/bfs/de/home/statistiken/bevoelkerung/heiraten-eingetragene-partnerschaften-scheidungen/scheidungshaeufigkeit.html.
  44. 44.↵
    Doblhammer G, Muth E, Kruse A. Lebenserwartung in Deutschland: Trends, Prognose, Risikofaktoren und der Einfluss ausgewählter Medizininnovationen. Rostock; 2008.
  45. 45.↵
    Cohan CL, Cole SW. Life course transitions and natural disaster: marriage, birth, and divorce following Hurricane Hugo. J Fam Psychol. 2002;16(1):14–25.
    OpenUrlCrossRefPubMedWeb of Science
  46. 46.↵
    Zoder I. Polizeilich registrierte häusliche Gewalt. In: Switzerland FSOo, editor. 2012.
  47. 47.↵
    Csonka Y, Mosimann A. Familien in der Schweiz. Statistischer bericht 2017. In: Switzerland FSOo, editor. 2017.
  48. 48.↵
    Jia H, Lubetkin EI. Impact of adverse childhood experiences on quality-adjusted life expectancy in the U.S. population. Child Abuse Negl. 2020;102:104418.
    OpenUrl
  49. 49.↵
    Merrick MT, Ford DC, Ports KA, Guinn AS. Prevalence of Adverse Childhood Experiences From the 2011-2014 Behavioral Risk Factor Surveillance System in 23 States. JAMA Pediatr. 2018;172(11):1038–44.
    OpenUrl
  50. 50.↵
    WHO WHO. COVID-19 and violence against women. What the health sector/system can do. https://www.who.int/reproductivehealth/publications/VAW-COVID19-Rev1.pdf; 2020.
  51. 51.↵
    Federal Statistical Office S. Lebenserwartung 2020 [Available from: https://www.bfs.admin.ch/bfs/de/home/statistiken/bevoelkerung/geburten-todesfaelle/lebenserwartung.html.
  52. 52.↵
    Holt-Lunstad J, Smith TB, Layton JB. Social relationships and mortality risk: a meta-analytic review. PLoS Med. 2010;7(7):e1000316.
    OpenUrlCrossRefPubMed
  53. 53.↵
    Holt-Lunstad J, Smith TB, Baker M, Harris T, Stephenson D. Loneliness and social isolation as risk factors for mortality: a meta-analytic review. Perspect Psychol Sci. 2015;10(2):227–37.
    OpenUrlCrossRefPubMed
  54. 54.↵
    Elovainio M, Hakulinen C, Pulkki-Raback L, Virtanen M, Josefsson K, Jokela M, et al. Contribution of risk factors to excess mortality in isolated and lonely individuals: an analysis of data from the UK Biobank cohort study. Lancet Public Health. 2017;2(6):e260–e6.
    OpenUrl
Back to top
PreviousNext
Posted April 24, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Years of life lost due to the psychosocial consequences of COVID19 mitigation strategies based on Swiss data
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Years of life lost due to the psychosocial consequences of COVID19 mitigation strategies based on Swiss data
Dominik A. Moser, Jennifer Glaus, Sophia Frangou, Daniel S. Schechter
medRxiv 2020.04.17.20069716; doi: https://doi.org/10.1101/2020.04.17.20069716
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Years of life lost due to the psychosocial consequences of COVID19 mitigation strategies based on Swiss data
Dominik A. Moser, Jennifer Glaus, Sophia Frangou, Daniel S. Schechter
medRxiv 2020.04.17.20069716; doi: https://doi.org/10.1101/2020.04.17.20069716

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Psychiatry and Clinical Psychology
Subject Areas
All Articles
  • Addiction Medicine (430)
  • Allergy and Immunology (756)
  • Anesthesia (221)
  • Cardiovascular Medicine (3294)
  • Dentistry and Oral Medicine (364)
  • Dermatology (280)
  • Emergency Medicine (479)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (1171)
  • Epidemiology (13378)
  • Forensic Medicine (19)
  • Gastroenterology (899)
  • Genetic and Genomic Medicine (5155)
  • Geriatric Medicine (482)
  • Health Economics (783)
  • Health Informatics (3271)
  • Health Policy (1141)
  • Health Systems and Quality Improvement (1191)
  • Hematology (431)
  • HIV/AIDS (1018)
  • Infectious Diseases (except HIV/AIDS) (14632)
  • Intensive Care and Critical Care Medicine (913)
  • Medical Education (477)
  • Medical Ethics (127)
  • Nephrology (523)
  • Neurology (4927)
  • Nursing (262)
  • Nutrition (730)
  • Obstetrics and Gynecology (883)
  • Occupational and Environmental Health (795)
  • Oncology (2524)
  • Ophthalmology (725)
  • Orthopedics (281)
  • Otolaryngology (347)
  • Pain Medicine (323)
  • Palliative Medicine (90)
  • Pathology (543)
  • Pediatrics (1302)
  • Pharmacology and Therapeutics (550)
  • Primary Care Research (557)
  • Psychiatry and Clinical Psychology (4214)
  • Public and Global Health (7506)
  • Radiology and Imaging (1706)
  • Rehabilitation Medicine and Physical Therapy (1014)
  • Respiratory Medicine (980)
  • Rheumatology (480)
  • Sexual and Reproductive Health (498)
  • Sports Medicine (424)
  • Surgery (548)
  • Toxicology (72)
  • Transplantation (236)
  • Urology (205)