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Abstract:  14 

Background 15 

The etiopathology of autism spectrum disorder (ASD) is unclear. Main risk factors include both genetic 16 

and non-genetic factors, especially prenatal and perinatal events. The Danish Neonatal Screening 17 

Biobank in connection with registry data provides unique opportunities to study early signs of disease. 18 

Therefore, we aimed to study the metabolomic profiles of dried blood spot (DBS) of newborns later 19 

diagnosed with ASD.  20 

Methods  21 

From the iPsych cohort, we randomly selected 37 subjects born in 2005 and diagnosed with ASD in 22 

2012 (cases) together with 37 matched controls and submitted their biobanked DBS to an LC-MS/MS-23 

based untargeted metabolomics protocol. Raw data were preprocessed using MZmine 2.41.2 and 24 
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metabolites were subsequently putatively annotated using mzCloud, GNPS feature-based molecular 25 

networking and other metabolome mining tools (MolNetEnhancer). Statistical analyses and data 26 

visualization included principal coordinates analyses, PERMANOVAs, t-tests, and fold-change 27 

analyses.  28 

Results 29 

4360 mass spectral features were detected, of which 150 could be putatively annotated at a high 30 

confidence level. Chemical structure information at a broad level could be retrieved for a total of 1009 31 

metabolites, covering 31 chemical classes including bile acids, various lipids, nucleotides, amino acids, 32 

acylcarnitines and steroids. Although the untargeted analysis revealed no clear distinction between 33 

cases and controls, 18 compounds repeatedly reported in the ASD literature could be detected in our 34 

study and three mass spectral features were found differentially abundant in cases and controls before 35 

FDR correction. In addition, our results pinpointed important other factors influencing chemical 36 

profiles of newborn DBS samples such as gestational age, age at sampling and month of birth.  37 

Limitations 38 

Inherent to pilot studies, our sample size was insufficient to reveal metabolic markers of ASD. 39 

Nevertheless, we were able to establish an efficient metabolomic data acquisition and analysis pipeline 40 

and flag main confounders to be considered in future studies.  41 

Conclusions 42 

In this first untargeted DBS metabolomic study, newborns later diagnosed with ASD did not show a 43 

significantly different metabolic profile when compared to controls. Nevertheless, our method covered 44 

many metabolites associated with ASD in previous studies, suggesting that biochemical markers of 45 

ASD are present at birth and may be monitored during newborn screening.  46 

 47 

Keywords: autism, dried blood spots, untargeted metabolomics, newborn screening, biomarkers 48 
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 49 

Background 50 

The etiopathology of ASD is still unclear and today ASD is diagnosed based on behavioral signs and 51 

assessment of communication skills [1,2]. How the condition should be classified is debated [3,4], as 52 

well as which tests offer the most reliable conclusions [1]. In Europe, detection services based on 53 

behavioral signs are usually accessed on average at 18 months of age, and diagnosis occurs on average 54 

at 36 months of age [5]. In this setting, early intervention is a challenge and has been reported to start in 55 

Europe at 42 months of age on average [5]. Whether behavioral impairments are reflected in the blood 56 

as biochemical abnormalities is still unsure, but the quest for biomarkers is legitimate, as they would 57 

represent a useful tool to help in the diagnosis and treatment of ASD and in understanding its 58 

underlying molecular mechanisms [6].  59 

 60 

The main risk factors for ASD include genetic [7,8] and non-genetic factors, especially exposure during 61 

fetal life [1,9–11]. Prenatal stress could influence fetal brain development and interact with genetic 62 

predispositions thereby enhancing the risk of future psychiatric disorders [12,13]. Among prenatal 63 

outcomes, maternal infection accompanied by fever during the second trimester of pregnancy has been 64 

found to increase the risk of ASD twofold approximately [14]. Among perinatal outcomes, preterm 65 

birth (<37 weeks) and low birthweight (small for gestational age) have been associated with an 66 

increased risk of ASD as well as high frequency ventilation and intracranial hemorrhage [15]. Low 67 

Apgar scores, a score used to summarizing vital signs and assess health in newborns [16], also have 68 

recently been associated with an increased risk of developing ASD [17].  69 

 70 

Gastrointestinal tract disorders are often reported in ASD children, along with certain foods or diets 71 

impacting the severity of symptoms [18–21]. There is a growing evidence of strong interactions 72 
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between gut and brain through microbiota [22,23], and these observations support the notion that ASD 73 

is associated with metabolic malfunction such as decrease in sulphation capacity [18], and potentially 74 

connected to gut microbial populations and functions [20]. It has also been shown that many small 75 

molecules differing between normally-developing and ASD individuals likely result from microbial 76 

metabolism [20,24,25]. Recently, plasma and stool metabolites have been associated with poor 77 

communication scoring at age 3, and with good prediction of autism by age 8 [26]. Sharon and 78 

collaborators (Sharon et al. 2019) have shown that microbiome and metabolome profiles of mice 79 

harboring human microbiota predict that specific bacterial taxa and their metabolites modulate ASD 80 

behaviors. They found that taurine and 5-amiovaleric acid (5AV) had significantly lower levels in ASD 81 

mice and could show that when feeding BTBR mice either taurine or 5AV, autism-like symptoms such 82 

as repetitive behavior and decreased social interaction could be decreased. In an intervention study, 83 

treatment with Lactobacillus reuteri has been shown to have beneficial effects on ASD-related social 84 

disturbances in mice [27]. In humans, intestinal microbiota transplantation has shown very promising 85 

results, both against gastrointestinal tract symptoms and ASD symptoms, granting the therapy a ‘fast-86 

track’ status by the FDA [28]. Among the plasma metabolites showing average to good classification 87 

capacity between the treated children and the controls, sarcosine, tyramine O-sulfate and inosine 5’-88 

monophosphate were selected as most discriminant [29]. Many of these studies postulate that 89 

microbiota-derived molecules are transported across the blood-brain-barrier, acting as neuroactive 90 

metabolites [22]. An impaired intestinal permeability or ‘leaky gut’ could also play a role in the effect 91 

of microbiota activity on psychiatric disorders [30,31]. If gut microbial metabolites of potential impact 92 

are indeed detectable in blood, this opens the door to blood-based investigations to further study and 93 

understand the metabolomic differences between ASD and non-ASD individuals in the context of gut-94 

brain interactions.  95 

 96 
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Several studies have reported an altered metabolome associated with ASD during childhood, either in 97 

blood [32–35,25,36–44], urine [18,38,45–56] or other matrices [25,57]. However, although some 98 

biochemical biomarkers or set of biomarkers seem promising [6], none has yet been proven robust 99 

enough for clinical practice. Furthermore, it remains unclear at what point in life biochemical 100 

abnormalities of ASD are detectable.  101 

 102 

To study the early role of genetic, prenatal and perinatal variables on disease development, samples 103 

need to be collected shortly after birth. However, it is not practically and ethically straightforward to 104 

draw blood from newborns prospectively. In many countries, the newborn screening programs are 105 

conducted on dried blood spots (DBS) collected a few days after birth. In Denmark, such DBS are 106 

stored in the Danish National Biobank and are available for research purposes for the last 30 years, 107 

thereby covering approximately half of the country’s population [58]. This allows researchers to 108 

alleviate the biases inherent to recruitment in prospective clinical studies and instead retrospectively 109 

retrieve the samples that are connected to the relevant metadata stored in centralized health registries.  110 

 111 

Taking advantage of this unique resource, we here aimed at studying the strengths and limitations of 112 

DBS samples in studying early biochemical abnormalities related to ASD development using an 113 

untargeted metabolomics protocol. We compared the metabolomic profiles of newborns that have been 114 

diagnosed with ASD at age 7 (cases) to newborns that have not (controls) and investigated potential 115 

main confounders.  116 

 117 

Methods 118 

Materials and methods 119 

Materials 120 
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Methanol (MeOH), acetonitrile (ACN), isopropanol (IPA), water (H2O) and formic acid (FA) were of 121 

Optima™ LCMS-grade and were purchased from Thermo Fisher Scientific (Waltham, MA, USA).  122 

Stable-isotope-labeled internal standards (IS) from the NeoBase Non-derivatized MSMS kit 123 

(PerkinElmer, Waltham, MA, USA) were used. The exact list of compounds is provided in Additional 124 

file 1. 125 

 126 

Subjects and samples 127 

Children (n=74) from the iPsych cohort [59] born in 2005 were randomly selected, of which 37 with a 128 

diagnosis of autism spectrum disorder (ICD10 F84.0, F84.1, F84.5, F84.8 and/or F84.9) [2] at the date 129 

of registry data extraction (2012), and 37 paired controls. Cases and controls were matched based on 130 

gender and date of birth. Other metadata such as gestational age (GA), birthweight, age at sampling, 131 

month of birth, mother’s age at birth, and date of diagnosis, were also collected (when available). 132 

Sample size was chosen for several reasons: 1) the unknown variation of metabolites in DBS made 133 

power calculations impossible, hence why we needed a pilot study, 2) batch effect is a common 134 

technical challenge in metabolomics, and analyzing all samples on one single 96-well plate was 135 

expected to reduce technical variability, 3) DBS are highly precious samples. 136 

DBS are full blood from newborns, aged between 48 and 72 hours, blotted onto Ahlstrom #226 filter 137 

paper and left to dry for at least 3 hours at room temperature before being sent by mail at ambient 138 

temperature to the Department of Congenital Disorders at the Statens Serum Institut in Copenhagen. 139 

Subsequent to being used in the newborn screening program the samples are biobanked in the Danish 140 

National Biobank (www.nationalbiobank.dk) at -20ºC until they are retrieved for further research 141 

analysis.  142 

 143 

Sample extraction 144 
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A punch of 3.2-mm diameter was collected from each DBS using a Panthera-PuncherTM 9 blood spot 145 

punching system (PerkinElmer) directly into a MicroPlate, non-coated 96-well clear polystyrene plate 146 

(PerkinElmer). 100 μL of IS in extraction buffer were added to each well. The IS were labelled amino 147 

acids (AA IS) and acylcarnitines (AC IS) diluted in 80% methanol (i.e. dilution factor of 1:330, 148 

concentrations in Additional file 1). The plate was heat-sealed and shaken for 45 min at 750 rpm at 149 

25°C in a PHMP-4 incubator. Then it was centrifuged for 30 min at 4000 rpm at 4 °C.  150 

All the transferring steps were performed on a Microlab STAR line automated liquid handling 151 

workstation using Venus software (Hamilton, Bonaduz, Switzerland). 152 

The supernatant (75 μL) was transferred to a hard-shell 96-well polypropylene PCR plate (Bio-Rad) 153 

and dried down with nitrogen 60 L/min at 25 °C for 1 hour on an EVX-192 (Apricot Designs 154 

Evaporex). The residue was reconstituted in 75 μL 2.5% methanol, shaken for 15 min at 750 rpm at 155 

25°C in a PHMP-4 incubator, and centrifuged 10 min at 4000 rpm at 4 °C. 65µL were transferred to a 156 

hard-shell 96-well polypropylene PCR plate (Bio-Rad), heat-sealed, and centrifuged again for 5 min at 157 

3000 rpm at 4 °C. The method from sample preparation to MS acquisition is also available as a table 158 

according to the guidelines for standardization of LCMS method reporting [60] with adaptation to 159 

metabolomics (Additional file 1). 160 

 161 

Quality assurance 162 

LC-MS/MS instrument performance was controlled by analyzing 4 pooled extracts, 8 solvent blanks, 163 

and 3 paper blanks at regular intervals. Pooled extracts were made of 5 µL of reconstituted extract from 164 

each of the samples (cases and controls only, total of 370 µL divided in four wells spread across the 165 

plate) and were used to assess the consistency of extraction and data acquisition. Solvent blanks were 166 

used to check for carry over and instrument noise, while paper blanks were used to monitor matrix 167 

signals from the paper. Internal standards were used to control the quality of the extraction, elution, and 168 
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signal acquisition. Paired cases and controls were injected after one another but in a random order (first 169 

case, then control, or vice-versa). Pairs were randomized over the plate. 170 

 171 

Liquid chromatography 172 

The samples were injected using an autosampler with stack cooler (Open Autosampler UltiMate OAS-173 

3300TXRS (Thermo Fisher Scientific)) and eluted through a Waters Acquity UPLC BEH C18 column 174 

(130 Å, 2.1 mm x 50 mm, 1.7-µm particles) preceded by a Waters Acquity UPLC BEH C18 VanGuard 175 

pre-column, 130 Å, 2.1 mm x 5 mm, 1.7-µm particles) using a Transcend II, LX-2 with UltiMate 176 

pumps (Thermo Fisher Scientific). The pressure limits were set at 0.0 – 1034.0 bar.  177 

The mobile phase consisted of solvent A (97.31% H2O, 1.25% ACN, 1.25% MeOH and 0.2% FA), and 178 

B (2.49% H2O, 48.66% ACN, 48.66% MeOH and 0.2% FA).  179 

 180 

The Wash1 solvent was mobile phase A and the Wash2 solvent mix was 25:25:25:25 v/v 181 

MeOH:IPA:H20:ACN + 0.2% FA. The gradient (0.25 mL/min) started with 100% A : 0% B. After 0.5 182 

min, we applied a gradient ramp to 0% A: 100% B over 8.5 minutes followed by a 0.5-min flow ramp 183 

up to 0.9 mL/min and 5 minutes of 100% B. At 15 min, the column was equilibrated for 5.5 min with 184 

100% A. At 17.5 min, the flow was changed back to 0.25 mL/min over 0.5 min. The total run time was 185 

20.5 minutes, including 10 min sample run time and 10.5 min column wash and equilibration. The 186 

column temperature was maintained at 60.0°C using a hot pocket column heater and the samples in the 187 

autosampler were kept at 4˚C throughout the analysis. The data was acquired in profile mode from 0.20 188 

min and over 9.80 min. 189 

 190 

Mass spectrometry 191 
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The Q-Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific) was operated with a heated 192 

electrospray ionization source (HESI) in positive mode. The instruments were controlled using 193 

TraceFinder 4.1 Clinical Research and Aria MX (Thermo Fisher Scientific). Mass range in MS full 194 

scan mode was set to 70 to 1050 m/z with a resolution of 35,000. Automatic gain control was set to 195 

1.106, and maximum injection time at 100 ms. For data dependent-MS2 the resolution was set to 196 

17,500. Automatic gain control was set to 1.105, and maximum injection time at 50 ms. Loop count 197 

was 5, isolation window 1.5 m/z and the stepped NCE 17.5, 35 and 52.5 eV. The spectrum data type 198 

was set to Profile. In data dependent settings the Apex trigger was set to 2 to 7 s with 15s dynamic 199 

exclusion and charge exclusion on 3-8 and >8.  Diisooctylphtalate (391.28429 m/z) was selected as 200 

lock mass. Other settings included the sheath gas pressure (N2, 32 psi), the auxiliary gas flow and 201 

temperature (N2, 8 arb. units, 350°C), the S-lens radio frequency level (50.0%), the ion source 202 

temperature (350°C), and the spray voltage (3.8 kV between 0-9.8 min and 1.0 kV between 9.8-10 203 

min).  204 

 205 

LC-MS data preprocessing 206 

After conversion to .mzML (centroid) using MSConvertGUI v3.0 (ProteoWizard Software Foundation, 207 

Palo Alto, CA, USA) [61], raw files were pre-processed using MZmine v2.41.2 [62,63]. All setting 208 

details are provided in the batch .xml file (Additional file 2). Briefly, data were cropped based on 209 

retention time (RT) 0.27-9.80 min. Masses were detected with a noise threshold of 10,000 for MS1 and 210 

of 0 for MS2. The chromatogram was built using the ADAP module [64], with minimum 7 scans per 211 

peak, a group intensity threshold of 10,000, a minimum highest intensity of 150,000, and a m/z 212 

tolerance of 0.001 m/z or 5 ppm. Deconvolution was performed using the Wavelets (ADAP) module, 213 

with m/z center calculation using median, and ranges for MS2 scan pairing of 0.01 Da and 0.4 min. The 214 

isotopes were grouped with a m/z tolerance of 0.001 m/z or 5 ppm and RT tolerance of 0.1 min. Peaks 215 
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were aligned with a m/z tolerance of 0.001 m/z or 5 ppm and RT tolerance of 0.1 min, with 75% weight 216 

given to m/z and 25% to RT. Finally, peaks were filtered with a minimum of fifteen peaks in a row, and 217 

the same RT and peak duration ranges as previously applied. The feature quantification table (.csv) and 218 

aggregated MS2 masses list (.mgf) were exported (no merging of MS/MS and filter rows: ALL) for 219 

further analysis. 220 

 221 

Feature-based molecular networking using GNPS and compound annotation 222 

A molecular network was created with the feature-based molecular networking workflow (https://ccms-223 

ucsd.github.io/GNPSDocumentation/featurebasedmolecularnetworking/) [65] on the GNPS website 224 

(http://gnps.ucsd.edu) [66] by uploading the aggregated MS2 mass list. The data was filtered by removing 225 

all MS/MS fragment ions within +/- 17 Da of the precursor m/z. MS/MS spectra were window filtered 226 

by choosing only the top 6 fragment ions in the +/- 50Da window throughout the spectrum. The precursor 227 

ion mass tolerance was set to 0.02 Da and a MS/MS fragment ion tolerance of 0.02 Da. A network was 228 

then created where edges were filtered to have a cosine score above 0.7 and more than 4 matched peaks. 229 

Further, edges between two nodes were kept in the network if and only if each of the nodes appeared in 230 

each other's respective top 10 most similar nodes. Finally, the maximum size of a molecular family was 231 

set to 100, and the lowest scoring edges were removed from molecular families until the molecular family 232 

size was below this threshold. The spectra in the network were then searched against GNPS' spectral 233 

libraries. The library spectra were filtered in the same manner as the input data. All matches kept between 234 

network spectra and library spectra were required to have a score above 0.7 and at least 4 matched peaks. 235 

The .graphml network file was then visualized using Cytoscape v3.7.2 [67] where individual sample data 236 

and metadata were locally plotted (per sample and metadata sample group relative intensities). To 237 

enhance annotation of potential compounds of interest using the mzCloud spectral library (Thermo Fisher 238 

Scientific), .raw files were also preprocessed using Compound Discoverer 2.1 (CD2.1) SP1 software 239 
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(Thermo Fisher Scientific). Details regarding the settings are provided in Additional file 3. GNPS and 240 

Compound Discoverer (annotation reported when above mzCloud 80% confidence in identity or 241 

similarity search) offer annotations with a level 2 confidence according to the Metabolomics Standards 242 

Initiative (i.e. putative annotation) [68,69]. To summarize and further enhance chemical structural 243 

information within the molecular network, substructure information (https: //ccms-244 

ucsd.github.io/GNPSDocumentation/ms2lda/) [70], information from in silico structure annotations from 245 

Network Annotation Propagation [71] and Dereplicator [72] were incorporated using the GNPS 246 

MolNetEnhancer workflow (https://ccms-ucsd.github.io/GNPSDocumentation/molnetenhancer/) [73] 247 

with chemical class annotations retrieved from the ClassyFire chemical ontology [74]. When no chemical 248 

structural information could be retrieved through the above searches, the MS/MS spectra were 249 

additionally searched via MASST [75] and SIRIUS+CSI:FingerID [76–78]. MASST allows to query a 250 

single MS/MS spectrum across all public GNPS datasets giving an idea of the type of samples or matrices 251 

where the same MS/MS spectrum has been detected [75]. SIRIUS+CSI:FingerID uses deep learning 252 

algorithms to predict the molecular and structural formula of a molecule from MS/MS spectra [76–79]. 253 

 254 

Contamination filtering and further data curation 255 

Using a Kendrick Mass Filter, we explored the compositionality of our data to assess the potential 256 

presence of undesired chemical background [80]. Out of the 4,360 features obtained through MZmine 257 

preprocessing, more than 1,100 possessed repeat units typical of polyethylene glycol (PEG) and 258 

polypropylene glycol (PPG). Filtering of PEG followed by filtering of PPG was performed using a 259 

Kendrick Mass Filter [80] with the following parameters: number of observed signals = 5, Kendrick 260 

mass defect = 0.01, and fraction base = 1 (see Additional file 4AB). 261 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 30, 2020. ; https://doi.org/10.1101/2020.04.17.20069153doi: medRxiv preprint 

https://ccms-ucsd.github.io/GNPSDocumentation/molnetenhancer/
https://doi.org/10.1101/2020.04.17.20069153


12/42 

Of the 3,253 remaining features, we further excluded those with a maximum intensity in paper blanks / 262 

maximum intensity in samples ratio ≥ 0.2, as well as features with 20% or more gaps (i.e. missing 263 

value) in cases and/or in controls (1,975 features filtered). 264 

 265 

Data visualization and outlier handling 266 

We performed principal coordinates analyses (PCoA) to visualize the data in an interactive 3D-space 267 

using EMPeror within QIIME 2 [81,82] using the Bray-Curtis, Canberra, Robust Aitchison [83] and 268 

Jaccard distance metrics. This tool allowed us to easily map metadata on each sample in the 3D-space 269 

and quickly detect broad patterns in the data, such as assessing the consistency of repeated pool 270 

injections (i.e. repeated injections of the same pooled samples should cluster in PCoA space). When 271 

performing these calculations on our “raw” unfiltered feature table (4,360 features), all tested distance 272 

metrics showed seven samples as clear outliers, of which two controls and five cases. After 273 

contamination filtering and data curation (1,281 features), six outliers remained since one outlier 274 

(control) was due to PEG contamination. Among the investigated potential explanations for these 275 

outliers, no pattern was found when looking at: position on the plate layout, potential RT shift 276 

impairing the alignment, and metadata. However, targeted analysis of labeled internal standards and 277 

unlabeled endogenous homologs showed that significant (but unexplained) errors occurred during 278 

LCMS acquisition, with many undetectable compounds (TraceFinder 4.1 Clinical Research, Thermo 279 

Fischer Scientific) (Additional file 5). A heatmap representation of the data (1,281 features) using 280 

MetaboAnalyst 4.0 [84] confirmed the six outliers with very low intensities (Additional file 5). 281 

Therefore, we decided to exclude these outliers from further statistical analyses and reran the PCoA 282 

calculations on the remaining 68 samples. 283 

 284 

Statistics  285 
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Using the calculated distance matrices from the PCoAs (1,281 features, 68 samples), we performed 286 

Permutational Multivariate Analyses of Variance (PERMANOVAs) [85] to assess how much of the 287 

variance in the data is explained by a certain variable in the metadata. We investigated the following 288 

variables: autism (yes/no), autism subtype, gender, birthweight, gestational age, age at sampling, month 289 

of birth, and injection order. The Adonis R2 value indicates to what extent the variance is explained by 290 

the tested variable. Significance threshold was set at 0.05. Calculations were performed using the vegan 291 

and ggplot2 packages in R software v3.6.1 [86].  292 

Finally, the curated dataset (1,281 features, 68 samples, unpaired samples) was processed using 293 

MetaboAnalyst 4.0 [84]. We excluded features with more than 50% missing values and replaced the 294 

remaining missing values by a small value (half the minimum positive value in the original data). We 295 

further filtered non-informative near-constant features based on interquantile range and applied a glog 296 

transformation and Pareto scaling. We used a fold-change threshold of 2 (case/control or control/case) 297 

and performed t-test and Wilcoxon rank-sum test with FDR correction for multiple comparisons. We 298 

could not reliably use the Partial Least Squares Discriminant Analysis (negative Q2 in cross 299 

validation). All Jupyter notebooks used for statistical analysis are publicly available on github 300 

(https://github.com/madeleineernst/Autism_SupplementaryMaterial). 301 

 302 

Results 303 

Subjects 304 

Subjects’ characteristics are presented in Table 1 (details in Additional file 6). Cases and controls were 305 

similar in terms of GA, birthweight, age at sampling and age of their mother at birth. The most 306 

prevalent autism subtype was childhood autism. Most cases had only one diagnosis, but six had both 307 

unspecified pervasive development disorder and autism (either childhood autism or atypical autism). 308 
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None had more than two diagnoses. Median age at first diagnosis was 5.6 years (range 1.1-7.8). Most 309 

subjects were born at term (GA ≥ 38 weeks). Only three cases and two controls were born preterm.  310 

 311 

[Table 1] 312 

 313 

Molecular Network analysis 314 

From all features for which a MS2 spectrum has been acquired (2217 features over 4360) a feature-315 

based molecular network was computed via GNPS. Annotation could be retrieved for 150 features 316 

(3.4%) of which 103 by matching to GNPS libraries (annotation level 2), and 47 by matching to our in-317 

house library using Trace Finder (annotation level 1, Additional file 7). Using the MolNetEnhancer 318 

workflow [73], putative chemical structural information at the chemical class level, corresponding to a 319 

level 3 annotation, could be retrieved for an additional 859 features. Hence, nearly 46% (1009) of the 320 

mass spectral features could be putatively annotated at a level 1 to 3 (Additional file 7). Annotation 321 

covered 31 chemical classes including 53 subclasses and 116 direct parents, such as medium-chain 322 

fatty acids, phosphatidylcholines, nucleotides, amino acids, bile acids, steroids, acyl carnitines and 323 

catecholamines. 324 

Molecular families (independent clusters of nodes) from the 15 predominant putatively annotated 325 

chemical classes are presented in Figure 1 (see details in Additional file 7). Plotting the average 326 

intensities in the three groups (cases, controls, paper blanks) as well as fold change values (or p-values) 327 

on the network nodes allowed for a quick overview of the molecular families with potential biological 328 

relevance (See the example of bile acids in Figure 2). This analysis showed the potential of DBS in 329 

covering various chemical classes and the power of feature-based molecular network analyses and 330 

related metabolome mining tools in expanding the interpretability of complex untargeted metabolomics 331 

data.  332 
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 333 

Statistical analyses 334 

In PCoA space, repeated pool injections clustered satisfactorily showing that the LC-MS/MS data 335 

acquisition was of acceptable quality (Figure 3). When looking at the two groups (cases/controls), no 336 

clear separation was observed, even after removal of outliers (Figure 3A) and on all tested distance 337 

metrics. 338 

The PERMANOVAs (Figure 4, Additional file 8) revealed that the variance in the data was not 339 

significantly explained by the grouping (cases/controls) (Bray-Curtis Adonis R2 = 0.014, P-value = 340 

0.777), even when distinguishing subtypes of ASD, although subtypes had a higher Adonis R2 (Bray-341 

Curtis Adonis R2 = 0.070, P-value = 0.707, see Table 1 for details on subtypes of ASD). Similarly, the 342 

gender and birthweight did not significantly explain the variance in the data. However, variation in the 343 

data explained by gestational age (Bray-Curtis Adonis R2 = 0.034, P-value = 0.028), age at sampling 344 

(Bray-Curtis Adonis R2 = 0.053, P-value = 0.002) and especially month of birth (Bray-Curtis Adonis 345 

R2 = 0.262, P-value = 0.001, see Figure 3B) was significant, and to an increasing extent respectively 346 

(greater Adonis R2). On a technical level, we also observed a significant effect of injection order on the 347 

data variation (Bray-Curtis Adonis R2 = 0.047, P-value = 0.002), pointing to a limitation in our LC-348 

MS/MS method.  349 

 350 

Results of univariate analyses and fold change analysis were carefully scrutinized feature by feature. 351 

Considering our small sample size and potential pitfalls inherent to untargeted metabolomics related to 352 

contaminants or integration errors, we thought essential to inspect each result to eliminate false 353 

positives and spurious findings. Our inspection consisted of a five-step logic starting with peak 354 

integration and shape quality (MZmine). We then plotted all individual intensity values to assess 355 

whether the case/control difference was driven by four or fewer samples. If not, we reported the extent 356 
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of missing values in each group, checked the consistency of replicated pool injections, and finally 357 

checked whether the feature was present in the feature-based molecular network, annotated as a 358 

contaminant or in a node cluster with such annotation (Additional file 9). A large proportion of the 359 

inspected features were excluded based on these criteria, showing the importance of such a verification 360 

in order not to pursue spurious findings in future studies.  361 

Among the 24 features with a fold change (case/control) value <0.5 or >2.0, only one passed manual 362 

inspection (Table 2, the full table is in Additional file 9). Eluting quite late (RT = 6.64 min, ID8605), 363 

this relatively hydrophobic compound had a detected m/z of 1014.4892 and was not connected to any 364 

other node in the network analysis (see its mass spectrum in Additional file 10). It could not be 365 

annotated, but the algorithm of SIRIUS+CSI:FingerID pointed at a raw formula of C36H63N21O14 366 

([M+H]+, only 7.12% scoring). This compound was more than twice as intense in controls as in cases 367 

(FC 0.42, average intensity in cases 2.73E+05 and controls 7.51E+05), and would need further 368 

investigation, especially as it was not detected in many samples (Additional file 9). A MASST search 369 

was performed, however the feature with m/z 1014.4892 was not found in any of the public datasets on 370 

GNPS. 371 

 372 

[Table 2] 373 

 374 

No feature was significantly differentially abundant in cases and controls according to the univariate 375 

analyses with FDR correction for multiple comparisons (p values in Table 2).  376 

Features that were differentially abundant before FDR correction are presented in Table 2. As a high 377 

proportion of features were deemed irrelevant after inspection, we are presenting only the two relevant 378 

features that passed our quality-control criteria. The full list and inspection details can be found in 379 

Additional file 9. Methacholine was found to be significantly more abundant in cases when compared 380 
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to controls (average intensity in cases 4.41E+07 and controls 3.94E+07) both when using a t-test (p = 381 

0.0021) and a Wilcoxon rank-sum test (p = 0.0031). The corresponding node (ID159) in the network 382 

analysis was connected to another node with a mass difference of -0.036 m/z (225 ppm) which could 383 

not be annotated. None of the applied metabolome mining tools was able to retrieve chemical structural 384 

information for the second compound significantly more abundant in cases than in controls (ID5593, 385 

m/z 1014.4892, average intensity in cases 5.71E+05 and controls 4.35E+05). SIRIUS+CSI:Finger ID 386 

predicted a molecular formula of C11H22N2O3 (M+H+, 99.96% scoring). Its RT of 2.78 min could 387 

indicate a medium polarity with a logP between -1.0 and 0.5 when compared to tryptophan (RT 2.56 388 

min, HMDB experimental logP -1.06) and hippuric acid (RT 3.04 min, HMDB experimental logP 389 

0.31).  390 

Among the 273 compounds reported in two recent reviews [6,87], 22 were cited at least three times, of 391 

which 18 could be linked to features in our study after manual verification (Table 3, Additional file 11). 392 

 393 

[Table 3] 394 

 395 

Discussion 396 

To assess the early signs of ASD development shortly after birth, we compared DBS samples from 397 

newborns that have later on been diagnosed with ASD to newborns that have not. Our pilot study 398 

showed the capacity of untargeted metabolomics as an analytical tool applied to biobanked DBS 399 

samples to cover several metabolites relevant to ASD, thus suggesting that biochemical markers of 400 

ASD are present at birth and could be targeted during neonatal screening. In addition, our method 401 

pinpointed other factors which have a strong influence on the metabolic profile of newborn DBS, such 402 
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as gestational age, age at sampling and month of birth, and which are important to consider when 403 

designing metabolomic studies in neonatal, biobanked DBS.  404 

One study from 2013 was performed on newborn DBS samples from 16 autistic children and assessed 405 

90 biomarkers (not only small molecules) using immunoassays [88] of which three sets of five were 406 

associated with ASD. Another study was performed on DBS but in ASD children (n=83, age 2-10 407 

years) and was targeting 45 metabolites [37], of which 9 were significantly higher in ASD children. 408 

However, the potential of DBS in untargeted metabolomics studies has not yet been fully studied, and 409 

never in the context of ASD (see recent reviews [6,87]). 410 

Among the 22 compounds that had been repeatedly (≥3 times) reported in the literature to be involved 411 

in ASD, 18 could be putatively annotated in our study, showing that our analytical pipeline covers 412 

many relevant metabolites, including some specific to gut microbiota activity. Despite thorough 413 

curation and inspection of the acquired data, no feature was significantly differentially abundant in 414 

cases and controls after FDR correction. The small sample size as well as strong confounders could 415 

play a role in the low power of this pilot study. Nonetheless, the PERMANOVA results showed that 416 

subtypes of autism seemed to explain more variance in the data than just the case/control division 417 

(higher Adonis R2, Figure 4). This could mean that subtypes have indeed distinct biochemical profiles 418 

and should maybe be considered separately or in a stratified manner. Although, the lack of significance 419 

could suggest that ASD genetic, prenatal and/or perinatal variables do not (sufficiently) translate into 420 

biochemical abnormalities in newborns or that these are not detectable in biobanked DBS using our 421 

current experimental setup, we were able to pinpoint 18 out of 22 metabolic markers associated with 422 

ASD in previous studies. This finding suggests that rather the sample size and confounders are 423 

responsible for the absent signal observed here, and future studies controlling for the here identified 424 

confounders and greater sample size could provide more answers.  425 

 426 
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Among the hits and interesting findings of our pilot, we could show that a methacholine structural 427 

analogue could be a relevant marker for ASD, as it was found at a higher although not significant 428 

abundance in newborns that have been diagnosed with ASD at age 7. Methacholine is a choline ester 429 

drug acting as non-selective muscarinic receptor agonist. It is mainly known as methacholine chloride 430 

for its use in assessing bronchial hyper-reactivity in asthmatic patients. Although muscarinic receptors 431 

were not associated with autism in children [89], lower estimates of ASD risk among children exposed 432 

during fetal life to muscarinic receptor 2 agonists were reported [90]. Higher abundance of 433 

methacholine in DBS of ASD cases, as seen in our study, would therefore not be easily explained and 434 

demand further investigation. However, detecting a drug metabolite such as methacholine in newborn 435 

samples is unexpected, thus it is more likely that this feature is an endogenous choline ester with 436 

similar fragmentation behavior to methacholine. 437 

 438 

Two other unknown features would benefit from being monitored in future studies. One relatively 439 

hydrophobic compound (ID8605, m/z 1014.4892) showed an important fold change (much lower in 440 

cases) but was not detected in many samples maybe due to low intensities. The second compound 441 

(moderately polar, ID5593, m/z 1014.4892, C11H22N2O3) was significantly higher in cases before FDR 442 

correction and detected in more than 65% of samples. Including both in an inclusion list for optimized 443 

MS2 acquisition could provide higher quality spectra for better annotation. Overall, we observed poor 444 

fragmentation of some analytes (4 fragmentation peaks or less) and optimization of fragmentation 445 

parameters to a few targeted compounds, could enable better chemical structural annotation, although 446 

fragmentation parameters such as other technical and sample preparation parameters, can never be 447 

optimized for all compounds equally. 448 

 449 
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Although our study was not designed specifically to assess the tested confounders, we have shown that 450 

gestational age, age at sampling and month of birth are strong drivers of metabolomic profiles in 451 

newborns. This demonstrates the importance of considering these confounders when designing a future 452 

study in newborn DBS. 453 

  454 

Prematurity has been involved in numerous adverse health outcomes [91] and metabolic maturity has 455 

been shown to be reflected in the blood and other matrices of infants after birth [92,93]. Although, in 456 

the present study, only three cases and two controls were premature (<38 weeks of gestational age), we 457 

saw a significant effect of gestational age on the metabolomic profile of newborns thus showing that 458 

gestational age is an important factor be controlled for in newborn DBS studies.  459 

 460 

Similarly, we found that age at sampling has a significant impact on the newborn blood metabolome. 461 

From 3 to 10 days of age, only one week has passed, and yet fundamental metabolic changes occur in 462 

the newborn who is not anymore connected to his/her mother’s blood, but exposed to various types of 463 

nutrition and environmental conditions (healthcare, hospital vs home, etc.). The endogenous 464 

anabolism/catabolism balance is in itself a strong variable to consider at that age. From 2009 onwards, 465 

the Danish newborn screening program has indeed chosen to standardize the age at DBS sampling to 466 

48 to 72 hours to optimize the window where potential inborn errors of metabolism would be detected 467 

best and as early as possible since quick intervention is essential in such cases [94]. The iPsych cohort 468 

was based on diagnoses of psychiatric disorders recorded in Danish health registry in 2012 [59]. Such 469 

diagnoses are often given after several years of age, which is why the cohort did not cover subjects 470 

born after 2005, year at which the age at sampling was not so narrowly standardized. The large sample 471 

size of the iPsych cohort (almost 15,000 cases of ASD) should however allow for stricter selection 472 

criteria in our future studies.  473 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 30, 2020. ; https://doi.org/10.1101/2020.04.17.20069153doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.17.20069153


21/42 

 474 

Another major change that occurs in newborns at birth and in the following days is the gut maturation 475 

and its further colonization by microbes [95]. This topic has been under expanding attention in the last 476 

decade, and the development and involvement of gut microbiota in neurodevelopment is being 477 

scrutinized extensively [22]. The exact dynamics of the microbiota development in the placenta and 478 

during the first days of life is still uncertain [95–97], as well as to what extent its activity can be 479 

reflected in the blood. A recent study has shown that gut microbial alpha-diversity can be predicted 480 

from the human blood metabolome [98] suggesting that microbial metabolites  481 

explain a significant amount of the variance in the human blood metabolome. Thus, although sampled 482 

at an early stage in life, it is plausible that microbial metabolites mediating health may be found in 483 

dried blood spots from newborns [93]. Studying both fecal and blood samples will be essential to 484 

answer questions related to the impact of gut microbes on the gut-brain axis, especially in the context 485 

of psychiatric disorders where the brain is the main organ concerned but indeed located quite far from 486 

the gut. Microbial metabolites would necessarily need to travel in the blood (or lymph) and through the 487 

blood-brain barrier to interact with the brain. In our study, some detected metabolites could partly 488 

derive from gut microbiota activity such as DL-Indole-3-lactic acid (ID3461, [99,100]), taurine (ID428, 489 

level 3, [25]), various bile acids (Additional file 7, [57]), or inosine 5’-monophosphate (ID1133, level 490 

3, [29]).  491 

 492 

Lastly, we found that month of birth explains a significant variation in metabolomic profiles of 493 

newborns (Figure 3b, Figure 4). Whether there is a yearly cyclic pattern or whether our findings are 494 

specific to 2005 remains to be determined. Explanations could include aspects related to pregnancy 495 

conditions varying along the year such as diet, weather conditions and sun exposure (e.g. impact on 496 

vitamin D levels, type and extent of physical and social activities, mood and stress [101]), exposure to 497 
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“seasonal” infectious diseases (e.g. influenza), exposure to varying air quality (e.g. pollution or pollens 498 

[102]), as well as storing conditions which might fluctuate over the year (e.g. sample transport at higher 499 

temperatures during summer). 500 

 501 

Gender and birthweight were not found to explain a significant part of the variance in the metabolomic 502 

profiles of newborns in our study, despite the obvious connection between gestational age and 503 

birthweight. The gender misbalance which reflects the gender disparity in ASD (a quarter were girls), 504 

non-dedicated design, and small sample size could explain this finding. Some studies have indeed 505 

reported that the profile of newborn girls and boys differed in, for instance, blood amino acids and 506 

acylcarnitines [103], as well as urine profiles [104]. Despite our finding, we believe that gender and 507 

birthweight should be adjusted for and taken into consideration when designing metabolomics studies 508 

in newborns. Several of the tested confounders are inter-connected with, for instance, reports of more 509 

males being born preterm [105] and females being born lighter [106], both associations being explained 510 

by mechanisms that are likely to be reflected in the metabolome such as inflammatory response and 511 

insulin resistance, respectively.  512 

 513 

On the technical side, the strong effect of injection order is again a reminder that randomizing sample 514 

pairs on the plates is fundamental in untargeted metabolomics. Although technical improvements can 515 

be considered, it is extremely difficult if not impossible to avoid some level of signal drift and 516 

carryover in untargeted metabolomics studies[107].  517 

 518 

Limitations and strengths 519 

To avoid batch effect and minimize the use of highly valuable and rare samples, we analyzed only 37 520 

pairs of cases and controls in this pilot study. Despite the small sample size that did not confer enough 521 
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statistical power for pinpointing strong marker metabolites of ASD, we could detect numerous 522 

metabolites associated with ASD in previous studies and identify a number of  confounders to be 523 

considered in future untargeted metabolomics study using newborn DBS. Other confounders not 524 

evaluated in our study will need to be assessed in future studies, including metabolic changes in DBS 525 

associated with time and storage conditions. Hematocrit variation could not be measured in our study 526 

as we had access to only one punch of paper and did not have the possibility to measure a surrogate 527 

marker such as potassium [108]. Furthermore, metabolites detected in this study are inherently 528 

reflective of sampling protocols, including extraction protocols and MS acquisition parameters and 529 

should be interpreted within these limitations. 530 

 531 

Conclusions 532 

This is the first study assessing metabolomic profiles of a psychiatric disorder, ASD in biobanked, 533 

newborn DBS samples. The development of biobanks and reuse of systematically collected DBS 534 

samples for research purposes in connection with registry data represent many new opportunities to 535 

study the physiopathology and early signs of diseases, with extraordinary impacts in prevention, 536 

diagnosis and treatment strategies. We showed that untargeted metabolomics on DBS samples offers a 537 

wide and relevant coverage of metabolites for the study of ASD and that the new processing tools used 538 

in our method largely expand the interpretability of such complex data. 539 
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Tables 847 

Table 1. Subjects characteristics 848 

 All subjects 

n = 74 

After outlier removal 

n = 68 

 cases controls cases controls 

Age at 1st Jan. 2006 (months, median 

(range)) 

7.6 (0.8-11.6) 7.6 (0.8-11.6) 7.3 (0.8-11.6) 7.5 (0.8-11.6) 

Gender (girls / boys) 8 / 29 8 / 29 7 / 25 8 / 28 

Classification of cases (ICD10)1     

- F84.0 Childhood autism 17 - 15 - 

- F84.1 Atypical autism 7 - 6 - 

- F84.5 Asperger syndrome 4 - 3 - 

- F84.8 Other pervasive 

developmental disorders 

4 - 4 - 

- F84.9 Unspecified pervasive 

developmental disorders 

11 - 10 - 

Gestational age (weeks, median 

(range), NA) 

40 (33-42)  5 39 (30-42)  2 40 (33-41)  4 39 (30-42)  2 

Birthweight (g, median (range), NA) 3500 (2210-4880)  1 3480 (977-4850)  2 3498 (2210-4880)  0 3490 (977-4850)  2 

Age at sampling (days, median 

(range), NA)  

6 (3-9)  3 6 (4-10)  3 6 (3-9)  2 6 (4-10)  3 

Age of mother at birth (years, 

median (range)) 

31.7 (20.8-41.5) 31.7 (18.3-41.2) 32.3 (20.8-41.5) 31.8 (18.3-41.2) 

1 ICD10 classification [2] 849 

More details are provided in Additional file 6. 850 

 851 

 852 

 853 
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Table 2. Differentially abundant features in univariate analyses without FDR correction (p<0.01) and/or with high fold-change 854 

meeting inspection criteria 855 

Putative annotation 

of relevant 

compounds 

Annotation 

level1 

m/z RT 

(min) 

ID p-value t-test p-value Wilcoxon 

rank-sum test 

FC2 Network 

connections3 

without 

FDR 

correction 

with FDR 

correction 

without 

FDR 

correction 

with FDR 

correction 

Methacholine 

C8H18NO2
+ 

24 160.13315 0.45 159 0.0021 0.9174 0.0031 0.9434 1.25 

connected to 

1853 (-0.036 

m/z) 

SIRIUS 99.96%: 

C11H22N2O3 (M+H+) 
4 231.17005 2.78 5593 0.0072 0.9174 0.0138 0.9434 1.46 Single node 

SIRIUS 7.12%: 

C36H63N21O14 

(M+H+) 

4 1014.48923 6.64 8605 0.0414 0.9174 0.0179 0.9434 0.42 Single node 

1 Annotation level of confidence according to the Metabolomics Standards Initiative (i.e. putative annotation) [68,69].  856 

2 FC: Fold-change (case/control) 857 

3 Network connections in GNPS feature-based molecular network. 858 

4 Source of annotation mzCloud (89.9% score). See its mass spectrum in Additional file 10. 859 

Inspection criteria: peak integration or shape quality, initial missing values, single values plot, presence and consistence in replicated 860 

pool injections, annotation or connection to contaminants. For details see Additional file 7. 861 

 862 

 863 

 864 

 865 

 866 

 867 
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Table 3. Compounds reported in the literature three or more times as being associated with ASD 868 

Compound name Annot-

ation 

level1 

Raw formula m/z 

[M+H]+ 

RT 

(min) 

Feature ID 

(MZmine 2.41) 

Detected by 

Compound 

Discoverer 

2.1 

 

HMDB ID Literature 

reference 

Arginine 1 C6H14N4O2 175.11895 0.35 1450 ND HMDB0000517 [38,44,50] 

Aspartic acid 1 C4H7NO4 134.04478 0.41 1073 ND HMDB0000191 [34,35,40,41,50,57] 

Citric acid 4 C6H8O7 193.03428 0.35 1776 yes HMDB0000094 [40,42,51] 

Creatine 2 C4H9N3O2 132.07675 0.40 16 yes HMDB0000064 [42,47,52] 

Creatinine 2 C4H7N3O 114.06619 0.40 281 yes HMDB0000562 [40,50,52,53] 

Decanoylcarnitine 1 C17H33NO4 316.24823 6.00 3633 yes HMDB0000651 [37,41,57] 

Glutamic acid 1 C5H9NO4 148.06043 0.38 136 yes HMDB0000148 [34,35,38,40–43,52] 

Glutamine 2 C5H10N2O3 147.07642 0.40 107 yes HMDB0000641 [35,38,39] 

Glycine 3 C2H5NO2 76.03930 0.38 1177 ND HMDB0000123 [34,39,43,47,49,52] 

Glycolic acid - C2H4O3 77.02332 - ND ND HMDB0000115 [53–55] 

Hippuric acid 2 C9H9N1O3 180.06552 3.04 5174 ND HMDB0000714 [48,51,52,54] 

Histidine 2 C6H9N3O2 156.07675 0.32 342 yes HMDB0000177 [34,49,56] 

Lactic acid - C3H6O3 91.03897 - ND ND HMDB0000190 [35,44,52] 

p-cresol - C7H8O1 109.06479 - ND ND HMDB0001858 [34,35,53,56] 

Phenylalanine 1 C9H11NO2 166.08625 1.70 594+5370+287 yes HMDB0000159 [34,56,57] 

Serine 2 C3H7NO3 106.04987 0.40 437 ND HMDB0000187 [34,40,42,43,49] 

Succinic acid - C4H6O4 119.03388 - ND ND HMDB0000254 [40,47,48,54] 

Taurine 3 C2H7NO3S 126.02194 0.43 428 ND HMDB0000251 [25,44,47–49,52] 

Threonine 2 C4H9NO3 120.06552 0.40 476 ND HMDB0000167 [38,42,49,50] 

Tryptophan 2 C11H12N2O2 205.09715 2.53 164 yes HMDB0000929 [38,41,52,55,56] 

Tyrosine 1 C9H11NO3 182.08117 0.72 58 yes HMDB0000158 [35,42,57] 

Valine 2 C5H11NO2 118.08625 0.42 ND yes HMDB0000883 [34,39,52] 

ND: not detected 869 
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1 Annotation level of confidence according to the Metabolomics Standards Initiative (i.e. putative annotation) [68,69].  870 

When the [M+H]+ adduct could not be found (+/- 5 ppm), common adducts were searched including [M+Na]+, [M+K]+, [M+2H]2+, 871 

[M+H-H2O]+. 872 

See full list of compounds considered and more details in Additional file 11. 873 
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Figures 874 

Figure 1. Feature-based molecular network displaying the 15 predominant putative chemical classes 875 

and their subclasses 876 

Nodes represent mass spectral features and are used as a proxy for a metabolite. Connected nodes 877 

represent high tandem mass spectral similarity, and thus high chemical structural similarity. The 878 

thickness of the grey edges connecting nodes varies according to the cosine score representing to what 879 

extent two connected metabolites are chemically similar (based on MS2 spectra, from 0.7: less similar 880 

and thin edge to 1.0: identical and thick edge).  881 

The name of annotated metabolites (levels 1 and 2), details on chemical classes with fewer than 4 882 

metabolites (absent on this figure), chemical classification scores [73], all unknowns, and group 883 

intensities for all features (average, standard deviations) are detailed in Additional file 7. 884 

See Figure_1.pdf 885 

  886 
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Figure 2. Network of molecular features putatively annotated as bile acids with average group 887 

intensities, fold change values, mass differences and cosine scores displayed. 888 

Molecular family #75 is composed of eight bile acid structural analogues (see details in Additional File 889 

7). Coloring according to the fold change values makes it easier to spot the families with differential 890 

abundance in cases vs. controls. Displaying average intensities for the three groups (cases, controls, 891 

paper blanks) allows for a quick control of the noise (paper blanks, here no noise detected) and 892 

confirmation of fold change. On edges, while the thickness of the connection represents to what extent 893 

two metabolites are chemically similar, the mass difference is essential to support annotation as it 894 

translates into how molecules differ from one another (e.g. water loss, conjugation, adducts, etc.). 895 

See Figure_2.pdf 896 

  897 
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Figure 3. Bray-Curtis principal coordinates analysis of the 68 samples after outlier removal. 898 

Each sphere represents one sample. Axes are principal components 1 (x) and 3 (y) explaining 18.48% 899 

and 8.79% of the variability in the data, respectively. The four replicated pool injections cluster 900 

satisfactorily. 901 

a) Coloring reflects the type of samples, i.e. cases, controls and four replicated pool injections. No clear 902 

distinction between cases and controls can be observed (PERMANOVA Adonis R2 = 0.014, P-value = 903 

0.777). 904 

b) Coloring reflects the month of birth for the 68 samples as well as the four replicated pool injections. 905 

Samples collected in the winter (dark purple and yellow, extremities of the colors scale) are positioned 906 

away from the samples collected in summer (green and turquoise, middle of the color scale). 26.2% of 907 

the variation in the data can be explained by month of birth (Adonis R2 = 0.262, P-value = 0.001) 908 

See Additional file 8 for detailed values with and without FDR correction and for other distance 909 

matrices. 910 

See Figure_3ab.pdf 911 
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Figure 4. PERMANOVAs of the four tested distance matrices showing how much of the variation 913 

(Adonis R2) is explained by a metadata variable. 914 

P-values include FDR correction. A star is present when the corrected p-values was <0.05. 915 

All exact values are available in Additional file 8 and detailed metadata (subject characteristics) are 916 

available in Table 1 and Additional file 6. 917 

See Figure_4.pdf 918 

 919 
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Additional files 921 

Additional file 1:  922 

Standardized reporting of untargeted metabolomics LC-MS/MS method according to [60] containing 923 

the list of internal standards from the Neobase Non-derivatized MSMS kit and their concentration in 924 

the extraction buffer 925 

See .xlsx 926 

 927 

Additional file 2:  928 

MZmine batch .xml file used to preprocess the raw data 929 

See .xml 930 

 931 

Additional file 3:  932 

Compound Discoverer 2.1 preprocessing workflow settings 933 

See .pdf 934 

 935 

Additional file 4ab:  936 

PEG (4a) and PPG (4b) filtering scripts using the Kendrick Mass filter according to [80] 937 

See the two .ipynb 938 

Can be opened using https://jupyter.org/ 939 

 940 

Additional file 5:  941 

Targeted analysis of outliers using TraceFinder (IS and unlabeled homologs) and heatmap of 942 

untargeted analysis 943 

See .pdf 944 

 945 

Additional file 6:  946 

Subjects characteristics in details 947 

See .xlsx 948 

 949 

Additional file 7: 950 
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All features including annotated compounds. Out of the 4360 features detected, 150 could be annotated 951 

by GNPS library matching (annotation level 2) or in-house Trace Finder library (annotation level 1) 952 

and an additional 859 by MolNetEnhancer (annotation level 3). 953 

See .xlsx 954 

 955 

Additional file 8:  956 

PERMANOVAs Adonis R2 values and p-values calculated with (74 samples) and without (68 samples) 957 

outliers 958 

See .xlsx 959 

 960 

Additional file 9:  961 

Full list of compounds with t-test p value <0.01 without FDR correction and/or with Wilcoxon rank-962 

sum test p value <0.01 without FDR correction and/or case/control fold change value <0.5 or >2. 963 

See .xlsx 964 

 965 

Additional file 10: Fragmentation profiles of the two unknown features to be monitored in future 966 

studies as well as methacholine as shown in Table 2. 967 

See .pdf 968 

 969 

Additional file 11: Full list of compounds reported in the literature as involved in ASD and considered 970 

in this study. 971 

See .xlsx 972 

 973 
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