Quantitative Trait Loci on Chromosome 21 have Pleiotropic Effects on %FEV₁ and Allergen Polysensitization; asthma related traits in the EGEA study

Ayse Ulgen¹, Christopher Amos²

¹Girne American University, Faculty of Medicine, Karmi, Cyprus, 99320; ²Department of

Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA

Running title: Bivariate Asthma-related trait analysis

Corresponding Author:

Ayse Ulgen

Girne American University Faculty of Medicine Karmi, Cyprus, 99320

*Correspondence: ayseulgen@gau.edu.tr

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

ABSTRACT

To investigate whether the 21q21 region may contain a quantitative trait locus (QTL) with pleiotropic effect on % predicted FEV₁ (forced expiratory volume in 1 second) and SPTQ (number of positive skin test responses to 11 allergens), in 295 EGEA families ascertained through asthmatic probands, we conducted a bivariate linkage analysis using two approaches: (1) a bivariate variance components (VC) analysis and (2) A combined principal components (CPC) analysis, with 13 microsatellites covering the whole chromosome 21. To identify the genetic variants associated with these traits, we performed family-based association analysis (FBAT) for the second principal component (PC2) using two microsatellites and 27 SNPs belonging to three candidate genes, located in the vicinity of the linkage peak. Univariate linkage analyses showed suggestive evidence of linkage to %FEV₁ and SPTQ at two positions. Bivariate VC linkage analysis of these phenotypes led to an increase in linkage signals as compared to univariate analysis at the same positions. The peaks obtained by the CPC led to similar results as the full bivariate VC approach; evidence for linkage mainly coming from PC2. The strongest association signal, using single marker analysis for PC2, was obtained with D21S1252 (p=0.003 for global test; p=0.004 for allele 2 and p=0.001 for allele 11) and rs2834213 of IFNGR2 (p=0.003), these two loci being 3 Mb apart. Multi-marker analysis further strengthened this finding. These results indicate that at least two genetic factors

may be involved in SPTQ and %FEV $_1$ variability but further genotyping is needed to better understand these findings.

Key words: Linkage analysis; bivariate; asthma; pleiotropy; principal components; variance components; association analysis; multi-marker; asymptotic distribution

INTRODUCTION

Asthma is a multifactorial and complex disease associated with intermediate phenotypes involved in immune response to inflammation and lung function. Although the genetic component of asthma and asthma-related phenotypes has long been established [Vercelli 2008], the extent to which the genetic factors involved are common or specific to these phenotypes is unclear. To date, twenty independent genome-wide linkage studies have been conducted for asthma phenotypes and have identified at least 20 distinct chromosomal regions of potential interest [Ober and Hoffjan 2006]. One interesting feature of these published genome screens is that a given chromosomal region is often linked to various asthma- associated phenotypes across studies, suggesting that these phenotypes may share genetic determinants. However, the formal characterization of pleiotropic effects of genes underlying two or more asthma-related phenotypes has received little attention [Bouzigon, et al. 2007; Ferreira, et al. 2006].

A previous genome-wide scan conducted in 295 French families from the Epidemiological study on the Genetic and Environmental factors of Asthma (EGEA) for asthma and seven asthma-associated phenotypes detected a linkage signal at the same marker position in the 21q21 region for two asthma-related phenotypes: forced expiratory volume in 1 second percent predicted (%FEV₁) and a measure of polysensitization to allergens (SPTQ), suggesting that these traits may share genetic determinants [Bouzigon, et al. 2004].

Multivariate genetic linkage analyses of correlated phenotypes have been shown to improve power of detecting genes with small effects where these genes may be missed with univariate analyses [Allison, et al. 1998; Marlow, et al. 2003]. Several methods have been proposed to conduct bivariate linkage analysis, among which are the bivariate variance component (VC) approach [Amos, et al. 2001; Bauman, et al. 2005] and a combined analysis of principal components (PCs) [Mangin, et al. 1998]. Using a model with fixed genetic effects in a single phase known cross, [Mangin, et al. 1998] showed the asymptotic equivalences between the combined principal component approach and the bivariate test for linkage. However, these methods were not compared analytically in a VC model. A previous limited simulation study showed similar power for VC and CPC methods [Gorlova, et al. 2002]. We have further studied the asymptotic distribution of the bivariate VC test statistic under the null hypothesis of no linkage and defined upper and lower bounds of this statistic, since the asymptotic distribution of this test is more complex in VC model than in linear model.

In the present study, we tested for pleiotropic genetic determinants that may influence both %FEV₁ and SPTQ on chromosome 21q21 in the French EGEA families using the bivariate VC analysis and combined analysis of principal components. This linkage analysis was followed by an association analysis with candidate genes in the linkage region.

METHODS

FAMILY SAMPLE

The protocol of the EGEA data collection has been described elsewhere [Kauffmann, et al. 2001; Kauffmann, et al. 1997]. The sample examined by the present study consisted of 291 nuclear families ascertained trough at least one asthmatic subject. The inclusion criteria for asthma have been described in details elsewhere [Kauffmann, et al. 1997]. Subjects answered a detailed questionnaire regarding respiratory symptoms and treatment based on international standardized questionnaires. Biological and physiological tests were performed on each participant. Written informed consent was obtained from all subjects participating to the study under an Institutional Review Board-approved protocol.

PHENOTYPES ANALYZED

Skin-prick tests were performed for 11 allergens (including moulds, indoors and outdoors allergens). A positive response was defined as a wheal size exceeding that of the negative control by \geq 3 mm [Maccario, et al. 2003] A quantitative score (SPTQ) was constructed by counting the number of positive responses to allergens and thus measuring the degree of polysensitization. SPTQ originally included 12 classes (from 0 to 11) but classes 4 to 11 were combined into the last category because of small sample size. Prior to the analysis, SPTQ was adjusted for relevant covariates including age and sex using multiple regression. These regression models, including main effects and interaction terms, were built separately in three groups (parents, children offspring < 16 years of age, offspring \geq 16 years of age) as discussed in Bouzigon et al. [Bouzigon, et al. 2004].

Spirometric measures were carried out for adults and children separately. A survey for adults were conducted according to the European Respiratory Health Survey protocol [Burney, et al. 1994] and [Quanjer 1983] and a survey for children were conducted according to Polgar and Weng [Polgar and Weng 1979]The best of three pre-bronchodilator FEV₁ measures was used to calculate a percentage of predicted FEV₁ values (%FEV₁) based on age, height and gender [Polgar and Weng 1979; Quanjer 1983].

Since, %FEV₁ and SPTQ showed departures from normality with significant kurtosis for both traits ($p < 6.10^{-7}$), a probit transformation was applied to each phenotype prior to linkage analysis to normalize their distribution [Peng, et al. 2007].

GENOTYPING

Genotyping of chromosome 21 was done at CNG (Centre National de Génotypage at Evry), with five microsatellites from the original scan and eight additional markers for finemapping. The markers were distributed at an average distance of 3 cM and had an average

heterozygosity of 75%. After rigorous genotype quality control, the final sample for the present analysis included 291 families (1301 subjects) with at least one asthmatic subject, comprising 566 genotyped parents (97.3% of all parents) and 718 genotyped sibs. In addition to the microsatellite data, three candidate genes genotyped for a total of 27 SNPs and spanning a 33 -42 Mb region around the 43 cM linkage peak of 21q21 were available in the EGEA study (genotyping done at CNG with the TaqMan® SNP technology). These genes included: 4 SNPs in interferon (alpha and beta) receptor 2 (*IFNAR2*), 15 SNPs in the interleukin 10 receptor, beta (*IL10RB*) and 10 SNPs in the interferon gamma receptor 2 (*IFNGR2*) (see Supplementary Table S1). Additionally, supplementary table S2 shows the microsatellites and SNPs also belonging to the *ADAMTS1*, *ADAMTS5* and *ICOSL* genes.

STATISTICAL ANALYSES

LINKAGE ANALYSIS

Genetic and environmental components of variance for each trait and genetic and environment correlations between the two traits were estimated by variance decomposition using maximum likelihood methods implemented in the multipoint quantitative trait linkage software package (ACT) (<u>http://www.epigenetic.org/Linkage/act.html</u>) [de Andrade 1998].

We first conducted univariate linkage analysis of $\text{\%}\text{FEV}_1$ and SPTQ (adjusted and probit transformed values) using the VC method. We then carried out bivariate linkage analysis using bivariate VC and combined analysis of principal components (CPC) of the two phenotypes.

The univariate VC method separates the total variation of a trait into genetic and environmental components and evaluates linkage by comparing a model incorporating both a genetic additive variance (σ_a^2) at a putative QTL linked to marker(s) and a polygenic $(\sigma_a^2)_{G}$

component with a purely polygenic model (QTL variance,

$$o^2$$
, being set to zero) by a
a

likelihood ratio test (LRT). Minus twice the natural logarithm of this likelihood ratio follows asymptotically a one-sided chi-square with one degree of freedom. This chi-square divided by 2ln10 is a LOD score.

The univariate and bivariate variance component models are described in details in Amos *et al* [Amos, et al. 2001] and Williams *et al* [Williams and Blangero 1999]. For the univariate model, under the null hypothesis, the parameters estimated are the mean, μ , the additive genetic variance, σ^2 , the polygenic variance, σ^2 , and the environmental variance, a p

 o_e^2 . For the bivariate test, under the null hypothesis, the marker linked to the QTL parameters are restricted to be equal to zero (σ^2 , σ^2 , σ_{a1} , $a_2 = 0$), o_{a1}^2 and σ^2_{a2} being the additive genetic variance related respectively to trait1 and trait2 and $\sigma_{a1,a2}$ the additive genetic covariance between these traits. Under the alternative hypothesis, the three parameters are estimated with the constraints: $\sigma_{a1}^2 > 0, \sigma_{a2}^2 > 0$, and $\sigma_{a1,a2} \le \pm \sqrt{\sigma_a^2} \sqrt{\sigma_{a2}^2}$. The test for genetic linkage is constructed by a LRT. The distribution of the bivariate linkage test statistic depends whether a constraint is imposed on the genetic correlation between the traits. When the correlation is unconstrained, the asymptotic distribution of the bivariate test statistic, under the null hypothesis that the linked-genetic components and covariance are zero, is the supremum of a $\begin{pmatrix} \chi^2 + \chi^2 + \chi^2 + \chi^2 + \chi^2 \\ 4 & 0 & 2 & 1 & 4 & 2 \end{pmatrix}$ process (See Appendix). However, computing the probability distribution function of this supremum, in order to get quantiles or P-values, is a difficult task, so we used a mixture of $\begin{pmatrix} \chi^2 , \chi^2$ as an approximation of the

bivariate test statistic distribution. This approximation was shown, by simulations, to be an upper limit of the distribution [Amos, et al. 2001]. When the genetic correlation between the

traits is constrained to be zero, or any other value, the distribution of the bivariate linkage test statistic follows, under the null hypothesis, a mixture of $\frac{1}{4}\chi^2$, $\frac{1}{2}\chi^2$, and $\frac{1}{4}\chi^2$ and we define $\frac{1}{4}\sqrt{2}$

this as the lower bound of the test statistic distribution (See Appendix).

The idea of considering PC analysis of phenotypes prior to linkage analysis to obtain a set of uncorrelated PCs and obtaining a combined test statistic was proposed by Mangin et al [Mangin, et al. 1998]. These authors showed that the likelihood-ratio test used to test for the presence of a pleiotropic QTL modelled as a fixed genetic effect for a given mating type is asymptotically equivalent to the sum of likelihood-ratio tests of univariate analyses applied to the principal components of the phenotypes. Here, we applied this method in a VC model and called this approach as the CPC method. In a first step, a principal components (PC) analysis was applied to %FEV₁ and SPTQ, to obtain two uncorrelated principal components. These components were then subjected to independent univariate linkage analyses based on the VC method. In a second step, a combined test statistic, CPC test, was constructed by summing the univariate VC likelihood-ratio (LR) test statistics obtained for each of the two PCs: CPC

 $= \sum_{i=1}^{n} LR_i$, where the distribution of each LR_i test, under the null hypothesis of no linkage, is a mixture of $\frac{1}{2}\chi_0^2 + \frac{1}{2}\chi_1^2$. Since the two principal components are independent, the asymptotic

distribution of the combined PC test, CPC, is a mixture of $\frac{1}{2}\chi^2 + \frac{1}{2}\chi^2 + \frac{1}{4}\chi^2$.

FAMILY-BASED ASSOCIATION TEST

Association between quantitative phenotypes (%FEV₁, SPTQ, PC1 and PC2) and genetic polymorphisms (microsatellites and SNPs) was assessed using the family-based association test (FBAT) method [Lange, et al. 2002]. This method was applied to test for

association in the presence of linkage. We tested each marker under additive, dominant and recessive models and the best fitting model was selected.

Following single marker analysis, we carried out multi-marker analyses using FBAT-LC [Xu, et al. 2006]. This method allows testing multiple markers simultaneously without haplotype reconstruction. In brief, the FBAT-LC method proposed by Xu et al, is based on a linear combination of single-marker FBAT test statistics using data-driven weights, where marker weight derivation is based on the conditional mean model [Lange, et al. 2003].

RESULTS

DESCRIPTIVE STATISTICS

The phenotypic characteristics of 718 genotyped siblings belonging to 291 families are shown in Table I. Among these siblings, fifty-three percent were males and their mean age was 16.0 ± 7.7 (SD) years. The proportion of asthmatic siblings was 54.2%. The proportion of siblings having at least one positive skin prick test was 67.4%. The mean of %FEV₁ was 96.6 (SD=13.3) and SPTQ was 2.6 (SD=1.4) before adjustment on age and sex. The total number of sibs with phenotypic information was 694 for %FEV₁, 705 for SPTQ, and 681 when both phenotypes were jointly considered.

LINKAGE ANALYSIS

Heritability estimates, (h²), were significant for both probit transformed and age, sex adjusted phenotypes (P < 1.0×10^{-4}) and were equal to 38% (SD=3.3) for SPTQ and 57% (SD=3.2) for %FEV₁. The genetic correlations between %FEV₁ and SPTQ was positive (ρ_G = 0.2), whereas the environmental correlation was negative (ρ_E = -0.2).

Univariate and bivariate linkage analysis results for SPTQ and %FEV₁ are shown in Figure 1 and Table II. Univariate VC linkage analyses showed evidence for linkage to %FEV₁ at two positions: D21S265 at 25.5 cM (LOD = 2.2, p = 0.0008) and D21S1252 at 43 cM

(LOD=1.9, p=0.002). Univariate VC linkage analysis of SPTQ showed lower evidence for linkage than for %FEV₁ but at two positions adjacent to the two latter ones; D21S1914 at 24.4 cM (LOD = 1.07, p = 0.01) and D21S1895 at 41.1 cM (LOD = 1.10, p = 0.01).

Bivariate VC linkage analysis of %FEV₁ and SPTQ showed an increase in LOD scores as compared to univariate analyses with highest LOD scores obtained at the two previous positions (Figure 1): D21S265 (25.5 cM) with LOD scores ranging between 3.3 ($p = 2.0 \times 10^{-4}$) and 4.2 ($p = 7.0 \times 10^{-5}$) for the lower and upper bound of test statistics respectively and D21S1252 (43.0 cM) with LOD scores ranging between 3.48 (p = 0.0001) and 4.3 ($p = 6.0 \times 10^{-5}$). Parameter estimates at D21S265 and D21S1252 linked QTL are presented in Table

III. Using the unconstrained model, the QTL covariance ($\sigma_{a1, a2}$) for each of the two markers was positive (0.52-0.55) whereas the polygenic covariance ($\sigma_{p1, p2}$) was of opposite sign, varying from -0.85 to -0.98. The proportion of total variance explained by the QTL varied from 33% to 36% for %FEV₁ and from 23% to 29% for SPTQ.

The principal components (PC) analysis of %FEV₁ and SPTQ showed that the first and second PCs contributed respectively to 51% and 49% of the overall phenotypic variance. On the first PC (PC1), the coefficients for the two phenotypes were of opposite sign, (0.71 for %FEV₁ and -0.71 for SPTQ), while on PC2, the coefficients were positive. CPC analysis showed highest evidence for linkage at the same locations as the bivariate method, at 25.5 cM at D21S265 (p = 1.0×10^{-4}) and at 43 cM for D21S1252 (p = 3.9×10^{-5}) and at 41.1 cM position at D21S1895 (p = 3.6×10^{-5}).

The bivariate VC and CPC methods led to similar results but with a slightly higher evidence for pleiotropic QTLs at 25.6 cM with bivariate VC and at 41.1 and 43 cM with CPC. As can be seen in Table II, for the combined CPC, evidence for linkage came almost solely from PC2 at ($p=7.0\times10^{-5}$ at 25.5 cM and $p=2.0\times10^{-5}$ at 41.1 and 43 cMs) while no significant lod score for PC1 was observed. This led us to further study PC2 for association analysis.

ASSOCIATION ANALYSIS

The list of 27 SNPs belonging to the three candidate genes spanned a 0.185 Mb region from 33.55 to 33.73 Mb (Supplementary Table S1) between the two linkage peaks. None of these SNPs showed departure from Hardy-Weinberg equilibrium.

Univariate association of PC2 with the microsatellite markers located at the highest linkage peaks and the 10 SNPs of the candidate genes showed association signals with D21S1252 (p=0.003 with a global test under a dominant model) and two SNPs within *IFNGR2* (p=0.02 with rs9976971 and p=0.06 with rs2284553 under an additive model) (See Table IV and Supplementary Table S2 for all markers). When examining each allele separately at D21S1252, allele 2 was positively associated with PC2 (p=0.004) while allele 11 was negatively associated (p=0.001). Interestingly, this microsatellite is located within the *CLDN14* gene.

This single-marker association analysis was extended to two marker analysis using FBAT_LC by examining jointly each of the SNPs belonging to *IFNGR2* with either allele 2 or 11 from D21S1252. Higher evidence of association was consistently observed for each of *IFNGR2* SNPs in combination with allele 11 as compared with allele 2 of D21S1252. The strongest signal was obtained when considering jointly allele 11 of D21S1252 and *IFNGR2* [p=0.0001].

Examination of the LD pattern between D21S1252 alleles and *IFNGR2* SNPs showed no LD (LD coefficient r^2 being < 0.2). The 10 SNPs within *IFNGR2* showed also low pairwise LD except for three pairs of SNPs (see Table V and Figure 2).

DISCUSSION

The present study is the first one that examined allergy polysensitization and lung function in a bivariate fashion. Bivariate linkage analysis revealed two potential pleiotropic QTLs at 25 cM and 43 cM. Further, association between a combination of lung function values and measures of sensitization was formed with genetic variants at two loci, D21S1252 and *IFNGR2*, 3 Mb distant from each other, close to the 43 cM linkage peak. To our knowledge, this study is also the first attempt to test association between *IFNGR2* gene and %FEV₁ and allergen polysensitization. These results indicate that two genes in the 21q21 region influence lung function and allergen polysensitization.

Bivariate linkage analysis of %FEV₁ and SPTQ was carried out using two different methods: a bivariate variance component approach and a combined principal component analysis. Both bivariate linkage analyses led to an increase in linkage signals of the same magnitude at the two positions previously detected by univariate analyses. Simulation studies have shown that VC multivariate approaches are more powerful than univariate analyses when the traits are not very highly positively correlated, this power being highest when correlation relative to QTL and polygenic components underlying two phenotypes are of opposite sign [Amos, et al. 2001; Gorlova, et al. 2002]. Thus, bivariate analysis of %FEV₁ and SPTO, which show small phenotypic correlation, may be particularly useful to detect genes with pleiotropic effects on these phenotypes. One disadvantage of the VC approach is that it may be difficult to apply to more than two phenotypes since the number of VC parameters to be estimated increases geometrically as the number of phenotypes increases which can create convergence problems when maximizing the likelihood. Therefore, a potential advantage of the CPC approach is that it can be easily applied to more than two phenotypes although covariance and variances cannot be estimated. Moreover, this approach can be used with other test statistics [Bouzigon, et al. 2007].

Both bivariate VC and CPC approaches assume multivariate normality of the phenotypes and departure from normality may lead to inflation of type I error [Allison, et al. 1999]. However, probit transformation of each phenotype was used here to ensure the validity of the normality assumption.

Replication of linkage results across studies are important in supporting the actual involvement of linkage regions. We have considered all previously reported linkage peaks with $P \le 0.01$ by published genome scans performed to date in more than 20 different populations. Five different genome screens have reported linkage signals to 21q. At 21q21, around the first linkage peak for lung function, atopic asthma and specific skin prick tests (Postma et al, 2005, Pillai et al, 2006 and Blumenthal et al 2006). The 21q22 region around our second linkage peak was also reported linked to asthma and several atopy related phenotypes (specific IgE, specific skin prick tests) in three different populations (CSGA, Hutterites and German families) [1997; Blumenthal, et al. 2006; Ober, et al. 1999; Wjst 1999]. This is in agreement with our results.

The QTL detected on 21q22, *IFNGR2* gene, encodes the non-ligand-binding beta chain of the gamma interferon (*IFNG*) receptor. *IFNG* has been implicated to be associated to several asthma related phenotypes [Malerba and Pignatti 2005]. Human interferon-gamma receptor is a heterodimer of *IFNGR1* and *IFNGR2*. [Nakao, et al. 2001] investigated the association of a coding variant, *Gln64Arg* of the *IFNGR2* gene, with atopic asthma in Japanese child population but did not find any significant associations whereas [Gao, et al. 1999] found an association of *Gln64Arg* variant with total serum IgE levels in the British population. Interestingly, the *Gln64Arg* is also represented in our analysis sample as rs9808753 but no association signal was obtained for PC2 with this SNP. Most recently, Daley et al [Daley, et al. 2009] reported an association between *IFNGR2* gene and atopic asthma using four asthma population samples from Canada and Australia. Finally, data from

the International HapMap consortium suggest that, 6 out 10 snps of *IFNGR2* gene in the EGEA data are within a large block of linkage disequilibrium, capturing most of the variation in the *IFNGR2* gene.

D21S1252 microsatellite is located within one of the markers belonging to the Claudin 14 (*CLDN14*) gene. [Tsukita and Furuse 2002] reported that primary and secondary dysfunction of the claudin-based barrier in various organs can cause various pathological conditions. The facilitation of antigen presentation via a paracellular pathway is hypothesised to trigger or aggravate chronic inflammation. In asthma it has been proposed that various peptidases contained in allergens, such as house dust mites and fungus, cleave the extracellular loops of claudins/occludin to affect the TJ barrier [Wan, et al. 1999], [Robinson, et al. 2001]. Along the same lines, it is possible that dysfunction of the claudin-based barrier in the epidermis is involved in the pathogenesis of epidermal inflammation such as atopic dermatitis [Leung 1995]. Recently, Rodriguez et al [Rodriguez, et al. 2009] carried out a meta analysis to show strong associations of fillagrin(*FLG*) mutations with eczema and asthma. This may be another example of a disrupted barrier which may support the hypothesis with the *CLDN14* gene.

In conclusion, the present study shows that both use of quantitative phenotypes of %FEV₁ and SPTQ, and using two different multivariate approaches, indicated support for a pleiotropic effect at two different positions on chromosome 21. An association analysis further indicated a moderate association signal for PC2 with two loci: D21S1252 and rs2834213 belonging to *IFNGR2*. Multi-marker analysis with these two loci strengthened this signal, especially when considering jointly allele 11 of D21S1252 and rs2834213. Although the p values obtained are generally low, these are considered nominal uncorrected p values and hence these results need to be followed up with a confirmatory study and these results

bode well for a replication study. Future functional analysis and further genotyping may help

to identify the causal variants in the *IFNGR2* gene for % FEV₁ and allergen polysensitization.

ACKNOWLEDGMENTS

EGEA cooperative group:

Coordination: F Kauffmann; F Demenais (genetics); I Pin (clinical aspects).

Respiratory epidemiology: Inserm U 700, Paris M Korobaeff (Egea1), F Neukirch (Egea1);

Inserm U 707, Paris: I Annesi-Maesano; Inserm U 780, Villejuif: F Kauffmann, N Le Moual,

R Nadif, MP Oryszczyn; Inserm U 823, Grenoble: V Siroux.

Genetics: Inserm U 393, Paris: J Feingold; Inserm U 535, Villejuif: MH Dizier; Inserm U 794,

Evry: E Bouzigon, F Demenais; CNG, Evry: I Gut, M Lathrop.

Clinical centers: Grenoble: I Pin, C Pison; Lyon: D Ecochard (Egea1), F Gormand, Y Pacheco;

Marseille: D Charpin (Egea1), D Vervloet; Montpellier: J Bousquet; Paris Cochin: A Lockhart

(Egeal), R Matran (now in Lille); Paris Necker: E Paty, P Scheinmann; Paris- Trousseau: A

Grimfeld, J Just.

Data and quality management: Inserm ex-U155 (Egea1): J Hochez; Inserm U 780, Villejuif: N Le Moual, C Ravault; Inserm U 794: N Chateigner; Grenoble: J Ferran.

This study was funded by INSERM, the French Ministry of Higher Education and Research, University of Evry, Fondation pour la Recherche Médicale (ACE20061209064) and the French National Agency for Research (ANR 05-SEST-020-02/05-9-97) and ANR 06-CEBS- 029-2).

REFERENCES

1997. A genome-wide search for asthma susceptibility loci in ethnically diverse populations. The Collaborative Study on the Genetics of Asthma (CSGA). Nat Genet 15(4):389-92. Allison DB, Neale MC, Zannolli R, Schork NJ, Amos CI, Blangero J. 1999. Testing the robustness of

the likelihood-ratio test in a variance-component quantitative-trait locimapping procedure. Am J Hum Genet 65(2):531-44.

- Allison DB, Thiel B, St Jean P, Elston RC, Infante MC, Schork NJ. 1998. Multiple phenotype modeling in gene-mapping studies of quantitative traits: power advantages. Am J Hum Genet 63(4):1190-201.
- Amos C, de Andrade M, Zhu D. 2001. Comparison of multivariate tests for genetic linkage. Hum Hered 51(3):133-44.
- Bauman LE, Almasy L, Blangero J, Duggirala R, Sinsheimer JS, Lange K. 2005. Fishing for pleiotropic QTLs in a polygenic sea. Ann Hum Genet 69(Pt 5):590-611.
- Blumenthal MN, Langefeld CD, Barnes KC, Ober C, Meyers DA, King RA, Beaty TH, Beck SR, Bleecker ER, Rich SS. 2006. A genome-wide search for quantitative trait loci contributing to variation in seasonal pollen reactivity. J Allergy Clin Immunol 117(1):79-85.
- Bouzigon E, Dizier MH, Krahenbuhl C, Lemainque A, Annesi-Maesano I, Betard C, Bousquet J, Charpin D, Gormand F, Guilloud-Bataille M and others. 2004. Clustering patterns of LOD scores for asthma-related phenotypes revealed by a genome-wide screen in 295 French EGEA families. Hum Mol Genet 13(24):3103-13.
- Bouzigon E, Ulgen A, Dizier MH, Siroux V, Lathrop M, Kauffmann F, Pin I, Demenais F. 2007. Evidence for a pleiotropic QTL on chromosome 5q13 influencing both time to asthma onset and asthma score in French EGEA families. Hum Genet 121(6):711-9.
- Burney PG, Luczynska C, Chinn S, Jarvis D. 1994. The European Community Respiratory Health Survey. Eur Respir J 7(5):954-60.
- Daley D, Lemire M, Akhabir L, Chan-Yeung M, He JQ, McDonald T, Sandford A, Stefanowicz D, Tripp B, Zamar D and others. 2009. Analyses of associations with asthma in four asthma population samples from Canada and Australia. Hum Genet 125(4):445-59.
- de Andrade M, Kruskal J, Yu L, et al. 1998. ACT- A computer package for analysis of complex traits. Denver: Am Soc Hum Genet.
- Ferreira MA, O'Gorman L, Le Souef P, Burton PR, Toelle BG, Robertson CF, Martin NG, Duffy DL. 2006. Variance components analyses of multiple asthma traits in a large sample of Australian families ascertained through a twin proband. Allergy 61(2):245-53.
- Gao PS, Mao XQ, Jouanguy E, Pallier A, Doffinger R, Tanaka Y, Nakashima H, Otsuka T, Roberts MH, Enomoto T and others. 1999. Nonpathogenic common variants of IFNGR1 and IFNGR2 in association with total serum IgE levels. Biochem Biophys Res Commun 263(2):425-9.
- Gorlova OY, Amos CI, Zhu DK, Wang W, Turner S, Boerwinkle E. 2002. Power of a simplified multivariate test for genetic linkage. Ann Hum Genet 66(Pt 5-6):407-17.
- Kauffmann F, Dizier MH, Annesi-Maesano I, Bousquet J, Charpin D, Demenais F, Ecochard D, Feingold J, Gormand F, Grimfeld A and others. 2001. [Epidemiological study of genetic and environmental factors in asthma, bronchial hyperresponsiveness and atopy. Protocol and potential selection bias]. Rev Epidemiol Sante Publique 49(4):343-56.
- Kauffmann F, Dizier MH, Pin I, Paty E, Gormand F, Vervloet D, Bousquet J, Neukirch F, Annesi I, Oryszczyn MP and others. 1997. Epidemiological study of the genetics and

environment of asthma, bronchial hyperresponsiveness, and atopy: phenotype issues. Am J Respir Crit Care Med 156(4 Pt 2):S123-9.

- Lange C, DeMeo D, Silverman EK, Weiss ST, Laird NM. 2003. Using the noninformative families in family-based association tests: a powerful new testing strategy. Am J Hum Genet 73(4):801-11.
- Lange C, DeMeo DL, Laird NM. 2002. Power and design considerations for a general class of family-based association tests: quantitative traits. Am J Hum Genet 71(6):1330-41.
- Leung DY. 1995. Atopic dermatitis: the skin as a window into the pathogenesis of chronic allergic diseases. J Allergy Clin Immunol 96(3):302-18; quiz 319.
- Maccario J, Oryszczyn MP, Charpin D, Kauffmann F. 2003. Methodologic aspects of the quantification of skin prick test responses: the EGEA study. J Allergy Clin Immunol 111(4):750-6.
- Malerba G, Pignatti PF. 2005. A review of asthma genetics: gene expression studies and recent candidates. J Appl Genet 46(1):93-104.
- Mangin B, Thoquet P, Grimsley N. 1998. Pleiotropic QTL Analysis. Biometrics 54, 88-99.
- Marlow AJ, Fisher SE, Francks C, MacPhie IL, Cherny SS, Richardson AJ, Talcott JB, Stein JF, Monaco AP, Cardon LR. 2003. Use of multivariate linkage analysis for dissection of a complex cognitive trait. Am J Hum Genet 72(3):561-70.
- Nakao F, Ihara K, Kusuhara K, Sasaki Y, Kinukawa N, Takabayashi A, Nishima S, Hara T. 2001. Association of IFN-gamma and IFN regulatory factor 1 polymorphisms with childhood atopic asthma. J Allergy Clin Immunol 107(3):499-504.
- Ober C, Hoffjan S. 2006. Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun 7(2):95-100.
- Ober C, Tsalenko A, Willadsen S, Newman D, Daniel R, Wu X, Andal J, Hoki D, Schneider D, True K and others. 1999. Genome-wide screen for atopy susceptibility alleles in the Hutterites. Clin Exp Allergy 29 Suppl 4:11-5.
- Peng B, Yu RK, Dehoff KL, Amos CI. 2007. Normalizing a large number of quantitative traits using empirical normal quantile transformation. BMC Proc 1 Suppl 1:S156.
- Polgar G, Weng TR. 1979. The functional development of the respiratory system from the period of gestation to adulthood. Am Rev Respir Dis 120(3):625-95.
- Quanjer P. 1983. Working party on 'standardized lung function testing'. Bull. Eur. Physiopathol. Respir. 19, 7-10.
- Robinson C, Baker SF, Garrod DR. 2001. Peptidase allergens, occludin and claudins. Do their interactions facilitate the development of hypersensitivity reactions at mucosal surfaces? Clin Exp Allergy 31(2):186-92.
- Rodriguez E, Baurecht H, Herberich E, Wagenpfeil S, Brown SJ, Cordell HJ, Irvine AD, Weidinger S. 2009. Meta-analysis of filaggrin polymorphisms in eczema and asthma: robust risk factors in atopic disease. J Allergy Clin Immunol 123(6):1361-70 e7.
- Tsukita S, Furuse M. 2002. Claudin-based barrier in simple and stratified cellular sheets. Curr Opin Cell Biol 14(5):531-6.
- Vercelli D. 2008. Discovering susceptibility genes for asthma and allergy. Nat Rev Immunol 8(3):169-82.
- Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, Stewart GA, Taylor GW, Garrod DR, Cannell MB and others. 1999. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 104(1):123-33.
- Williams JT, Blangero J. 1999. Comparison of variance components and sibpair-based approaches to quantitative trait linkage analysis in unselected samples. Genet Epidemiol 16(2):113-34.
- Wjst M. 1999. Specific IgE--one gene fits all? German Asthma Genetics Group. Clin Exp Allergy 29 Suppl 4:5-10.

Xu X, Rakovski C, Xu X, Laird N. 2006. An efficient family-based association test using multiple markers. Genet Epidemiol 30(7):620-6.

APPENDIX

1. Asymptotic Distribution of the bivariate VC test

The bivariate variance component model leads to a non-regular likelihood with a nuisance parameter present only under the alternative. Indeed, the correlation parameter of the variance-covariance matrix of the linked QTL disappears when variances are equal to 0. This type of non-regular likelihood was studied by Davies (1977, Biometrika 64: 247-254; 1987, Biometrika 74: 33-43). However, since the likelihood function is regular when the correlation ρ is known, the asymptotic law of the LRT for the bivariate VC model can be studied as the supremum of the asymptotic law of the likelihood ratio test given ρ .

Let $l_N(\theta, \tau, \rho)$ denote the log likelihood function of the bivariate VC model where N is the number of independent families, ρ is the QTL additive genetic correlation, $\theta = \begin{bmatrix} \rho^2_{a1} \\ \rho^2_{a2} \end{bmatrix}$ and τ

are the other unknown parameters. Assuming that the true value of τ does not lie on the boundary of the parameter space and that ρ is known, we can restrict our attention to θ . Following Self and Liang (1987), let $U_N(\theta, \rho)$ and $-I_N(\theta; \rho)$ denote the first and second derivatives of the log likelihood function given ρ . In the neighborhood of the null hypothesis $\theta_0 = (0,0)$, the likelihood ratio test given ρ is asymptotically equal to

$$S_{1}(\rho)^{2} |_{[S_{1}(\rho)>0]} + S_{2} ^{2} |_{[S_{2}(\rho)>0]} \text{ where}$$

$$\square S(\rho) \square \qquad -^{J} \\ \square ^{1} \square = \sqrt{N} I_{N}(\theta_{0}; \rho)^{2} U_{N}(\theta_{0}; \rho)$$

$$\square S_{2}(\rho) \square$$

And we found an asymptotic probability function that is a mixture

However, when the bivariate variance component model is unconstraint, the correlation parameter is estimated under the alternative hypothesis so we get

$$LRT = \sup_{\theta,\tau,\rho} l_N(\theta,\tau,\rho) - \sup_{\tau,\rho} l_N(\theta_0,\tau,\rho)$$
$$= \sup_{\rho} \left(\sup_{\theta,\tau} l_N(\theta,\tau,\rho) - \sup_{\tau} l_N(\theta_0,\tau) \right)$$

Therefore, the LRT of the bivariate variance component model is asymptotically equal to

 $\sup_{-1 \le \rho \le 1} \left(S_{1}(\rho)^{2} 1 + S_{2}(\rho)^{2} \right) + S_{2}(\rho)^{2} \left(S_{2}(\rho) > 0 \right)$ which is the supremum of a $\frac{1}{4}\chi^{2} + \frac{1}{2}\chi^{2} + \frac{1}{4}\chi^{2} + \frac{1}{4}\chi^$

process.

For the upper bound of the distribution the results obtained by simulation in Amos et al 2001

is used. Their simulations study showed that the $\frac{1}{4}\chi_{3}^{2} + \frac{1}{2}\chi_{1}^{2} + \frac{1}{4}\chi_{0}^{2}$ quantiles are

conservative for the unconstraint bivariate VC test, therefore $\sup_{\rho} T(\rho) \leq \frac{1}{4}\chi_{3}^{2} + \frac{1}{2}\chi_{1}^{2} + \frac{1}{4}\chi_{0}^{2}$.

Figure legends

Figure 1.

Variance component results of chromosome 21 linkage analysis comparing univariate

%FEV1, univariate SPTQ, bivariate VC upper bound ; bivariate VC lower bound and CPC

analysis, conducted in 291 EGEA families with at least one asthmatic subject. -Log₁₀ p- values

are shown on the vertical axis and map distances (in cM) on the horizontal axis.

Figure 2

LD measured by r² for *IFNAR2*, *IL10RB* and *IFNGR2* genes.

Table I. Phenotypic characteristics of 718 genotyped siblings in 291 families ascertained

with ≥ 1 asthmatic subject

Sex, <i>n</i> (% males)	380 (52.9)
Age (years) ^a	16.1 ± 7.7
Asthma, n (%)	378 (54.15)
SPTQ ^b , <i>n</i> (%)	
0	230 (32.6)
1	159 (22.6)
2	120 (17.0)
3	91 (12.9)
4	105 (14.9)
%FEV ₁ ^c	96.64 ± 13.30
SPTQ	2.55 ± 1.43

^aPlus-minus values are means±standard deviations.

^b SPTQ is a quantitative score which was constructed by counting the number of positive responses to 11 allergens and thus measuring the degree of polysensitization. SPTQ was adjusted for relevant covariates including age and sex using multiple regression.

^c %FEV₁ is the percent predicted forced expiratory volume in 1 second

Table II. P-values for univariate and bivariate linkage analyses conducted for %FEV1*, SPTQ+, PC1[@] PC2 and CPC, VC (Upper bound),

VC (Lower bound)) in	291	French	EGEA	families
------------------	------	-----	--------	------	----------

Marker	Position		Univariat	e		Bivariate				
	(Decode cM)	%FEV ₁ ^υ	SPTQ ^v	PC1 ^v	PC2 ^v	CPCΨ	VC(Upper bd) ^ξ	VC (Lower bd) ^{ψ}		
D21S1911	6.2	0.20	-	0.45	0.49	0.70	0.35	0.30		
D21S1899	15.7	0.03	0.16	0.30	0.02	0.05	0.03	0.03		
D21S1905	17.1	0.004	0.11	0.14	0.01	0.02	0.004	0.003		
D21S1922	20.0	0.004	0.03	0.15	0.001	0.002	9.0×10 ⁻⁴	0.001		
D21S1257	22.9	0.005	0.02	0.15	3.0×10 ⁻⁴	5.0×10 ⁻⁴	4.0×10 ⁻⁴	9.0×10 ⁻⁴		
D21S1914	24.4	0.002	0.01	0.10	1.0×10 ⁻⁴	2.0×10 ⁻⁴	2.0×10 ⁻⁴	3.0×10 ⁻⁴		
D21S265	25.5	8.0×10 ⁻⁴	0.03	0.12	7.0×10 ⁻⁵	1.0×10 ⁻⁴	7.0×10 ⁻⁵	2.0×10 ⁻⁴		
D21S1258	29.6	0.005	0.03	0.14	2.0×10 ⁻⁴	4.0×10 ⁻⁴	5.0×10 ⁻⁴	9.0×10 ⁻⁴		
D21S263	32.5	0.006	0.07	0.27	2.5×10 ⁻⁴	7.0×10 ⁻⁴	7.0×10 ⁻⁴	0.002		
D21S1909	33.0	0.006	0.07	0.30	1.5×10 ⁻⁴	4.5×10 ⁻⁴	5.0×10 ⁻⁴	0.002		
D21S1895	41.1	0.004	0.01	0.17	2.0×10 ⁻⁵	4.0×10 ⁻⁵	2.0×10 ⁻⁴	2.0×10 ⁻⁴		
02181252	43.0	0.002	0.02	0.12	2.0×10 ⁻⁵	4.0 ×10 ⁻⁵	6.0×10 ⁻⁵	1.0×10 ⁻⁴		
D21S266	56.0	0.09	0.15	-	5.0×10 ⁻⁴	0.002	0.004	0.04		

* %FEV1 is the percent predicted forced expiratory volume in 1 second

⁺ SPTQ is a quantitative score which was constructed by counting the number of positive responses to 11 allergens and thus measuring the degree of polysensitization. SPTQ was adjusted for relevant covariates including age and sex using multiple regression.

 $^{@}$ PC1 and PC2 are the two principal components obtained from %FEV1 and SPTQ

^vP-value for the univariate models are calculated as 50:50 mixture of χ^2 distribution (0,1) df.

^{ξ}P-value for the bivariate upper bound is calculated as 0.25:0.50:0.25 mixture of χ^2 distribution (0,1,3) df.

^vP-value for the bivariate lower bound is calculated as 0.25:0.50:0.25 mixture of χ^2 distribution (0,1,2) df.

Table III. Bivariate Variance Components Parameter Estimates for D21S265 and D21S1252 markers.

	Hypothesis	σ^2_{P1}	2 σ _{P2}	$\sigma_{P1,P2} (\rho_{p1,p2})$	σ^2_{a1}	2 σ _{a2}	$\sigma_{a1,a2}\left(\rho_{a1,a2}\right)$	σ ² E1	2 σ _{E2}	lnL	LRT	P-value ^ξ
Markers Po	osition (cM)	%FEV1	SPTQ		%FEV1	SPTQ		%FEV1	SPTQ			
	$H0^{\psi}$	0.57	0.38	-0.01 (-0.03)	0.00	0.00	0.00	0.41	0.63	-650.10		
D21S265	25.5 H1 (Upper bd)	0.23	0.13	-0.17 (-0.98)	0.36	0.23	0.15 (0.52)	0.40	0.64	-640.52	19.16	7.0×10 ⁻⁵
	H1 (Lower bd)	0.25	0.15	-0.03 (-0.16)	0.35	0.22	0.00 (0.00)	0.40	0.64	-642.55	15.10	2.0×10 ⁻⁴
D21S1252	43.0 H1 (Upper bd.)	0.22	0.09	-0.14 (-0.85)	0.35	0.29	0.17 (0.55)	0.42	0.63	-640.33	19.54	6.0×10 ⁻⁵
	H1 (Lower bd)	0.27	0.07	-0.03 (-0.22)	0.33	0.29	0.00 (0.00)	0.39	0.65	-642.09	16.02	1.0×10 ⁻⁴

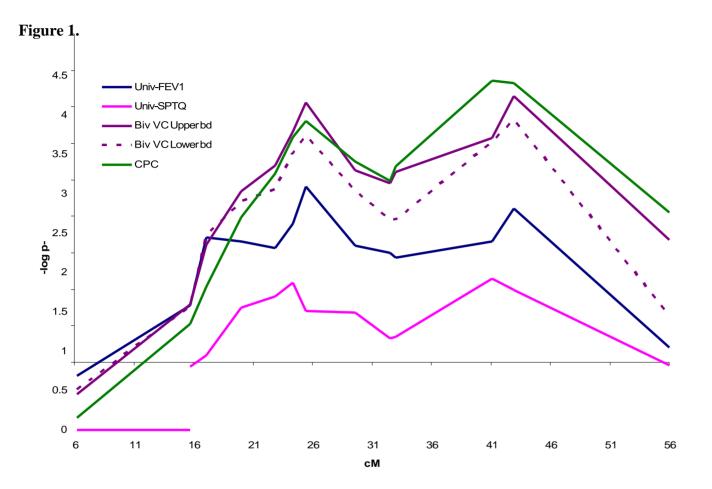
Where $\sigma_p^2 = \text{polygenic variance}$, $\sigma_{P1,P2} = \text{polygenic covariance}$, $\rho_{p1p2} = \text{polygenic correlation}$, $\sigma_a^2 = \text{additive variance}$, $\sigma_{a1,a2} = \text{additive covariance}$, $\rho_{a1,a2} = \text{QTL}$ correlation, $\sigma_E^2 = \text{environmental variance}$

Mean value for %FEV₁ and SPTQ under H0; μ (H0)= -0.008 (%FEV₁) and 0.013 (SPTQ)

^{ξ} P-value for the bivariate upper bound is calculated as 0.25:0.50:0.25 mixture of χ^2 distribution (0,1,3) df.

P-value for the bivariate lower bound is calculated as 0.25:0.50:0.25 mixture of χ^2 distribution (0,1,2) df.

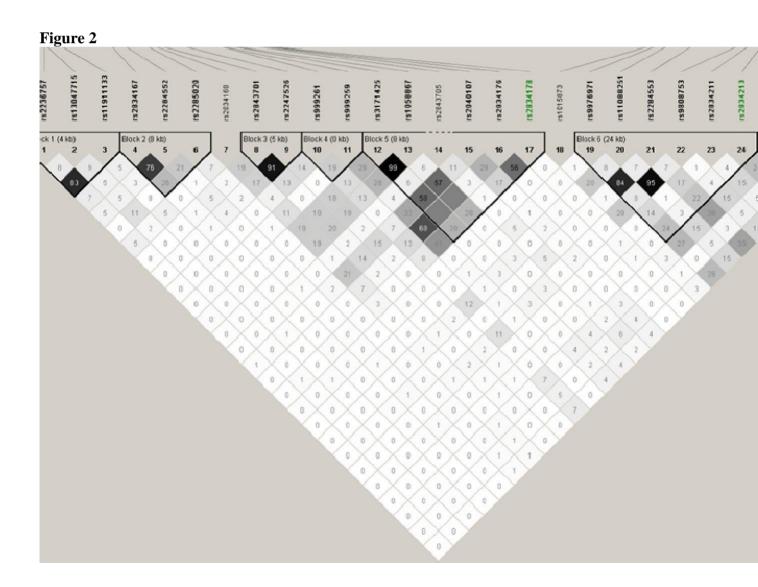
Table IV. Results of single and multi marker family-based association (FBAT) analysis for PC2 with the microsatellite marker D21S1252 and SNPs of the *IFNGR2* gene on 21q21, for the best-fitting model.


Marker	Gene	Func	Location (bp)	Number of		Multi-Allelic	Allele2	Allele11
				Alleles		$P^a(\chi^2 \text{ and } df)$	P^b	P^b
D21S1252	CLDN14		36748755	14		0.003 (24.6, 9 df)	0.004 (+)	0.001 (-)
						Single Marker	Multi Mark	ter (FBAT_LC) ^c
						Allele2_	D21S1252	Allele11_D21S1252
dbSNP ID	Gene	Func	Location (bp)	Alleles	MAF	P^b	P^b	P^b
rs1015873	IFNGR2	intronic	33688370	A/C	0.02	0.67 (-)	0.04	0.0009
rs9976971	IFNGR2	intronic	33689966	G/A	0.43	0.02 (-)	0.02	0.0004
rs9808753	IFNGR2	non-synonymous	33709181	A/G	0.10	0.64 (-)	0.009	0.002
rs2834211	IFNGR2	intronic	33711677	T/C	0.10	0.21 (+)	0.005	0.03
rs2834213	IFNGR2	intronic	33714799	A/G	0.25	0.003 (+)	0.0005	0.0001
rs2834215	IFNGR2	intronic	33718755	G/A	0.43	0.15 (-)	0.003	0.0008
rs1532	IFNGR2	intronic	33726835	C/T	0.32	0.68 (-)	0.007	0.003

^a χ^2 = FBAT multi-allelic test (degrees of freedom (df)= number of alleles - 1). Note that the df for the χ^2 test is 9 in this case since least frequent alleles are removed from the FBAT test.

^b FBAT Z-score sign in parenthesis (negative score shows that allele is negatively associated with PC2 and positive score shows that allele is positively associated with PC2)

^c FBAT_LC is a multimarker FBAT statistics with (1 df).


PC2 is the second principal component obtained from %FEV₁ and SPTQ.

01/08/2011

Table V. Linkage disequilibrium (r²) between *IFNGR2* SNPs

			IFNGR2									
	r ²	rs1015873	rs9976971	rs11088251	rs2284553	rs9808753	rs2834211	rs2834213	rs2834215	rs1532	rs1059293	D21S1252
	rs1015873		0.017	0.201	0.015	0.198	0.003	0.008	0.03	0.011	0.03	0.18
	rs9976971			0.085	0.842	0.086	0.144	0.246	0.282	0.004	0.269	0.19
	rs11088251				0.073	0.954	0.011	0.039	0.149	0.05	0.148	0.24
	rs2284553					0.078	0.167	0.23	0.371	0.032	0.362	0.20
52	rs9808753						0.013	0.039	0.155	0.054	0.154	0.22
IFNGR2	rs2834211							0.041	0.156	0.054	0.151	0.12
Ē	rs2834213								0.25	0.16	0.246	0.15
	rs2834215									0.346	0.979	0.14
	rs1532										0.347	0.16
	rs1059293											0.15
	D21S1252											

01/08/2011

Supplementary Table S1 : Microsatellite markers and SNPs belonging to the *IFNAR2*,

IL10RB, *IFNGR2* genes.

Marker	Gene	position (Mb)	MAF	HW_P
D21S1911		15.062606		
D2151911 D21S1899		18.989572		
		19.866424		
D21S1905				
D21S1922		21.220615		
D21S1257		23.735675		
D21S1914		24.544187		
D21S265		25.841347		
D21S1258		27.741551		
D21S263		31.143785		
D21S1909		31.455116		
rs2236757	IFNAR2	33.546786	0.287	0.110
rs13047715	IFNAR2	33.547459	0.174	0.700
rs11911133	IFNAR2, IL10R	33.551044	0.321	0.124
rs2834167	IL10RB	33.562657	0.277	0.018
rs2284552	IFNAR2, IL10R	33.565951	0.23	0.190
rs2285020	IL10RB	33.570992	0.416	0.239
rs2834168	IL10RB	33.57266	0.319	0.975
rs2843701	IL10RB	33.574326	0.448	0.279
rs2247526	IL10RB	33.579556	0.458	0.136
rs999261	IL10RB	33.588029	0.175	0.865
rs999259	IL10RB	33.588361	0.485	0.247
rs3171425	IL10RB	33.590616	0.412	0.227
rs1058867	IL10RB	33.59125	0.41	0.187
rs2843705	IL10RB	33.596424	0.044	0.246
rs2040107	IL10RB	33.597831	0.291	0.772
rs2834176	IL10RB	33.598239	0.422	0.153
rs2834178	IL10RB	33.59926	0.295	0.240
rs1015873	IFNGR2	33.68837	0.023	0.033
rs9976971	IFNGR2	33.689966	0.427	0.896
rs11088251	IFNGR2	33.692679	0.101	0.586
rs2284553	IFNGR2	33.698564	0.403	0.640
rs9808753	IFNGR2	33.709181	0.104	0.791
rs2834211	IFNGR2	33.711677	0.107	0.860
rs2834213	IFNGR2	33.714799	0.254	0.329
rs2834215	IFNGR2	33.718755	0.426	0.516
rs1532	IFNGR2	33.726835	0.319	0.465
rs1059293	IFNGR2	33.731562	0.427	0.427
D21S1895		35.272854		··· <i>=</i> /
D21S1055		36.748728		
D21S1252		41.606426		

I reference: dbSNP UCSC hg18 (stsMap) NCBI Build 36.1 or Estimation from contig position (CNG files), HW P: Hardy-Weinberg P-value and MAF: Minor Allele Frequency

01/08/2011

Supplementary Table S2 : P-values for microsatellite markers and SNPs belonging to the

ADAMTS1, ADAMTS5, IFNAR2, IL10RB, IFNGR2, ICOSL genes, for the best-fitting model.

Marker	Gene	position (Mb)	MAF	HW_P	P-val
5.4.9.4.6.4.4					
D21S1911		15.062606			0.2573
D21S1899		18.989572			0.3583
D21S1905		19.866424			0.1987
D21S1922		21.220615			0.7330
D21S1257		23.735675			0.4662
D21S1914		24.544187			0.1040
D21S265		25.841347			0.2422
rs229042	ADAMTS1	27.132527	0.251	0.050	0.5489
rs162506	ADAMTS5	27.248811	0.335	0.928	0.8743
D21S1258		27.741551			0.2536
D21S263		31.143785			0.3050
D21S1909		31.455116			0.3048
rs2236757	IFNAR2	33.546786	0.287	0.110	0.6192
rs13047715	IFNAR2	33.547459	0.174	0.700	0.4422
rs11911133	IFNAR2,	33.551044	0.321	0.124	0.2287
	IL10R				
rs2834167	IL10RB	33.562657	0.277	0.018	0.7570
rs2284552	IFNAR2,	33.565951	0.23	0.190	0.5619
	IL10R				
rs2285020	IL10RB	33.570992	0.416	0.239	0.2141
rs2834168	IL10RB	33.57266	0.319	0.975	0.4930
rs2843701	IL10RB	33.574326	0.448	0.279	0.7438
rs2247526	IL10RB	33.579556	0.458	0.136	0.8639
rs999261	IL10RB	33.588029	0.175	0.865	0.1454
rs999259	IL10RB	33.588361	0.485	0.247	0.0598
rs3171425	IL10RB	33.590616	0.412	0.227	0.2810
rs1058867	IL10RB	33.59125	0.41	0.187	0.2909
rs2843705	IL10RB	33.596424	0.044	0.246	0.1754
rs2040107	IL10RB	33.597831	0.291	0.772	0.2584
rs2834176	IL10RB	33.598239	0.422	0.153	0.0745
rs2834178	IL10RB	33.59926	0.295	0.133	0.0082
rs1015873	IFNGR2	33.68837	0.023	0.033	0.6777
rs9976971	IFNGR2	33.689966	0.023	0.896	0.0234
rs11088251	IFNGR2	33.692679	0.427	0.586	0.6385
rs2284553	IFNGR2	33.698564	0.101	0.580	0.0585
rs9808753	IFNGR2	33.709181	0.403	0.040	0.6385
rs2834211	IFNGR2	33.711677	0.104	0.791	0.0383
rs2834211 rs2834213	IFNGR2	33.714799	0.107	0.860	0.2070
rs2834215	IFNGR2	33.718755	0.426	0.516	0.1541
rs1532	IFNGR2	33.726835	0.319	0.465	0.6837
rs1059293	IFNGR2	33.731562	0.427	0.427	0.2443
D21S1895		35.272854			0.5866
D21S1252		36.748728			0.0034
D21S266	100.77	41.606426		0.000	0.4356
rs2838532	ICOSL	44.464293	0.345	0.889	0.0703

01/08/2011

rs2298565	ICOSL	44.467823	0.451	0.309	0.3479
rs3804033	ICOSL	44.472915	0.213	0.046	0.1438
rs3746962	ICOSL	44.47584	0.083	0.057	0.5828
rs3746963	ICOSL	44.475924	0.34	0.400	0.2178
rs3746963	ICOSL	44.475924	0.34	0.400	0.2218
rs2070558	ICOSL	44.480085	0.314	0.162	0.5443
(C29940613)	ICOSL	44.480085	0.119	0.633	0.0908
rs2070561	ICOSL	44.482397	0.315	0.191	0.5599
rs378299	ICOSL	44.48577	0.424	0.745	0.0778
rs2026880	ICOSL	44.489757	0.41	0.407	0.5054
rs3737435	ICOSL	44.490032	0.273	0.570	0.1500
rs2014457	ICOSL	44.493771	0.223	0.917	0.3028
rs7354779	ICOSL	44.495197	0.257	0.559	0.7214

I reference: dbSNP UCSC hg18 (stsMap) NCBI Build 36.1 or Estimation from contig position (CNG files), HW P: Hardy-Weinberg P-value and MAF: Minor Allele Frequency